建材秒知道
登录
建材号 > 能源科技 > 正文

生物能是可再生能源吗

怕黑的蚂蚁
笨笨的早晨
2023-02-02 14:59:03

生物能是可再生能源吗

最佳答案
丰富的饼干
细心的毛豆
2025-07-16 17:06:16

是的.

生物能是太阳能以化学能形式贮存在生物中的一种能量形式,一种以生物质为载体的能量,它直接或间接地来源于植物的光合作用,在各种可再生能源中,生物质是独特的,它是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态和气态燃料。

最新回答
粗犷的未来
懵懂的微笑
2025-07-16 17:06:16

生物质能是可再生能源。

生物质能是自然界中有生命的植物提供的能量,这些植物以生物质作为媒介储存太阳能,属再生能源。据计算,生物质储存的能量比目前世界能源消费总量大2倍。人类历史上最早使用的能源是生物质能。19世纪后半期以前,人类利用的能源以薪柴为主。

可再生性

生物质能属可再生资源,生物质能由于通过植物的光合作用可以再生与风能、太阳能等同属可再生能源,资源丰富,可保证能源的永续利用。

低污染性

生物质的硫含量、氮含量低、燃烧过程中生成的S0X、NOX较少;生物质作为燃料时,由于它在生长时需要的二氧化碳相当于它排放的二氧化碳的量,因而对大气的二氧化碳净排放量近似于零,可有效地减轻温室效应。

总量丰富

生物质能是世界第四大能源,仅次于煤炭、石油和天然气。根据生物学家估算,地球陆地每年生产1000~1250亿吨生物质;海洋年生产500亿吨生物质。生物质能源的年生产量远远超过全世界总能源需求量,相当于世界总能耗的10倍。我国可开发为能源的生物质资源到2010年可达3亿吨。随着农林业的发展,特别是炭薪林的推广,生物质资源还将越来越多。

会撒娇的信封
紧张的冰棍
2025-07-16 17:06:16
生物能是以生物为载体将太阳能以化学能形式贮存的一种能量,它直接或间接地来源于植物的光合作用,其蕴藏量极大,仅地球上的植物,每年生产量就像当于目前人类消耗矿物能的20倍。在各种可再生能源中,生物质是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态和气态燃料 。据估计地球上每年植物光合作用固定的碳达 2x1011t ,含能量达 3x1021j。

落寞的草丛
尊敬的小丸子
2025-07-16 17:06:16
新能源可能是指可再生能源,不是传统的石油煤炭.沼气应该是生物质能源属于可再生能源.

生物能即生物质能.生物质能是指植物叶绿素将太阳能转化为化学能贮存在生物质内部的能量,本质上也源于太阳能。生物质能是全世界使用最广泛的能源,但根据中国2006年1月1日起施行的《中华人民共和国可再生能源法》,通过低效率炉灶直接燃烧方式(传统方式)利用秸秆、薪柴、粪便等不属于现代生物质能。目前发展中的开发利用技术主要是,通过热化学转换技术将固体生物质转换成可燃气体、焦油等,通过生物化学转换技术将生物质在微生物的发酵作用下转换成沼气、酒精等,通过压块细蜜成型技术将生物质压缩成高密度固体燃料等。

生物能大致可以分为两类——传统的和现代的。生物质能包括自然界可用作能源用途的各种植物、人畜排泄物以及城乡有机废物转化成的能源,如薪柴、沼气、生物柴油、燃料乙醇、林业加工废弃物、农作物秸秆、城市有机垃圾、工农业有机废水和其他野生植物等。现代生物能是指那些可以大规模用于代替常规能源亦即矿物类固体、液体和气体燃料的各种生物能。巴西、瑞典、美国的生物能计划便是这类生物能的例子。现代生物质包括:木质废弃物(工业性的);甘蔗渣(工业性的);城市废物;生物燃料(包括沼气和能源型作物)。传统生物能主要限于发展中国家、广义来说它包括所有小规模使用的生物能,但它们也并不总是置于市场之外。第三世界农村烧饭用的薪柴便是其中的典型例子。传统生物质包括:家用薪柴和木炭;稻草和稻壳;其他的植物性废弃物;动物的粪便。世界上生物质资源数量庞大,形式繁多,其中包括薪柴、农林作物,尤其是为了生产能源而种植的能源作物,农业和林业残剩物,食品加工和林产品加工的下脚料,城市固体废弃物,生活污水和水生植物等等。中国生物质资源主要是农业废弃物及农林产品加工业废弃物、薪柴、人畜粪便、城镇生活垃圾等四个方面。

薪柴:至今仍为许多发展中国家的重要能源,仍需依赖柴薪来满足大部分能量需求.不过由于日益增加薪柴的需求,将导致林地日减,需适当规划与植林方可解决这一问题。

农作物残渣:农作物残渣遗留于耕地上也有水土保持与土壤肥力固化的功能,因此,农作物残渣不可毫无限制地供作能源转换。

牲畜粪便:牲畜的粪便,经干燥可直接燃烧供应热能。若将粪便经过厌氧处理,会产生甲烷和可供肥料使用的淤渣。若用小型厌氧消化糟,仅需三至四头牲畜之的粪便即能满足发展中国家中小家庭每天能量的需要。

制糖作物:对具有广大未利用土地的国家而言,如将制糖作物转化成乙醇将可成为一种极富潜力的生物能。制糖作物最大的优点,在于可直接发酵变成乙醇。

水生植物:如一些水生藻类,主要包括海洋生的马尾藻、巨藻、海带等,淡水生的布袋草、浮萍、小球藻等。利用水生植物化成燃料也为增加能源供应方法之一。

光合成微生物:如硫细菌、非硫细菌等等。 城市垃圾:将城市垃圾直接燃烧可产生热能,或是经过热解体处理而制成燃料使用。

城市污水:一般城市污水约含有0.02~0.03%固体与99%以上的水分。下水道污泥有望成为厌氧消化槽的主要原料。

石油植物:作为一种新的可再生能源,与其它能源相比,具有如下优点:

① 是一种独特的绿色清洁能源,在当今全球环境严重污染的情况下,开发应用它对保护环境十分有利。

②分布广泛,若能因地制宜地进行种植,便能就地取木成“油”,而不需勘探、钻井、采矿,也减少了长途运输,成本低廉,易于普及推广。

③生长迅速,能通过规模化种植确保产量。

④能源使用起来要比核电等能源安全得多,不会发生爆炸,泄漏等安全事故。

⑤ 开发石油植物,将逐步加强世界各国在能源方面的独立性,减少对石油市场的依赖,可以在保障能源供给、稳定经济发展方面发挥积极作用。

合适的鸭子
寂寞的网络
2025-07-16 17:06:16
地球上每年植物光合作用固定的碳达2×1011t,含能量达3×1021J,因此每年通过光合作用贮存在植物的枝、茎、叶中的太阳能,相当于全世界每年耗能量的10倍。生物质遍布世界各地,其蕴藏量极大,仅地球上的植物,每年生产量就像当于现阶段人类消耗矿物能的20倍,或相当于世界现有人口食物能量的160倍。虽然不同国家单位面积生物质的产量差异很大,但地球上每个国家都有某种形式的生物质,生物质能是热能的来源,为人类提供了基本燃料。

开发“绿色能源”已成为当今世界上工业化国家开源节流、化害为利和保护环境的重要手段。至少有14个工业化国家在开发“绿色能源”方面取得了良好成绩,其中有些国家通过实施“绿色能源”政策,在相当大程度上缓解了本国能源不足的矛盾,而且显著改善了环境。

我国拥有丰富的生物质能资源,我国理论生物质能资源50亿吨左右。现阶段可供利用开发的资源主要为生物质废弃物,包括农作物秸秆、薪柴、禽畜粪便、工业有机废弃物和城市固体有机垃圾等。然而,由于农业、林业、工业及生活方面的生物质资源状况非常复杂,缺乏相关的统计资料和数据,以及各类生物质能资源间以各种复杂的方式相互影响,因此,生物质的消耗量是最难确定或估计的。

近年来,我国在生物质能利用领域取得了重大进展,特别是沼气技术,每年所生产能源己达115万吨油当量,占农村能源的0.24%;由节柴炕灶每年所节约的能量己达52.5万吨油当量。

我国政府及有关部门对生物质能源利用也极为重视,己连续在四个国家五年计划将生物质能利用技术的研究与应用列为重点科技攻关项目,开展了生物质能利用技术的研究与开发,如户用沼气池、节柴炕灶、薪炭林、大中型沼气工程、生物质压块成型、气化与气化发电、生物质液体燃料等,取得了多项优秀成果。政策方面,2005年2月28日,第十届全国人民代表大会常务委员会第十四次会议通过了《可再生能源法》,2006年1月1日起已经正式实施,并于2006年陆续出台了相应的配套措施。这表明我国政府已在法律上明确了可再生能源包括生物质能在现代能源中的地位,并在政策上给予了巨大优惠支持,因此,我国生物质能发展前景和投资前景极为广阔。

<生物能源>(中国投资咨询网)

第一章 生物质能概述

1.1 生物质能的概念与形态

1.1.1 生物质能的含义

1.1.2 生物质能的种类与形态

1.1.3 生物质能的优缺点

1.2 生物质能的性质与用途

1.2.1 生物质的重要性

1.2.2 与常规能源的相似性及可获得性

1.2.3 生物质能源的可再生性及洁净性

1.3 生物能源的开发范围

1.3.1 植物酒精成为绿色石油

1.3.2 利用甲醇的植物发电

1.3.3 生产石油的草木

1.3.4 藻类生物能源的利用

1.3.5 海中藻菌能源开发

1.3.6 薪柴与“能源林”推广

1.3.7 变垃圾为宝的沼气池

1.3.8 人体生物发电的开发利用

1.3.9 细菌采矿技术的研究

第二章 全球生物质能的开发和利用

2.1 国际生物质能开发利用综述

2.1.1 全球生物质能开发与利用回顾

2.1.2 欧洲各国生物能源研究机构简介

2.1.3 欧盟国家生物质能发展政策分析

2.2 美国

2.2.1 美国生物质能研发概况

2.2.2 美国生物质能的研究领域

2.2.3 美国将大力开发燃料乙醇和生物燃油

2.3 德国

2.3.1 德国生物质能的研发和应用状况

2.3.2 德国积极发展生物质能替代石油

2.3.3 德国生物柴油生产和销售状况

2.4 日本

2.4.1 日本生物质能的研究计划

2.4.2 日本生物质能发电应用状况

2.4.3 日本生物质能源综合战略分析

2.5 其它国家

2.5.1 英国大力发展生物质能产业

2.5.2 瑞典生物质能发展概述

2.5.3 巴西大力开发生物质能源

2.5.4 农业为法国发展生物燃料奠定基础

2.5.5 印度生物质能开发与利用概况

2.5.6 泰国积极拓展生物能源领域

第三章 中国生物质能开发和利用状况

3.1 中国生物质能发展概述

3.1.1 我国生物质能的资源概况

3.1.2 解析我国发展生物质能的动因

3.1.3 我国对生物质能的应用状况

3.1.4 我国生物质能发展的示范工程

3.1.5 我国发展生物质能的主要成就

3.2 全国各地生物质能利用情况

3.2.1 四川省生物质能资源及利用状况

3.2.2 内蒙古生物质能源发展状况及开发建议

3.2.3 湖北省生物质能集约化应用方向与途径

3.2.4 上海生物质能发展环境与建议

3.3 开发与利用生物质能存在的问题与对策

3.3.1 生物质能利用尚存三大瓶颈

3.3.2 消极因素阻碍生物质能的发展

3.3.3 生物质能开发与国外相比存在的差距

3.3.4 我国发展生物质能的主要策略

3.3.5 未来生物质能发展的基本方向

第四章 中国农村生物质能的开发与利用

4.1 农村生物质能的资源状况

4.1.1 我国农村农作物秸秆资源丰富

4.1.2 农村畜禽养殖场粪便资源状况

4.1.3 林业及其加工废弃物资源状况

4.2 农村生物质能源利用状况

4.2.1 我国农村生物质能利用状况回顾

4.2.2 发展农村生物质能对能源农业的意义

4.2.3 我国农村生物质能开发的主要策略

4.2.4 未来农村生物质能发展战略目标

4.3 主要地区农村生物能源利用状况

4.3.1 江苏农村的生物质能利用状况

4.3.2 北京加速农村生物质能源推广

4.3.3 吉林生物质能源项目的使用概况

第五章 生物质能开发与应用技术分析

5.1 生物质能技术的相关介绍

5.1.1 生物质液化技术

5.1.2 生物质气化技术

5.1.3 生物质发电技术

5.1.4 生物质热解综合技术

5.1.5 生物质固化成型技术

5.2 世界生物质能开发技术分析

5.2.1 国外生物质能技术的发展状况

5.2.2 世界种植“石油”作物技术概况

5.2.3 欧洲生物质能开发与利用技术分析

5.3 中国生物质能技术的发展

5.3.1 我国生物质能技术的主要类别

5.3.2 中国生物质热解液化技术概要

5.3.3 我国生物质能技术存在的主要问题

5.3.4 发展我国生物质能利用技术的策略

5.3.5 我国生物质能利用技术开发建议

第六章 生物柴油

6.1 生物柴油简介

6.1.1 生物柴油的概念

6.1.2 生物柴油的特性

6.1.3 生物柴油的生产工艺

6.1.4 生物柴油的优势与效益

6.2 生物柴油生产的原料来源

6.2.1 油菜成为生物柴油的首选原料

6.2.2 用廉价废旧原料生产生物柴油

6.2.3 花生油下脚废料开发出生物柴油

6.2.4 潲水油可以成为生物柴油原料

6.3 国际生物柴油行业分析

6.3.1 世界生物柴油发展迅速的原因

6.3.2 欧盟生物柴油行业发展现状

6.3.3 美国生物柴油行业发展状况

6.3.4 巴西将提前实现生物柴油发展目标

6.3.5 2007年德国将是生物柴油净出口国

6.3.6 2007年马来西亚将提高生物柴油产量

6.4 我国生物柴油产业发展概述

6.4.1 发展生物柴油的必要性和可行性

6.4.2 我国生物柴油产业尚在初级阶段

6.4.3 我国生物柴油技术发展的成就

6.5 2005-2007年生物柴油产业发展分析

6.5.1 2005年“生物柴油”植物栽培获突破

6.5.2 2006年生物柴油产业迎来投资高潮

6.5.3 2007年环保生物柴油试产成功

6.6 生物柴油发展中的问题与对策

6.6.1 我国生物柴油商业化应用的障碍

6.6.2 突破生物柴油产业发展瓶颈的对策

6.6.3 价格和原料供应问题的解决途径

6.6.4 解析生物柴油发展中的法律欠缺

6.6.5 推动中国生物柴油发展的政策建议

6.7 生物柴油产业发展前景分析

6.7.1 生物柴油在国内的商业化未来

6.7.2 我国生物柴油的市场前景广阔

第七章 燃料乙醇

7.1 燃料乙醇简介

7.1.1 燃料乙醇含义

7.1.2 燃料乙醇的重要作用

7.1.3 变性燃料乙醇简介

7.1.4 变性燃料乙醇国家标准

7.2 燃料乙醇生产原料分析

7.2.1 甘蔗是理想的燃料酒精作物

7.2.2 玉米生产燃料乙醇潜力巨大

7.2.3 不同类型原料的综合比选

7.2.4 发展燃料乙醇原料产业的建议

7.3 国际燃料乙醇产业分析

7.3.1 世界燃料乙醇工业发展回顾

7.3.2 欧洲国家推广应用燃料乙醇概况

7.3.3 乙醇燃料在美国的应用推广过程

7.3.4 巴西政府大力发展燃料乙醇工业

7.3.5 全球燃料乙醇替代汽油展望

7.4 中国燃料乙醇产业分析

7.4.1 中国燃料乙醇的生产与应用回顾

7.4.2 中国燃料乙醇推广的实践经验

7.4.3 我国发展燃料乙醇工业的基本原则

7.4.4 燃料乙醇企业面临成本高的难题

7.4.5 发展国内燃料乙醇工业的若干建议

7.5 中国燃料乙醇市场分析

7.5.1 我国燃料乙醇市场简况

7.5.2 燃料乙醇定价与经济性分析

7.5.3 燃料乙醇需求增加使玉米供应出现缺口

7.5.4 推广应用燃料乙醇的经验策略

7.6 燃料乙醇的发展前景和趋势

7.6.1 未来燃料乙醇工业发展前景展望

7.6.2 我国燃料乙醇工业市场前景广阔

7.6.3 木薯制造燃料乙醇的市场前景广阔

第八章 生物质能发电

8.1 国际生物质能发电情况

8.1.1 世界生物质能发电技术日趋成熟

8.1.2 北美地区生物质能发电发展概况

8.1.3 欧盟地区生物质能发电发展分析

8.1.4 生物质能发电未来的前景预测

8.2 中国生物质能发电产业分析

8.2.1 加快生物质发电的必要性和可行性

8.2.2 内地主要生物质发电项目建设情况

8.2.3 发展生物质发电对新农村建设意义重大

8.3 沼气发电

8.3.1 发展我国农村沼气发电的意义重大

8.3.2 我国农村沼气发电的应用技术分析

8.3.3 沼气综合利用发电的经济效益分析

8.3.4 沼气发电商业化发展的障碍与对策

8.3.5 未来我国农村沼气发电的发展前景

8.4 2004-2006年沼气发电项目运行状况

8.4.1 2004年无锡市的沼气发电电量大增

8.4.2 2005年浙江省最大的沼气发电项目成功运行

8.4.3 2006年四川首个沼气发电站在双流建成

8.4.4 2006年徐州建成首家沼气发电工程

8.4.5 2006年兰州大型沼气发电机组试车成功

8.5 秸秆发电

8.5.1 中国秸秆发电发展概况

8.5.2 中国应着力推进秸秆发电事业

8.5.3 国内秸秆发电的技术分析

8.6 生物质气化发电

8.6.1 发展生物质气化发电技术的意义

8.6.2 中国生物质气化发电技术的现状

8.6.3 中小型气化发电技术的现状和问题

8.6.4 生物质气化发电技术的经济性分析

8.6.5 生物质气化发电技术应用市场分析

8.6.6 生物质气化发电技术的发展策略

8.6.7 国家对生物质气化发电的政策支持

第九章 生物质能产业投资分析

9.1 投资生物质能产业的政策环境

9.1.1 我国开发生物质能的有利政策

9.1.2 发展生物质能的财政政策解读

9.1.3 农村能源发展的政策保障与战略思考

9.1.4 我国燃料乙醇工业的相关政策剖析

9.2 投资机会与投资成本分析

9.2.1 中国优先发展的生物能源项目

9.2.2 燃料乙醇行业已成投资热点

9.2.3 国内推广生物柴油的时机成熟

9.2.4 投资生物柴油的经济成本分析

9.3 投资生物质能产业的若干建议

9.3.1 生物质能利用应考虑的几个因素

9.3.2 投资生物质能发电项目亟需谨慎

9.3.3 开发燃料乙醇应关注三大问题

第十章 生物质能利用的发展前景

10.1 全球生物质能的发展前景分析

10.1.1 未来全球将面临能源危机的挑战

10.1.2 全球生物能源利用潜力预测

10.1.3 全球生物质能的发展前景广阔

10.2 中国生物质能的利用前景

10.2.1 我国开发利用生物质能具有广阔前景

10.2.2 我国生物质能资源潜力巨大

10.2.3 中国林业发展生物质能源潜力巨大

10.3 生物质能利用技术的未来展望

10.3.1 生物质能源技术市场前景广阔

10.3.2 未来生物质能应用技术的发展方向

10.3.3 我国生物质能利用技术发展目标

等待的牛排
温婉的蛋挞
2025-07-16 17:06:16

定义:可再生能源为来自大自然的能源,是取之不尽,用之不竭的能源,是相对于会穷尽的不可再生能源的一种能源,对环境无害或危害极小,而且资源分布广泛,适宜就地开发利用。

类型:地热能,水能,风能,生物质能,潮汐能。

简介:

可再生能源是指自然界中可以不断利用、循环再生的一种能源,例如太阳能、风能、水能、生物质能、海洋能、潮汐能、地热能等。 随着世界石油能源危机的出现,人们开始认识到可再生能源的重要性。

人类历史进程中长期依赖的能源都是可再生能源,如薪柴、秸秆等属于生物质能源,另外还有水力、风力等,这些能源大部分都来自太阳能的转化,是可以再生的能源资源。

人类近代社会大规模开发利用的煤炭、石油、天然气等化石能源,其能量来源实际上也是源自太阳能的转化,但它们是地球在远古时期的演化化过程中形成和储存下来的,对于我们人类来说一旦用完就无法恢复和再生,因此属于不可再生的能源资源。

过时的盼望
典雅的心锁
2025-07-16 17:06:16
可再生能源是指在自然界中可以不断再生、永续利用、取之不尽、用之不竭的资源,它对环境无害或危害极小,而且资源分布广泛,适宜就地开发利用。可再生能源主要包括太阳能、风能、水能、生物质能、地热能和海洋能等。中国除了水能的可开发装机容量和年发电量均居世界首位之外,太阳能、风能和生物质能等各种可再生能源资源也都非常丰富。中国太阳能较丰富的区域占国土面积的2/3以上,年辐射量超过6000MJ/㎡,每年地表吸收的太阳能大约相当于1.7万亿tce的能量;风能资源量约为32亿kW,初步估算可开发利用的风能资源约10亿kW,按德国、西班牙,丹麦等风电发展迅速的国家的经验进行类比分析,中国可供开发的风能资源量可能超过30亿kW;海洋能资源技术上可利用的资源量估计约为4亿-5亿kW;地热资源的远景储量为1353亿tce,探明储量为31.6亿tce;现有生物质能源包括:秸秆、薪柴、有机垃圾和工业有机废物等,资源总量达7亿tce,通过品种改良和扩大种植,生物能的资源量可以在此水平再翻一番。总之中国可再生能源资源丰富,具有大规模开发的资源条件和技术潜力,可以为未来社会和经济发展提供足够的能源,开发利用可再生能源大有可为。2006年底,中国可再生能源年利用量总计为2亿吨标准煤,(不包括传统方式利用的生物质能),约占中国一次能源消费总量的8%,比2005年上升了0.5个百分点,这为2010年可再生能源占全国一次性能源10%的目标迈出了坚实的一步。随着越来越多的国家采取鼓励可再生能源的政策和措施,可再生能源的生产规模和使用范围正在不断扩大,2007年全球可再生能源发电能力达到了24万兆瓦,比2004年增加了50%。2007年至少有60多个国家制订了促进可持续能源发展的相关政策,欧盟已建立了到2020年实现可持续能源占所有能源20%的目标,而中国也确立了到2020年使可再生能源占总能源的比重达到15%的目标。2007年,全球并网太阳能发电能力增加了52%,风能发电能力增加了28%。全球大约有5000万个家庭使用安放在屋顶的太阳能热水器获取热水,250万个家庭使用太阳能照明,2500万个家庭利用沼气做饭和照明。可再生能源比重的提升传递着“绿色经济”正在兴起的信息,2012年《京都议定书》到期后新的温室气体减排机制将进一步促进绿色经济的全面发展。根据中国中长期能源规划,2020年之前,中国基本上可以依赖常规能源满足国民经济发展和人民生活水平提高的能源需要,到2020年,可再生能源的战略地位将日益突出,届时需要可再生能源提供数亿吨乃至十多亿吨标准煤的能源。因此,中国发展可再生能源的战略目的将是:最大限度地提高能源供给能力,改善能源结构,实现能源多样化,切实保障能源供应的安全。

光亮的航空
舒适的蜜蜂
2025-07-16 17:06:16
不可再生资源泛指人类开发利用后,在现阶段不可能再生的能源资源,叫“不可再生能源”。如煤和石油都是古生物的遗体被掩压在地下深层中,经过漫长的地质年代而形成的(故也称为“化石燃料”),一旦被燃烧耗用后,不可能在数百年乃至数万年内再生,因而属于“不可再生能源”。

核能源于核矿石内的能量,核矿石属于矿产资源,而矿产资源属于非可再生资源。所以它是不可再生能源。

生物质能是蕴藏在生物质中的能量,是绿色植物通过叶绿素将太阳能转化为化学能而贮存在生物质内部的能量。煤、石油和天然气等化石能源也是由生物质能转变而来的。 生物质能是可再生能源, 通常包括以下几个方面:一是木材及森林工业废弃物;二是农业废弃物;三是水生植物;四是油料植物;五是城市和工业有机废弃物;六是动物粪便。

超帅的帆布鞋
丰富的翅膀
2025-07-16 17:06:16
可再生能源

泛指从自然界获取的,可以再生的非化石能源.即通过天然作用或人工活动能再生更新,而为人类反复利用的自然资源叫可再生资源,又称为更新自然资源,如土壤、植物、动物、微生物和各种自然生物群落、森林、草原、水生生物等。目前主要是指风能、太阳能、水能、生物质能、地热能和海洋能等自然能源。

不可再生能源

泛指人类开发利用后,在相当长的时间内不可能再生的能源资源。主要指自然界的各种矿物、岩石和化石燃料,例如泥炭、煤、石油、天然气、金属矿产、非金属矿产等。这类资源是在地球长期演化历史过程中,在一定阶段、一定地区、一定条件下,经历漫长的地质时期形成的。与人类社会的发展相比,其形成非常缓慢,与其它资源相比,再生速度很慢,或几乎不能再生。人类对不可再生资源的开发和利用,只会消耗,而不可能保持其原有储量或再生。其中,一些资源可重新利用,如金、银、铜、铁、铅、锌等金属资源;另一些是不能重复利

用的资源,如煤、石油、天然气等化石燃料,当它们作为能源利用而被燃烧后,尽管能量可以由一种形式转换为另一种形式,但作为原有的物质形态已不复存在,其形式已发生变化。