建筑可再生能源现在发展怎么样,都有哪些啊?
建筑可再生能源有:提高太阳能、浅层地能、生物质能,加大对太阳能采暖制冷、城镇生活垃圾及污泥沼气利用、工业余热及深层地热能梯级利用等新技术的推广应用等。到2020年实现可再生能源在建筑领域消费比例占建筑能耗的15%以上。以进一步拓展应用领域,提升技术水平。加大技术研发及产业化支持力度,鼓励科研单位、企业联合成立可再生能源建筑应用工程、技术中心,加大科技攻关力度,加快产学研一体化;逐步提高相关产业技术标准要求,住建部和财政部将制定可再生能源建筑应用技术、产品、设备推荐目录,提出相关技术标准要求,严格行业准入门槛。
希望采纳
生物质能不仅易于存储,且拥有丰富的应用场景,是当今最重要的可再生能源之一,也是未来能源供应的支柱产业。交能网这周起将展开全新的“生物质能”系列,聚焦该领域国内外的热点专题,从不同角度挖掘更多的全新内容。本文作为该系列的首发文章,将从宏观的角度为大家简要介绍生物质能作为可再生能源的诸多优势以及相关技术和设备,并对其中蕴含的商业潜力与发展前景展开叙述。
生物质能概况
生物质指所有来自植物、动物和人类的有机物质,例如木材、玉米和油菜籽等农业和林业产品。这些可再生的原材料可以用于制造建筑材料、生物塑料等。与太阳能、风能一样,生物质能也属于可再生能源,它可以转化为电力与热能,并将在未来的能源供应中发挥巨大作用。与风能和太阳能不同的是,生物质能极易储存,人们可以存储诸如稻草、木材或液态肥料之类的原材料,并在必要时再将其转化为其他能源。
生物质能本质上是被存储的太阳能,植物通过光合作用将二氧化碳和水合成为能量丰富的碳水化合物(糖类)。燃烧植物时这些能量会被释放。
从古代人类使用木材生火烹饪,到如今人们使用现代技术利用木材、玉米、油菜籽、稻草甚至肥料发电和生产燃料,人类利用生物质能的历史已有数千年之久。
现代生物质能最简单和广泛的应用仍是燃烧木材取暖。同时,在沼气厂中发酵肥料、玉米和稻草产生沼气的应用也已普及。这些沼气可以在热电联产厂中发电产热,也可以在公共燃气网络中储存,并运输到其他地方使用。
另外,生物质还可用作汽车发动机的燃料。
不可再生能源,又称非再生能源、耗竭性能源,与可再生能源对应,是无法经过短时间内再生的能源,而且它们的消耗速度远远超过它们再生的速度。煤炭、石油、天然气等化石燃料与核燃料、矿产等均属于不可再生能源,如该能源一旦耗尽,将不能开采出更多的可用储备供将来使用。
不可再生能源核燃料
核能发电提供约6%和世界的13%-14%的电,核技术需要核燃料作为能源,但核燃料在世界上的浓度相对很低,开采相对困难,目前只有19个国家能够开采到铀矿。 核电厂、医院、农业、工业、食品业与科学研究等都会产生出放射性废料,世界上有许多国家虽然没有核电厂但是也有放射性废料处理厂。
化石燃料
由于使用化石燃料的内燃机技术在17世纪被迅速发展,因此化石燃料被现代社会大量使用。然而化石燃料是不可再生的,目前人类使用的主要能源仍然依赖不可再生能源,而且主要能源快速消耗的同时,需求还不断增加。可是所有耗竭性能源都需要数百万年时间慢慢形成,在人类的时间尺度上,它们都不能被及时再补充,是不可再生的资源。由于不可再生能源在短时间内无法被制造,而人类社会的许多活动都会消耗不可再生能源,导致其价格不断攀升。
可再生能源生物质能
生物质能是指能够当作燃料或者工业原料,活着或刚死去的有机物。生物质能最常见于种植植物所制造的生质燃料,或者用来生产纤维、化学制品和热能的动物或植物。也包括以生物可降解的废弃物(Biodegradable waste)制造的燃料。但那些已经变质成为煤炭或石油等的有机物质除外。
地热能
地热能是由地壳抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量。地球内部的温度高达摄氏7000度,而在80至100公里的深度处,温度会降至摄氏650度至1200度。透过地下水的流动和熔岩涌至离地面1至5公里的地壳,热力得以被转送至较接近地面的地方。高温的熔岩将附近的地下水加热,这些加热了的水最终会渗出地面。运用地热能最简单和最合乎成本效益的方法,就是直接取用这些热源,并抽取其能量。
海洋能
海洋能源(有时也简称为海洋能)是指由波浪、潮汐、洋流、海水盐度的和海洋温度的差异产生能量。海洋能是一种新兴技术,地球上的海洋运动提供庞大的动能力量或运动中的能量。可以利用这种能量发电,以供家庭、运输和工业用电。
太阳能
太阳能一般是指太阳光的辐射能量,自地球形成生物就主要以太阳提供的热和光生存,广义上的太阳能是地球上许多能量的来源,如风能,化学能,水的势能,化石燃料可以称为远古的太阳能。自古人类就懂得以阳光晒干物件,也是保存食物的方法,如制盐和晒咸鱼等。太阳能使用的方式可分为光热转换(被动式利用)和光电转换两种方式。主动式太阳能技术,包括利用太阳能光伏板和太阳能集热器储存能量。被动式太阳能技术,包括导向建筑物在阳光下,选择材料具有良好的热质量或光分散性能和设计自然空气流通的空间。
水力
在水中的能量亦为人类所驱,因为水比空气的密度高800倍,即使是慢慢流的水都可以产生很大的能量。
风能
空气中随着温度高低,气流会移动,即为“风”, 风力发电机利用风能可以转变成机械能,再将机械能转成电能,现代的风力发电机一开始系由丹麦研究进入商业运行,起始于1970年代后期的石油危机,丹麦意识到自己国家缺乏自产能源,高度仰仗进口能源将危害国家中长期发展,所以在此危机意识下,大力推动风力发电。
现代的风机在1980年后至今有突飞猛进的进步,不论在技术的进步以及成本的下降,都足以和传统电能分庭抗礼。现代风机的单机容量在1.5-3MW之间。由于风的能量与其速度为2的立方比(8倍),所以风速增加一些些,其能产生的能量就大得许多。一般而言,风机的发电量每年在1500-3000满发小时之间。
建筑中绿色能源的应用
导语:能源就是向自然界提供能量转化的物质(矿物质能源,核物理能源,大气环流能源,地理性能源)。能源是人类活动的物质基础。在某种意义上讲,人类社会的发展离不开优质能源的出现和先进能源技术的使用。在当今世界,能源的发展,能源和环境,是全世界、全人类共同关心的问题,也是我国社会经济发展的重要问题。
一、我国在建筑节能方面的概况
(一)绿色能源是一种与生态环境相协调的清洁能源
新能源和可再生能源的概念是1981年联合国在肯尼亚首都内罗毕召开的能源会议上确定的。它不同于目前使用的传统能源,具有丰富的来源,几乎是取之不尽,用之不竭,并且对环境的污染很小,是一种与生态环境相协调的清洁能源。联合国开发计划署(UNDP)目前将绿色能源分为三类:1.大中型水电2.新可再生能源,包括小水电、太阳能、风能、现代生物质能、地热能、海洋能3.传统生物质能。
(二)我国建筑能耗方面的概况
统计数据表明,中国建筑能耗的总量逐年上升,在能源消费总量中所占的比例已从上世纪70年代末的10%上升到近年的27.8%.我国是以煤炭为主要能源的国家,由于我国大部分地区的气候条件呈现夏热冬冷的特点,因此我国的建筑耗能量巨大,燃煤排放了大量有害物质,对环境造成了严重的污染和破坏。据统计,早在1999年我国排放CO26.67亿吨,居世界第2位,其中85%是由燃煤排放的2000年我国排放SO21995万吨,居世界第1位,其中90%是由燃煤排放的。由于污染物的排放造成57%的城市颗粒物超过国家标准,48个城市SO2浓度超过国家二级排放标准。种种数据表明,绿色能源在建筑中的应用和推广已经是迫在眉睫了。
(三)我国建筑节能的发展推动着绿色能源的应用
我国的建筑节能工作开始于20世纪80年代初期,通过各方积极努力,到1995年末,全国建成的节能建筑面积已达4700万平方米,到1998年节能建筑面积达到1亿平方米。各地相继建成一些建筑节能示范工程,如北京安苑北里小区、周庄小区、卧龙小区,天津倚华里小区,甘肃建筑科学研究院宿舍等,这些工程在节能方面都取得了良好的效果。为全面推广节能设计,我国制定了一系列的法规和标准,如《中华人民共和国节约能源法》、《民用建筑节能设计标准》、《既有建筑节能改造技术规程》、《采暖居住建筑节能检验标准》、《建筑节能管理规定》等。随着建筑节能法规和标准的逐步完善,我国的建筑节能事业将得到进一步的普及和推广。
二、绿色能源在建筑中的应用的研究
(一)开发利用绿色能源是保护生态环境,走可持续发展道路的重要措施
随着能源需求的不断增加,地球上不可再生能源的资源将进一步减少直至枯竭。为了社会的发展和人类的进步,在提高能源的使用效率、节约能源的同时还必须要开发和利用绿色环保并可再生的新能源。专家预测,到2060年,全球可再生能源的用量将发展到能源总用量的50%以上,成为未来能源结构的主要部分。采用绿色能源是保护生态环境,走可持续发展道路的重要措施。
(二)绿色能源是经济发展的需要
能源是人类生存与发展的重要基础,经济的发展依赖于能源的发展。当今能源问题已经成为全世界共同关注的问题,能源短缺成为制约经济发展的重要因素。从建筑材料的生产到建筑施工和建筑物的使用无时不在消耗着大量能源。资料统计,我国的建筑能源消耗占总能源消耗的25%以上,也就是说在全国总能耗中,有1/3是建筑能耗。太阳能和风能作为绿色能源一旦引入建筑,可以实现节约常规能源25%-30%,相当于建设了2000多个三峡水电站。虽然这是一个庞大的建筑一体化的系统工程,但也是可以逐步实现的。随着全世界对绿色能源的不断开发和利用,在建筑中采用新型能源的课题也是硕果累累。我国近几年在利用太阳能进行建筑供暖方面也取得了成功的经验,实现建筑能耗节省45%左右,效益是很明显的。因此在建筑中推广绿色能源技术势在必行。
(三)绿色能源是建筑节能和环境保护的需要
我们现在应用的能源主要是以煤炭、石油、天然气为主的不可再生能源。这些能源在使用过程中会排放大量的有害物质(二氧化碳、硫、氮氧化合物等),是造成大气污染和生态环境破坏的重要原因。因此,提倡建筑使用绿色能源,减少污染物的排放也是改善生存环境、提高生活质量的一种有效的方法。
(四)绿色能源技术应用于建筑必将在我国的建筑事业中发挥巨大作用
建筑消耗大量能源,当前我国建筑业发展迅猛,把节能、绿色环保、生态技术应用于工程是建筑发展的必然趋势。太阳能、风能、地热能等新型能源在建筑上的有效应用,不仅可以代替资源有限的传统能源,而且可以减少污染物的排放,保护生态环境,它的开发和利用具有广阔的前景和深远的意义。我国具有丰富的新能源资源,目前在太阳能利用方面发展迅速,太阳能电池发电技术在建筑上大量使用,太阳能热水器的用量也以每年20%的速度增长,预计到2015年,太阳能热水器的普及率将达到25%,太阳能发电系统的拥有量将达到320MW.另外,风能、地热能等方面的研发也取得了很大成就,预计新能源必将在我国的建筑事业中发挥巨大的作用。
三、生态节能技术和绿色能源在建筑上的实际应用
(一)生态节能技术在建筑设计上的实际应用
1.建筑规划布局合理。在建筑建设初期做好节能规划,建筑布局要有利于建筑节能。在北方地区尽量让建筑有一个好的向阳面,这样有利于冬季日照。在南方地区建筑通风和遮阳尤其重要,所以在建筑总体布局上应该考虑建筑群体的通风问题,在单体建筑应该考虑夏季遮阳问题。建筑周边绿化的合理布置也能起到建筑节能的作用。
2.建筑体型选择合理。在建筑设计过程中,单体建筑尽量选择外表面较少的建筑形体,因为体形系数较小的建筑能够有效地减少建筑能耗。
3.建筑材料使用合理。建筑的外围护材料对建筑的节能保温起着决定作用,如加气混凝土、粉煤灰砖、陶粒混凝土等材料的使用提高了建筑的节能指标。尤其是近几年采用的聚苯板、挤塑板及复合墙板等建筑外墙材料的使用进一步提高了建筑外墙保温效果,更先进的建筑外墙材料也在不断的被应用于建筑上。门窗也是建筑节能不容忽视的重要部位,因为外门窗的能耗占外墙能耗的一半以上,在建筑节能改造中有“墙改先改窗”的说法。由于我国前几年财力有限,所以门窗的节能改造落后于发达国家。现在随着国家财力的增加和新材料地不断涌现,新型的更加节能的门窗也在不断地应用于建筑上。
4.建筑设备选择及合理使用。建筑设备是建筑内部使用过程中的`主要能耗,选择节能效果好的建筑设备可以大大降低建筑运行成本。节能开关、节能空调、节能水泵等节能设备已经在建筑中普遍使用了,近几年建筑智能化的推广也在为建筑节能起着作用。
(二)绿色能源在建筑使用过程提供能源的应用
1.太阳能光伏发电是我们可利用的最清洁、最丰富的能源。在建筑屋顶及墙面安装太阳能电池发电系统,可以将太阳辐射能直接转换成电能,利用蓄电池组贮存太阳能电池受光照所发出的电能,并可以随时向用电设备供电,从而满足楼内的动力和照明系统的用电需求。太阳能电池发电技术具有许多优点,如安全可靠、无污染、不消耗常规燃料、不受地域限制、维修简便、适合在建筑物上安装等特点,它是当今世界上最具有发展前途的新能源利用技术。
2.太阳能热水系统也在某些地区应用到了冬季建筑采暖,也取得了一些成效。通过铺设在建筑屋顶及阳台下面的太阳能集热管采集热能,再通过循环系统,循环到室内的散热器来进行采暖。
3.地源热泵技术在建筑空调系统上的运用,是利用地表浅层中蓄存的能量,室外空气温度波动很大,但地表面几米以下的地温全年相对恒定的特点(地球表面温度通常保持在15℃左右),在夏季将室内多余的热量不断地排出而为大地所吸收,使建筑物室内保持适当的温湿度。这项技术具有低能耗、对环境影响小、维护费用较低以及设计灵活等突出特点,是一种高效、环保的能源利用系统。
4.将光导纤维技术用于室内应用于室内照明,是通过光导纤维式太阳光导入器和通过光学透镜将太阳光聚焦,用光缆把阳光传送到室内和地下室等地方的一种高科技产品。太阳光导入器安装在室外房顶、阳台、地面、墙壁等能一年四季均照得到太阳光的地方,通过光缆接入室内,这样每天从太阳升起到落下,室内都有固定(可移动)阳光的直射,10多个小时享受免费的太阳光。人们可以在室内阳光下休息、在阳光下工作、在阳光下看书学习、在阳光下用餐……,在人们的卧室、厨房、客厅、书房、办公室等,到处拥有太阳光。光导照明系统把阳光导入到室内来照明,是现如今最健康的照明方式,也是绿色建筑首选产品。
5.垂直风力发电机系统架设在屋顶,可以为建筑提供源源不断的绿色能源,也是多项节能环保措施的一种应用方式。建筑上使用更多科技含量高的新型能源设备和节能设备已经是一个趋势。高技术的绿色能源在建筑上的使用,将为我们节约巨大的资源,是一件造福人类的大事。
你好,算是。
相变储能材料将暂时不用的能量储存起来,到需要时再将其释放,从而可以缓解能量供与求之间的矛盾,节约能源,因此受到越来越广泛的重视和深入的研究。介绍了相变材料在太阳能、建筑、纺织行业、农业等工业与民用方面的应用,概括和评述了相变储能复合材料的制备方法厦其研究进展,指出当前存在的问题以厦目前值得深入研究的课题。
随着全球工业的高速发展,自从20世纪70年代出现了能源危机及大量的能源消耗导致的环境污染和温室效应,人们一直在研究高效能源、节能技术、可再生环保型能源、太阳能利用技术等。
相变储能是提高能源利用效率和保护环境的重要技术,也是常用于缓解能量供求双方在时间、强度及地点上不匹配的有效方式,在太阳能的利用、电力的“移峰填谷”、废热和余热的回收利用、工业与民用建筑和空调的节能等领域具有广泛的应用前景,目前已成为世界范围内的研究热点。利用相变材料的相变潜热来实现能量的储存和利用,有助于提高能效和开发可再生能源,是近年来能源科学和材料科学领域中一个十分活跃的前沿研究方向。
相变储能材料是指在其物相变化过程中,可以与外界环境进行能量交换(从外界环境吸收热量或者向外界环境放出热量),从而达到控制环境温度和利用能量的目的的材料。与显热储能相比,相变储能具有储能密度高、体积小巧、温度控制恒定、节能效果显著、相变温度选择范围宽、易于控制等优点,在航空航天、太阳能利用、采暖和空调、供电系统优化、医学工程、军事工程、蓄热建筑和极端环境服装等众多领域具有重要的应用价值和广阔的前景。
1相变储能材料
20世纪30年代以来,特别是受70年代能源危机的影响,相变储热(LTEs)的基础理论和应用技术研究在发达国家(如美国、加拿大、日本、德国等)迅速崛起并得到不断发展。材料科学、太阳能、航天技术、工程热物理、建筑物空调采暖通风及工业废热利用等领域的相互渗透与迅猛发展为LTEs研究和应用创造了条件。LTES具有储热密度高、储热放热近似等温、过程易控制的特点。潜热储热是有效利用新能源和节能的重要途径。提高储热系统的相变速率、热效率、储热密度和长期稳定型是目前面临的重要课题。研究潜热储热的核心是研究材料的相变传热过程。
2相变储能材料的机理
相变材料从液态向固态转变时,要经历物理状态的变化,在这两种相变过程中,材料要从环境中吸热,反之,向环境放热。
在物理状态发生变化时可储存或释放的能量称为相变热,发生相变的温度范围很窄。物理状态发生变化时,材料自身的温度在相变完成前几乎维持不变。大量相变热转移到环境中时产生了一个宽的温度平台,该温度平台的出现体现了恒温时间的延长,并可与显热和绝缘材料区分开来(绝缘材料只提供热温度变化梯度)。相变材料在热循环时储存或释放显热。
相变材料在熔化或凝固过程中虽然温度不变,但吸收或释放的潜热却相当大。以冰一水的相变过程为例,对相变材料在相变时所吸收的潜热以及普通加热条件下所吸收的热量作一比较:当冰融解时,吸收335J/g的潜热,当水进一步加热.每升高1℃,它只吸收大约4J/g的能量。因此,由冰到水的相变过程中所吸收的潜热几乎比相变温度范围外加热过程的热吸收高80多倍。除冰一水之外,已知的天然和合成的相变材料超过500种,且这些材料的相变温度和储热能力各不相同。把相变材料与普通建筑材料相结合,还可以形成一种新型的复合储能建筑材料。这种建材兼备普通建材和相变材料两者的优点。
目前,采用的相变材料的潜热达到170J/g左右,而普通建材在温度变化1℃时储存同等热量将需要190倍相变材料的质量。因此,复合相变材料具有普通建材无法比拟的热容,对于房间内的气温稳定及空调系统工况的平稳是非常有利的。
相变材料应具有以下几个特点:凝固熔化温度窄,相变潜热高,导热率高,比热大,凝固时无过冷或过冷度极小,化学性能稳定,室温下蒸气压低。此外,相变材料还需与建筑材料相容,可被吸收。
3相变储能材料的应用领域
相变储能材料在许多领域具有应用价值,包括太阳能利用、电力调峰、废热利用、跨季节储热和储冷、食物保鲜、建筑隔热保温、电子器件热保护、纺织服装、农业等等。
3.1在太阳能方面的应用
太阳能清洁、无污染,而且取用方便。利用太阳能是解决能源危机的重要途径之一。但是由于到达地球表面的太阳辐射能量密度并不高,而且受地理、昼夜和季节等规律性变化的影响,及阴晴云雨等随机因素的制约,其辐射强度也不断发生变化,而且具有稀薄性、非连续性和不稳定性。所以为了保持供热或供电装置稳定不问断地运行,就需要通过贮热装置把太阳能贮存起来,在太阳能不足时再释放出来,从而满足生产、生活用能连续和稳定供应的需要。一些工业发达的国家昼夜用电存在“谷峰差”,可以利用相变材料在夜间储存能量(电能转化的热能或者冷能),到白天用电高峰时再释放出来使用,缓解电网负荷。
相变储能材料即可满足这一要求。例如美国管道系统公司(Pipe System Inc.)应用CaCl2·6H2O作为相变储能材料制成贮热管,用来贮存太阳能和回收工业中的余热。该公司称:100根长15cm、直径9crn的聚乙烯贮热管就能满足一个家庭所有房间的取暖需要。法国ElFUnion公司和美国的太阳能公司(SOlar Inc.)用NaSO4·10H2O作相变材料来储存太阳能,也都是应用较成功的实例。
3 2在生态建筑业方面的应用
有关资料显示:社会一次能源总消耗量的1/3用于建筑领域。提高建筑领域能源使用效率,降低建筑能耗,对于整个社会节约能源和保护环境都具有显著的经济效益和社会影响。生态建筑是可持续发展的重要手段之一。在生态建筑中,相变储能复合材料可以帮助利用太阳能、季节温差能等可再生能源,有效降低建筑物室内温度波动、缩减各种热能设备、降低能源支出和提供健康舒适的室内环境}可以利用低峰电力、削峰填谷,降低电能消耗,缓解电力紧张。尤其是近年来,随着高层建筑的快速发展,大量采用轻质建筑材料,而轻质建筑材料的热容比较低,不利于平抑室内温度波动。在轻质建筑材料中加入相变材料是解决这一问题的有效方法。
此外,利用相变材料作为室内保温装置已进入实用阶段。在有暖气的室内安装相变材料蓄热器后,当通人暖气时,它会把热贮存起来;当停止送暖气时,它会放出热量,维持室内的温度较为恒定。如果在室内的地板和天花板使用相变材料,由于相变材料的贮热和放热作用,则可将室内温度梯度降低到小于5℃的舒适状态。相变材料还可用在空调节能建筑上,这是一种比较新的应用,通过在墙、屋顶、门窗、地板中“加人”相变材料,可提高空调的使用效率,节约能源,而且室内环境的舒适度也得到了提高。
相变储能复合材料在建筑领域中一个很有前景的应用方式是将相变材料与现存的通用多孔建筑材料复合,即将相变材料储藏在多孔建筑材料中,使这些建筑材料同时具有承重和储能的双重功能,成为结构一功能一体化建筑材料。采用这样的多功能建筑材料,在为建筑增加功能的同时,无需占用额外建筑空间,降低了建筑成本,是一种性价比较高的新型建筑材料,具有明显的市场竞争力。
3.3在服装纺织品方面的应用
根据人体的冷热舒适特点,结合气候条件的差异,选择相变温度适当的相变材料,可以为人体有效地提供一个舒适的微气候环境,提高生活质量和工作效率。美国Kallsas州立大学的shim等研究表明,含相变材料的纺织品能使人体在较长时间内处于舒适状态。在纺织服装中加入相变储能材料可以增强服装的保暖功能,甚至使其具有智能化的内部温度调节功能。把相变材料掺人纺织品后,如果外界环境升高,则相变材料熔化而吸收热能,使得体表温度不随外界环境升高而升高;如果外界环境降低,则相变材料固化而放出热能,使得体表温度不随外界环境降低而降低。
对以严寒气候,宜选择相变温度为18.3~29.4℃的相变材料;对以温暖气候,宜选择相变温度为26.7~37.7℃的相变材料;对以炎热气候.宜选择相变温度为32.2~43.3℃的相变材料。固液相变储能材料在液态时容易流动散失,所以其应用于纺织品时必须采用微胶囊化的形式,即微胶囊相变材料MPcMs。制备微胶囊的物理工艺主要有:喷射烘干、离心流失床或涂层处理。石蜡类烷烃和聚乙二醇是常用于纺织品的相变材料。目前这方面的代表是Outlast公司发明的相变储能纤维——outlast fiber。0utlast fiber是一种采用微胶囊技术生产的特殊纤维,根据使用要求可以具有不同的相变温度。
3.4在农业上的应用
温室在现代农业中有着举足轻重的地位,它在克服恶劣的自然气候、拓展农产品品种和提高农业生产技翠等方面具有重要的价值。温室的核心是控制适宜农作物生长的温度和湿度环境。1987年11月我国在河北省安国县设计建造了一座农用太阳能温室,内部设置的潜热蓄热增温器就是利用相变材料的潜热特性。潜热蓄热增温器储存农用栽培温室中自天过量的太阳能,当夜晚温度下降到定范围后释放出储存的这部分热能,使天之中温室内温度曲线的高峰区有所下降,而低谷区有所上升,昼夜之间的温差变小。这既保证冬季蔬菜等作物的正常生长,叉不需另设常规燃料增温设备,节约了蒸气锅炉、燃油暖风机等基本建设投资和日常燃料的消耗。结果表明,温室冬季夜间最低温度可以提高6℃,增温效果明显。
日本专利报道,用NaSO4·10H2O、NaCO3·10H2O、CH3COONa·3H2O作相变材料,用硼砂作过冷抑制剂,用交联聚丙烯酸钠作分相防止剂,制成在20℃相变的储能相变材料。该材料可用于园艺温室的保温。
在农业上,最先采用的相变材料是CaCl·6H2O,随后又尝试了NaSO4·10H2O、石蜡等。研究结果表明:相变材料不仅能为温室储藏能量,还具有自动调节温室内湿度的功能,能够减少温室的运行费用和降低能耗。
4相变储能复合材料的研究现状
单一的相变材料存在很多缺点,如绝大多数无机物相变材料具有腐蚀性,相变过程中存在过冷和相分离的缺点。为防止无机物相变材料的腐蚀,储热系统必须采用不锈钢等特殊材料制造,从而增加了制造成本;为抑制无机物相变材料在相变过程中的过冷和相分离,需通过大量试验研究,寻求好的成核剂和稳定剂。因此,相变材料通常是由多组分构成的,包括主储剂和相变点调整剂、防过冷剂、防相分离剂和相变促进剂组分。有机物相变材料则因相变潜热低,易挥发、易燃烧、价格昂贵,特别是其热导率较低、相变过程中的传热性能差,在实际应用中通常采用添加高热导率材料如铜粉、铝粉或石墨等作为填充物以提高热导率,或采用翅片管换热器依靠换热面积的增加来提高传热性能,但这些强化传热的方法均未能解决有机相变材料热导率低的本质问题。
近年来,为了克服单一相变储能材料的缺点,更好地发挥其优点,复合相变材料应运而生。它既能有效克服单一的无机物或有机物相变材料存在的缺点,又可以改善相变材料的应用效果,拓展其应用范围。目前相变储能材料的复合方法有以下几种。
4.1胶囊型相变材料
为了解决相变材料在发生固一液相变后液相的流动泄漏问题,特别是对于无机水合盐类相变材料还存在的腐蚀性问题,人们设想将相变材料封闭在球形的胶囊中,制成胶囊型复合相变材料来改善应用性能。
其中,溶胶一凝胶法(Sol—gel)就是近年来发展比较迅速的一种。溶胶一凝胶工艺是一种独特的材料合成方法,它是将前驱体溶于水或有机溶剂中形成均质溶液,然后通过溶质发生水解反应生成纳米级的粒子并形成溶胶,溶胶经蒸发干燥转变为凝胶来制备纳米复合材料。它与传统共混方法相比较具有一些独特的优势:①反应用低粘度的溶液作为原料,无机一有机分子之间混合相当均匀,所制备的材料也相当均匀,这对控制材料的物理性能与化学性能至关重要;②可以通过严格控制产物的组成,实行分子设计和剪裁;③工艺过程温度低,易操作;④制备的材料纯度高。
林怡辉等采用溶胶—凝胶法,以二氧化硅作母材、有机酸作相变材料,合成复合相变材料。二氧化硅是理想的多孔母材,能支持细小而分散的相变材料,加入适合的相变材料后,能增进传热、传质,其化学稳定和热稳定性好。有机酸作相变材料克服了无机材料易腐蚀、存在过冷的缺点,而且具有相变潜热大、化学性质稳定的优点。
Lee Hyoen Kook研究出一种球形储热胶囊。其制备方法如下:先将无机水合盐类相变材料(如三水乙酸钠)与一定量的成核剂和增稠剂混合均匀后,制成直径为0.1~3mm的球体作为核,然后再在球形相变材料核的外表面涂覆1层憎水性的蜡膜以及1~3层聚合物膜,最后得到直径在0.3~10mm之间的胶囊型相变材料。
采用胶囊化技术制备胶囊型复合相变材料能有效解决相变材料的泄漏、相分离以及腐蚀性等问题,但胶囊体的材料大都采用热导率较低的高分子物质,从而降低了相变材料的储热密度和热性能。此外,寻求工艺简单、成本低以及便于工业化生产的胶囊化工艺也是需要解决的难题。
4.2与高分子材料复合制备定形相变材料
为了克服传统的相变材料在实际应用中需要加以封装或使用专门容器以防止其泄漏的缺陷,近年来,出现了将有机相变材料与高分子材料进行复合,制备出在发生相变前后均呈固态而保持形体不变的定形相变材料。
其中一种制备工艺是将相变材料(如石蜡)与高分子物质(如聚乙烯)按一定比例在热炼机上进行加热共混。肖敏等将石蜡与一热塑性体苯乙烯丁二烯苯乙烯三嵌段共聚物(sBs)复合,制各了在石蜡熔融态下仍能保持形状稳定的复合相变材料。复合相变材料保持了纯石蜡的相变特性,其相变热焓可高达纯石蜡的80%。复合相变材料的热传导性比纯石蜡好,因此其放热速率比纯石蜡快,但由于sBs的引人,其对流传热作用削弱,所眦蓄热速率比纯石蜡慢。在复合相变材料中加入导热填料膨胀石墨后,其热传导性进一步提高,以传导传热为主的放热过程更快,放热速率比纯石蜡提高了1.5倍;而在以对
流传热为主的蓄热过程中,由于热传导的加强效应与热对流减弱效应相互抵消,保持了原来纯石蜡的平均蓄热速率。
这样既充分发挥了定形固液相变材料的优点:无需容器盛装,可直接加工成型,不会发生过冷现象,使用安全方便;也克服了固一液相变材料明显的缺陷:在相变介质中加入热导率较低的聚合物载体后,导致本来热导率就不高的有机相变材料的热导率更低了,并且还造成整个材料蓄热能力的下降。
4.3利用毛细管作用将相变材料吸附到多孔基质中
利用具有大比表面积微孔结构的无机物作为支撑材料,通过微孔的毛细作用力将液态的有机物或无机物相变储热材料(高于相变温度条件下)吸人到微孔内,形成有机/无机或无机/有机复合相变储热材料。在这种复台相变储热材料中,当有机或无机相变储热材料在微孔内发生固一液相变时,由于毛细管吸附力的作用,液态的相变储热材料很难从微孔中溢出。
多孔介质种类繁多,具有变化丰富的孔空间,是相变物质理想的储藏介质。可供选择的多孔介质包括石膏、膨胀粘土、膨胀珍珠岩、膨胀页岩、多孔混凝土等。采用多孔介质作为相变物质的封装材料可使复合材料具有结构功能一体化的优点,在应用上可节约空间,具有很好的经济性。多孔介质内部的孔隙非常细小,可以借助毛细管效应提高相变物质在多孔介质中的储藏可靠性。多孔介质还将相变物质分散为细小的个体,有效提高其相变过程的换热效率。
5相变储能材料存在的问题和应用展望
5.1存在的问题
我国现阶段相变储能材料的研究和应用方面仍然存在以下一些问题。
(1)相变储能材料的耐久性问题。这个问题主要分为三类。首先,相变材料在循环相变过程中热物理性质的退化。其次,相变材料从基体材料中泄露出来,表现为在材料表面结霜。另外,相变材料对基体材料的作用,相变材料相变过程中产生的应力使得基体材料容易破坏。
(2)相变储能材料的经济性问题。这也是制约其广泛应用于建筑节能领域的障碍,表现为各种相变储能材料及相变储能复合材料价格较高,导致单位热能的储存费用上升,失去了与其他储热方法的比较优势。
(3)相变储能材料的储能性能问题。储能性能有待更进一步地提高。特别是对于相变储能复合材料来说,为了使储能体更加小巧和轻便,要求相变储能复合材料具有更高的储能性能,目前的槽变储能复合材料的储能密度普遍小于120J/g。有学者预测,通过增加相变物质在复合材料中的含量和选择相变焓更高的相变物质,在未来数年内,将有可能将相变储能复合材料的储能密度提高到150~200J/g。
5.2应用展望
相变储能材料的开发已逐步进入实用阶段,主要用于控制反应温度、利用太阳能、储存工业反应中的余热和废热。低温储能主要用于废热回收、太阳能储存及供暖和空调系统。高温储能用于热机、太阳能电站、磁流体发电及人造卫星等方面。此外,固一固相变储能材料主要应用在家庭采暖系统中,与水合盐相比,具有不泄漏、收缩膨胀小、热效率高等优点,能耐3000次以上的冷热循环(相当于使用寿命25年)}把它们注入纺织物,可制成保温性能好、重量轻的服装}可用于制作保温时间比普通陶瓷杯长的保温杯}含有这种相变材料的沥青地面或水泥路面,可以防止道路、桥梁结冰。因此,它在工程保温材料、医疗保健产品、航空航天器材、军事侦察、日常生活用品等方面具有广阔的应用前景。今后相变储能材料的发展主要体现在以下几个方面:
(1)进一步筛选符合环保的低价的有机相变储能材料,如可再生的脂肪酸及其衍生物。对这类相变材料的深入研究,可以进一步提升相变储能建筑材料的生态意义。
(2)开发复合相变储热材料是克服单一无机或有机相变材料不足、提高其应用性能的有效途径。
(3)针对相变材料的应用场合,开发出多种复合手段和复合技术,研制出多品种的系列复合相变材料是复合相变材料的发展方向之一。
(4)开发多元相变组合材料。在同一蓄热系统中采用相变温度不同的相变材料合理组合,可以显著提高系统效率,维持相变过程中相变速率的均匀性。这对于蓄热和放热有严格要求的蓄能系统具有重要意义。
(5)进一步关注高温储热和空调储冷。美国NAsA Lewis研究中心利用高温相变材料成功地实现了世界上第一套空间太阳能热动力发电系统2kw电力输出,标志这一重要的空间电力技术进入了新的阶段。太阳能热动力发电技术是一项新技术,是最有前途的能源解决方案之一,必将极大地推动高温相变储热技术的发展。另外.低温储热技术是当前空调行业研究开发的热点,并将成为重要的节能手段。
(6)纳米复合材料领域的不断发展为制备高性能复合相变储热材料提供了很好的机遇。纳米材料不仅存在纳米尺寸效应,而且比表面效应大,界面相互作用强。利用纳米材料的特点制备新型高性能纳米复合相变储热材料是制备高性能复合相变材料的新途径。
法律分析:回收再生资源经营范围:回收废塑料、废纸、废旧金属保技术开发、技术转让、技术咨询、技术服务物进出口、技术进出口、代理进出口发机械设备能环保技术开发与服务上述不涉及国营贸易管理商品及配额、许可证管理商品的按照国家有关规定办理申请手续计、制作、代理、发布广告装、维修、租赁机械设备售塑料制品、纸制品、金属制品、电子产品、手机、服装鞋帽、计算机硬件洁服务业管理通货运市生活垃圾清扫、收集、运输。(企业依法自主选择经营项目,开展经营活动通货运、城市生活垃圾清扫、收集、运输以及依法须经批准的项目,经相关部门批准后依批准的内容开展经营活动得从事本市产业政策禁止和限制类项目的经营活动。)废旧金属回收与销售,废金属薄料、铁屑压块来料加工,金属件铸造加工,销售建筑材料、钢材,货运代理,仓储服务,对再生资源回收加工技术的研发。再生资源公司经营范围是包括:废旧金属、报废电子产品、报废机电设备及其零部件、废造纸原料、废轻化工原料、废玻璃等。
法律依据:《中华人民共和国可再生资源法》
第一条 为了促进可再生能源的开发利用,增加能源供应,改善能源结构,保障能源安全,保护环境,实现经济社会的可持续发展,制定本法。
第二条 本法所称可再生能源,是指风能、太阳能、水能、生物质能、地热能、海洋能等非化石能源。 水力发电对本法的适用,由国务院能源主管部门规定,报国务院批准。 通过低效率炉灶直接燃烧方式利用秸秆、薪柴、粪便等,不适用本法。
湖南长沙节能材料和产品备案管理暂行办法适用于长沙市市行政区域内建筑市场应用的建筑节能产品(材料)。
建筑节能产品(材料)包括以下范围:
1、 各类建筑保温系统及材料(外墙保温系统、建筑保温砂浆、自隔热墙体保温材料、屋面保温产品和其他保温系统和材料)
2、 建筑用外门窗、型材、玻璃、五金配件、入户门等
3、 可再生能源建筑应用产品(设备),如:太阳能系列产品、地源热泵系统产品(设备)等
4、 其他建筑节能产品(设备),如中央空调系统、通风设备、生活用水、电梯、照明等重要用能系统。
二、通过备案的建筑节能产品(材料),可在我市建筑工程设计施工中推广应用。采用已备案的建筑节能产品(材料)进入施工现场仍须进行检查验收,并按照规定的复验项目进行复验。
三、长沙市建筑节能与新型墙体材料管理办公室(以下简称市节能新墙办)负责长沙地区建筑节能产品(材料)备案工作。
更多关于标书代写制作,提升中标率,点击底部客服免费咨询。