新能源汽车电池模组是什么
新能源汽车电池模组是电动汽车电池管理系统(BatteryManagementSystem,简称:BMS),它的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。
电动汽车电池包相关知识——设计原则电池包的最大外形要满足整车安装空间的要求,设计时注意考虑电池包的安装与维护。电池包的安装位置要考虑冲击、振动、侧翻等情况,箱体应能承受一定程度的冲击力(可以参照电池模块的冲击性能测试要求进行设计)。车型不同,留给电池包的空间不一样,电池包的设计必须与整车设计相结合。
电池包内部应利于电池模块的排布与安装。电池包形状应与电池模块布置形状相适应。当冷却系统工作时,冷却风扇提供的冷却气流应能均匀地流过每个电池模块周围,箱内不能形成气流的“死区”和涡流,保证电池模块工作过程中温度均匀、性能一致,防止个别电池模块早期损坏。
电池包除了必须与外界进行直接接口的地方外,电池箱必须是密封的。除必需的通风孔外均不能与大气相通。密封箱内的要求主要考虑电池冷却气流的流动问题,不能在某处泄漏,避免冷却气流的流动性差造成电池模块工作温度的不一致,从而导致性能的一致性进一步的恶化,并且避免外界粉尘的进入。
电池包的外壳材料可以选择高强度、耐腐蚀的塑料或金属壳体,选择金属壳体则内、外部必须进行耐席蚀的绝缘处理。
电动汽车电池包相关知识——要求电池包包括电池模块、箱体、连接线束、管理板等。电池包的设计需满足以下要求:(l)满足整车安装条件,包括尺寸、安装接口等;
(2)电池箱体与电池模块之间的绝缘,电池箱体与整车之间绝缘;
(3)防水、防尘满足IP54或以上要求;
(4)减少电池包内部使电池产生自放电的可能性;
(5)各种接口(通信、电气、维护、机械)等完全、合理;
(6)模块在电池箱体内的固定、电池包在整车上的固定满足振动、侧翻、碰撞等要求;
(7)温度场设计合理,要求电池箱体内部电池温差不超过5摄氏度;
(8)禁止有害或危险性气体在电池包内累积,更不能进入乘客舱;
(9)部分应用(纯电动汽车)要求快速更换。
(图/文/摄: 问答叫兽)问界M5 小鹏汽车P7 AION V 传祺GS8 小鹏P5 理想ONE @2019
【太平洋汽车网】新能源汽车电池模组的作用主要是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。
热管理系统的重要性电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。电池组热管理系统主要由导热介质、测控单元以及温控设备构成。导热介质与电池组相接触后通过介质的流动将电池系统内产生的热量散至外界环境中,导热介质主要有空气、液体与相变材料这三大类。测控单元则是通过测量电池系统以及电池模组甚至单体不同位置上的实时温度来控制温控设备进行对应的热处理。常见的温控设备有风扇与泵机等。
(新能源电动汽车电池结构)电池热管理系统的作用车辆在不同的行驶状况下,电池系统由于其自身有一定的内阻,在输出功率、电能的同时产生一定的热量,使电池温度升高,当电池温度超出其正常工作温度区间时会影响电池的寿命。目前国内的热管理研究较多在防止过热上,更准确地说是集中在电池系统和模组级别上,在电芯层面上的隔热并没有过多关注。
目前国内很多企业在电芯层面上,无论是软包还是方形都没有进行相应的隔热处理。比如软包电芯,基本是直接堆叠后靠金属外壳固定一起,且不论电芯之间热量的积累,光软包充放电时的臌胀效应就有可能导致电芯出现破损可能。方形之间靠结构胶直接粘接,并且还在没有采用任何冷却处理的环境下,完全靠自然冷却不能保证热量及时扩散。
在国外以及国内若干采用软包的企业得到大规模应用的隔热阻燃材料,一方面能够吸收电池鼓胀应力起到缓冲作用,另一方面能够起到隔热作用,在电芯出现热失控的情况下抑制热扩散,延缓事故发生。在方形电芯之间的隔热处理,已经有企业在采用气凝胶,安全性相当高,但存在一个很实现的成本问题。
当温度降低到零度以下时,电池系统的充放电功能会由于电池性能的降低变得十分困难,无论是放电的倍率还是放电的容量都会大幅度地降低。因此在寒冷地区,研究电动汽车如何才能更高效地使用变得十分迫切。针对上述情况,一般从两个方面出发进行设计,分别是电芯加热和箱体保温方案。
(图/文/摄:太平洋汽车网问答叫兽)
【太平洋汽车网】新能源汽车电池电芯组包括电池单体、电池管理控制器以及其他电气机械装置。电池的结构可以概括为12个电芯组装成1个模组,16个模组组装成一个动力电池组,动力电池组运输到整车厂进行装车工序。
纯电动汽车中动力电池作为汽车唯一的动力来源,电池电能的高低决定了电动汽车的行驶里程。提高动力电池组电能的方法有两种:采用高容量的电芯,使用更多的电芯。
一般电芯容量越高,成本也越高。因此优化电池组的结构,尽量使用更多的电芯成为整车厂设计过程需要考虑的重要因素。本章将介绍目前动力电池组的结构。
动力电池组的电池结构可以分为三层,电池单体,电池模块,动力电池系统。
电池单体(Cell,简称电芯):构成电池系统的最小单元,由正极、负极及电解质等组成。
电池模块(Module,简称模组):由电池单体和模块控制器组成,作为电池系统构成中的一个小型模块。目前SVW的纯电动车用的模组为12个电芯2P6S(2并联*6串联)组装而成。
动力电池系统(Battery,简称动力电池组):为电动汽车提供能量的蓄电池,其中包括:电池单体、电池管理控制器以及其他电气机械装置。目前SVW的纯电动车的电池组使用16个模组组装而成。
因此,电池的结构可以概括为12个电芯组装成1个模组,16个模组组装成一个动力电池组,动力电池组运输到整车厂进行装车工序。
(图/文/摄:太平洋汽车网问答叫兽)
新能源车电池模块损坏会影响电池的电量储存量,所以新能源车电池模块损坏对续航有影响。
新能源车电池一般为锂离子电池,锂离子电池的用途十分广泛,因为特有的性能优势,已经在电子时代得到普遍应用,比如说笔记本电脑、相机、手机等等。新能源汽车产业的出现,更是大大推动了锂电池的发展,为锂电池的应用打开了广阔的前景。
新能源汽车发展的核心是储能电池,电池的好坏直接影响到汽车的性能,接下来带大家了解一下新能源汽车在电池方面应用的高科技。
一、高集成刀片动力电池。该技术突破传统拉深和挤出工艺制约,并攻克超薄铝壳焊接技术,成功开发长宽比为10:1、厚度为0.3mm的超长超薄铝壳刀片电池,打破传统电池系统的模组概念,利用刀片电池独特长宽比特征,实现超长尺寸电芯的紧密排列,获得超过60%的体积集成效率。
二、动力电池高效成组CTP技术。该技术打破了行业固有的“单体成组模组再成组电池包”三级成组设计思维,从电池包结构高度集成、新工艺研发以及热管理优化等方面开发了全新的动力电池高效成组CTP技术,实现两级成组一“单体直接成组电池包”。
三、高电压镍锰酸锂正极材料及电池。高电压镍锰酸锂材料具有高电压、高能量密度、低成本、高安全和快锂离子传导特性,是下一代动力电池的主流正极材料之一。在高电压下,电极材料与电解液之间剧烈的副反应是限制镍锰酸锂材料商业化的最大障碍,解决该问题的关键就是构造稳定的正极材料与电解液界面和耐高电压的材料体系,具体包含高电压正极材料表面改性技术,高电压镍锰酸锂材料电解液开发匹配技术,高电压辅助配套材料的匹配改性技术,这些技术也将推动电池行业向高电压、高能量密度和高安全的目标前进。
四、聚合物复合固态电解质。固态锂电池以其高比能、高安全等显著优势,成为未来新能源汽车发展的核心动力,设计和制备物理与电化学性能优异的固态电解质迫在眉睫。“刚柔并济”的聚合物复合固态电解质设计理念,是以尺寸热稳定性好的“刚”性材料为骨架支撑,复合电化学窗口宽、室温离子传输性能优异的“柔”性聚合物材料和高离子迁移数锂盐,有效解决了单一聚合物电解质尺寸热稳定性差和力学强度低,以及单一无机固态电解质界面传输和加工性能差的瓶颈问题,利用该聚合物复合电解质研制的固态锂电池具有高安全、高比能、高耐压、长寿命等突出特点,是未来新能源汽车动力电池技术的重要选择。
五、一体化大功率燃料电池系统。一体化大功率燃料电池系统技术通过采用超薄金属双极板、低Pt催化剂、空气侧无外增湿及智能控制策略,有效缩小了燃料电池系统体积,降低成本。
新能源汽车正是通过应用这些高端科技,才让电车的续航里程不断刷新记录。
低速电动汽车锂电池
新能源汽车采用的都是锂电池,因为锂电池的续航里程比较远,充放电的循环次数比较多,寿命比较长。
由于低速电动四轮车的续航里程还是比较有限的,不能完全满足大众的日常出行需求,如果想要增加其续航里程,可以装上一台增程器,以此来增加其续航里程,增加其活动范围,满足大众日常出行需求,实现出行往返自如,不再因半途没电而举步维艰。
增程器可以直接找厂家购买,厂家直接发货,这样会便宜一些。需选择大厂家大品牌出品的增程器才会有全方位的保障,不然如果是小作坊式的厂家就容易坏也没有各方面的保障了。
增程器使用建议:
增程器在电量是满格的时候不推荐启动,一般建议在电量只有30%-40%的时候启动是最佳的。满电量的时候启动是没有什么特别好的效果的,为了环境友好,建议在需要的时候启动增程器,电池污染比废气污染更严重,保护电池就是保护环境。不建议在电池没有一点电的情况下使用,增程器启动的时候是电启动,在电池一点电都没有的时候启动可能会打不着火。
单体电池维护成本高
单体电池一旦出现问题,整个电池模组都要更换,而一个驱动电动新能源车的单组电池,起价值往往都在10万左右,试问有哪个用户敢使用这种单体电池的电动车。现在多模组电池,一旦某个单个模组出现问题,只单独更换模组即可,不用整个电池全换,坏一小块换一小块,成本更低。
单体电池的安全性更差
一块单体大电池,意味着有更大的电池液容积。充满电池液的电池,一旦发生碰撞,亦或是快充发热,电池液泄漏和爆炸的可能性就会大增。而多电池组的方式,不但可以减少这种几率,还能提供快充模式。