废旧的电子垃圾要怎么处理?
处理处置废旧的电子垃圾的方法主要有化学处理方法、火法、机械处理方法、电化学法或几种方法相结合。具体如下:
1、化学处理
电子废弃物的化学处理也称湿法处理,将破碎后的电子废弃物颗粒投入到酸性或碱性的液体中,浸出液再经过萃取、沉淀、置换、离子交换、过滤以及蒸馏等一系列的过程最终得到高品位的金属。
2、火法处理
是将电子废弃物焚烧、熔炼、烧结、熔融等,去除塑料和其他有机成分富集金属的方法。火法处理也会对环境造成严重的危害。从资源回收、生态环境保护等方面来看,这些方法都难以推广。
3、机械处理
电子废弃物的机械处理是运用各组分之间物理性质差异进行分选的方法,包括拆卸、破碎、分选等步骤,分选处理后的物质再经过后续处理可分别获得金属、塑料、玻璃等再生原料。这种处理方法具有成本低,操作简单,不易造成二次污染,易实现规模化等优势,是各国开发的热点。
4、微生物处理
利用微生物浸取金等贵金属是在20世纪80年代开始研究的提取低含量物料中贵金属的新技术。h.brandl等利用氧化亚铁硫杆菌对经过粉碎预处理的电子废弃物碎块进行浸出试验,在选定的温度、ph、投加量下,可以浸出超过90%的cu,zn和ni,pb以pbso4的形式稳定在沉淀物中。
扩展资料:
电子垃圾的危害
电子废弃物的成分复杂,其中半数以上的材料对人体有害,有一些甚至是剧毒的。比如,一台电脑有700多个元件,其中有一半元件含有汞、砷、铬等各种有毒化学物质;电视机、电冰箱、手机等电子产品也都含有铅、铬、汞等重金属;激光打印机和复印机中含有碳粉等。
电子废弃物被填埋或者焚烧时,其中的重金属渗入土壤,进入河流和地下水,将会造成当地土壤和地下水的污染,直接或间接地对当地的居民及其它的生物造成损伤;有机物经过焚烧,释放出大量的有害气体,如剧毒的二恶英、呋喃、多氯联苯类等致癌物质,对自然环境和人体造成危害。
参考资料来源:百度百科-电子废弃物
马路上有的很多路灯,交通信号灯,还有一些照明的设施设备。包括有的新型的太阳能充电宝,手电等小电器。
大的有的国外的屋顶使用太阳能板,还有太阳能地面。太阳能热水器是你经常看到的和使用的。
相关说明
太阳能(solar energy),是一种可再生能源。是指太阳的热辐射能(参见热能传播的三种方式:辐射),主要表现就是常说的太阳光线。在现代一般用作发电或者为热水器提供能源。
自地球上生命诞生以来,就主要以太阳提供的热辐射能生存,而自古人类也懂得以阳光晒干物件,并作为制作食物的方法,如制盐和晒咸鱼等。在化石燃料日趋减少的情况下,太阳能已成为人类使用能源的重要组成部分,并不断得到发展。太阳能的利用有光热转换和光电转换两种方式,太阳能发电是一种新兴的可再生能源。广义上的太阳能也包括地球上的风能、化学能、水能等。
尽管自行车、玻璃和冰,都是生活中很常见的东西,但是你可能想不到的是,科学家并没有完全理解它们。通过下面的讨论,你将会发现,现实远比我们想象的要复杂得多。
为什么自行车在行驶中不会倒下?
2011年,一个国际研究小组突然“投下一颗重磅炸弹”,声称尽管已经分析了150多年,但世界上还没有人真正弄懂为什么自行车在行驶中不会倒下。估计世界上许多自行车骑手听到这个消息后会立刻下车,并不可思议地盯着他们的自行车——多年来他们一直在做的事情,竟然是一件科学无法解释的现象!
不过准确地来说,科学家不知道的是,能使自行车保持稳定的最简单的充分必要条件是什么。自行车的研制,主要依靠的是不断试验,使自行车在行驶中更不易倒下。但是要想解释背后的原理就比较麻烦了。研究人员开始发现,要想解释自行车是如何工作的,数学上需要大约25个变量,例如自行车的前叉相对于路面的角度,质量的分布以及车轮的大小等等。
之后,研究人员把自行车保持稳定的条件变量简化为两个:一个叫“迹”的大小,指的是前轮触地的位置到前叉延长线与地面相交的位置之间的距离;另一个则是可以保持旋转的车轮直立的陀螺恢复力(一种令旋转物体恢复平衡的力,陀螺最为典型,故以陀螺命名)。
不过在2011年,那个国际研究小组不仅对这个理论重新分析了一遍,而且还把一辆自行车中的“迹”和陀螺恢复力弄歪,使得它在理论上无法保持稳定。但结果令人大感意外,这辆自行车在行驶中仍可以稳定地前行。
虽然这个问题没有得到解决,但是在2014年,来自美国康奈尔大学的研究人员已经发明出了一种无论怎么倾斜也不会倒下的车子。他们的发明看起来像是自行车与三轮车的合体,而外侧的两个车轮由一个弹簧来调节。如果弹簧完全松开,它跟普通自行车没什么区别,骑手可以通过倾斜和扭转车把来操控。如果弹簧完全绷紧,它就成了一辆三轮车,骑手只能通过扭转车把来操控。而当弹簧处在某个中间的临界点时,这辆车不管怎么倾斜也都倒不了,而且倾斜也不会影响车子的运动情况。另外,骑手试图扭转车把来转向时,却只会造成车子发生倾斜。结果是完全无法操控这辆车子,它只能沿着直线行驶。研究人员希望借此研究出骑手究竟是如何操控自行车并保存稳定的,并能研制出更易操控的自行车。
但这仍是一场艰难的研究。一些研究人员认为,要想理解自行车为什么不倒,不只是要考虑力学问题,也许还要考虑脑科学。人类能用很复杂的但却很直观的方式使得自行车保持稳定。例如在非常低的速度下,我们很容易就意识到,扭转车把没多大用处,相反我们会通过膝盖运动来操控自行车。
我们为什么会这么做?没人知道。自行车的谜团将会继续困扰我们。
玻璃是什么?
如果你去欧洲参观那些古老的大教堂的话,导游们常常会向你兜售这种观点:玻璃其实是液体,会慢慢地往下流,所以这些古老教堂上的玻璃都是上薄下厚的。
但这个观点是错的。玻璃并不是一种流动很缓慢的液体。研究表明,即使经过十几亿年,一块玻璃里也只不过是几个原子会发生移动。那么上薄下厚是怎么回事?事实上,中世纪的玻璃制造工艺还比较粗糙,没办法制造出厚度均匀的玻璃,于是工匠们会把玻璃厚的一边放在底部。
所以,玻璃就是固体了?对,但它却是一种极为特殊的固体。玻璃是一种无定形固体,或者叫做非晶态固体,因为它的微观结构不像晶体固体(例如金属、食盐和冰)那样是有规则的晶格排列,而是一种类似液体那样的不规则排列。另外,很多高分子化合物如聚苯乙烯等也是无定形固体。
但是,科学家并没有完全搞清楚玻璃的一切。例如,玻璃从液体转变为无定形固体的过程仍然令人摸不着头脑。
大多数材料从液体变为固体时,内部的分子会立刻进行重新排列。也就是说,处在液体时,分子可以自由地走动,然后在某个时刻分子会突然发现自己被困住了,于是一种有规则的晶格排列就形成了。
但是从炽热的液体转变为透明的固体的过程中,玻璃分子的运动状态并不是突然发生改变的,而是随着温度的下降而逐渐放缓的,最终形成的无定形固体仍具有类似液体那种不规则的排列,但却具有固体那种坚固的性质。换句话说,在玻璃中,我们遇到了一种奇怪的现象:类似液体那种不规则的排列被神奇地固定了下来。
但它究竟是怎么被固定下来的仍是一个悬而未决的问题。科学家们提出了许许多多理论来解释。
一种可能的原因是与能量有关。根据热力学定律,每一个分子集合总是趋向构成一种所含能量最低的排列。但在玻璃中,不同的分子集合却会构成不同的排列,最终会形成了一个不可调和的不规则排列。
尽管这种解释听起来不错,但是玻璃会形成不规则的排列,真的是因为这是一种能量最低的排列吗?一些科学家猜测,也许这是一种混乱程度最大的排列,因为一个系统的混乱程度总是趋向于达到最大(即热力学第二定律)。这也是一个合理的解释,尽管这个反而很难解释晶体固体中有规则的晶格排列是如何形成的。
而另一些科学家却认为,玻璃所形成的结构,也许是一种极为特殊的晶体。而且有一个证据能证明这个观点,那就是玻璃内有不断重复的几何结构。如果这种观点是正确的,那么玻璃可以真正称得上“晶”莹剔透。
但不管怎样,玻璃为什么是这样的,到今天也没有一个统一认可的解释。
冰为什么很滑?
花样滑冰选手可以在冰面上滑出优美的舞姿,但这里有一个很令科学家困惑的事情——冰为什么很滑?这个问题看似简单,但即使经过了一个多世纪的研究,科学家也没有找到一个明确的答案。
通常的解释是,冰之所以有很低的摩擦系数,是因为鞋与冰面之间有一层薄薄的水,这层水起到了润滑作用。因此,滑冰选手可以穿着滑冰鞋在冰面上自由地滑动,但是在木质地板上却无法滑动。
事实上早在1850年,英国物理学家迈克尔·法拉第就注意到了这层水。他曾向来自伦敦皇家学会的听众们解释,挤压两块冰,两块冰之间的水层会迅速冻结,这样两块冰就冻在一起了。在很多年里,大家都认为冰面的这层水是因压力导致的,因为压力能使冰的熔点下降,促使冰发生融化。
但是,科学家经过计算后发现,即使一个体重超标的人只用一只滑冰鞋站在冰面,产生的压力也不足以明显改变冰的熔点,所以这种解释行不通。相反,一些科学家认为这应该是摩擦生热。当冰刀在冰面上运动时,产生的热量足以融化冰面。
你可能认为事情就是这样了。但是你可能会想起,即使你穿着滑冰鞋站着不动,你也可能滑倒,这说明摩擦并不是真正的原因。1996年,一些研究人员发现,当温度在-22℃以上时,冰的表面上始终有薄薄的一层永远不会凝固的水。所以说,并不是因为压力或者摩擦力产生的这层水,而是冰本身固有的性质。
不过,一位来自新加坡的研究人员认为,冰上的那层水并不是真正的液态水。他把这一层称为“超固体皮肤”,并认为,冰表面上的水分子之间的化学键被拉长了,但是与液态水不同的是,每一个化学键都没有断裂。而且,这种拉长的化学键会最终在表层与接触物之间产生一种静电斥力。这种静电斥力,类似于托起磁悬浮列车中的电磁力或托起气垫船的空气那样,能托起接触物,并大幅度地减少摩擦阻力。
尽管这位研究人员认为他已经完全解决了这个问题。但是,其他的研究人员对此并不信服。在2013年,一位来自日本的研究人员第一次直接观测了这一层结构,并认为这层应该是“准液体”,是冰融化为水时的一种中间状态。
那么,冰的表面究竟是什么?又是怎么来的?看来,这个问题暂时还得不到解决。
从能量转换的观点分析,其基本过程是:化学能→热能→机械能→电能,能量是可以储存的。
1、煤粉和空气在电厂锅炉炉膛空间内悬浮并进行强烈的混合和氧化燃烧,燃料的化学能转化为热能。
2、热能以辐射和热对流的方式传递给锅炉内的高压水介质,分阶段完成水的预热、汽化和过热过程,使水成为高压高温的过热水蒸气。
3、水蒸气经管道有控制地送入汽轮机,由汽轮机实现蒸气热能向旋转机械能的转换。
4、高速旋转的汽轮机转子通过联轴器拖动发电机发出电能,电能由发电厂电气系统升压送入电网。
扩展资料:
发电厂的分类:
1、火力发电厂
利用可燃物作为燃料生产电能的工厂,简称火电厂。从能量转换的观点分析,其基本过程是:化学能→热能→机械能→电能。世界上多数国家的火电厂以燃煤为主。
2、垃圾发电厂
垃圾发电作为火力发电的一种,截至2007年底,中国垃圾焚烧发电厂总数已达75座,其中建成50座,在建25座垃圾焚烧发电厂的收益稳定、运营成本低廉并享有一定的税收优惠政策,能给投资者带来稳定的收益,但是垃圾发电带来的环境问题不容忽视。
3、核能发电厂
利用核能来生产电能工厂,又称核电厂(核电站)。原子核的各个核子(中子与质子)之间具有强大的结合力。重核分裂和轻核聚合时,都会放出巨大的能量,称为核能。技术已比较成熟,形成规模投入运营的,只是重核裂变释放出的核能生产电能的原子能发电厂从能量转换的观点分析,是由重核裂变核能→热能→机械能→电能的转换过程。
4、太阳能发电厂
太阳能发电厂是一种用可再生能源——太阳能来发电的工厂,它利用把太阳能转换为电能的光电技术来工作的。德国利用太阳能来发电可供55万个家庭用电所需,是利用太阳能发电的世界冠军。
5、风能发电厂
截止到2003年底,全国风能资源丰富的14个省(自治区)已建成风电场40座,累计运行风力发电机组1042台,总容量达567.02MW(以完成整机吊装作为统计依据)。
参考资料来源:百度百科-发电厂
1、家用电器节能是家庭节能的重要部分。长时间不使用电器时,请拔掉插头。中国节能认证中心在调查后发现,我国城市家庭平均待机能耗已经占到了家庭总能耗的10%左右。
2、要为单位或家庭节省照明费用,最科学的办法是购买最能有效利用能源的节能灯产品。家庭应尽量选用节能灯,虽然一只节能灯的售价比一只标准的白炽灯泡要贵,但比普通白炽灯节省75%的电力,且使用寿命更长久。
3、晚上睡眠或者休息的时候,将空调设置到睡眠状态,可达到节能20%以上的效果。夏季空调配合电风扇低速运转,可适当提高空调温度,既有舒适感又能节电。出门前三分钟关空调,每台每年可节电约五度。
4、加防尘罩可防止电视机吸进灰尘,灰尘多了就可能漏电,增加电耗,还会影响图像和伴音质量。
5、使用冰箱时应确保冰箱门的胶边紧贴,如果电冰箱的门封条变形了,可以用电吹风吹。蔬菜、水果等水分较多的食物应洗净沥干,用塑料袋包好放入冰箱,以减少水分蒸发而加厚霜层,缩短除霜时间,节约电能。
6、使用电饭锅时,最好用开水煮饭,在锅盖上捂一条毛巾(不要堵着出气孔),这样饭会熟得比较快,自然节约了电。
7、使用电脑时,如只听音乐,可以将显示器亮度调到最暗或干脆关闭。定期清除机内灰尘,擦拭屏幕,既可节电又能延长电脑的使用寿命。
8、针对汽车节能,行车中猛刹车、猛起步,猛踩油门,都是节油的大忌,高挡低速比较省油。
9、在排队、堵车或等人时,尽量避免车辆处于发动机空转的状态。节油试验证明,发动机空转三分钟的油耗就可让汽车行驶一公里。
10、时常检查轮胎的气压,以保持在最佳状态。轮胎气压不足会增加耗油量。用黏度最低的发动机油,发动机油黏度越低,发动机就越“省力”,也就越省油。
参考资料来源:人民网—能源紧张左右百姓生活 家庭节能有窍门可循
储能发展可以说是实现双碳的必由之路。储能,简单来说就是将能量储存起来,以便在需要的时候释放使用的过程。为了实现“30·60”碳达峰、碳中和目标,我国决定将逐步建立新能源为基础的新型电力系统。近年来我国的可再生能源发电的发展迅速,装机占比已经从2011年27.7%提升至2021年45.4%。根据国家能源局的目标,到2025年我国新能源装机占比将进一步提升至50%以上,新能源发电的地位越发重要。
一方面,通过配置储能可以实现可再生能源发电的削峰填谷,即将风光发电高峰时段的电量储存后再移到用电高峰释放,从而可以减少弃风弃光率;另一方面,储能系统可以对随机性、间歇性和波动性的可再生能源发电出力进行平滑控制,从源头降低波动性,满足可再生能源并网要求,为未来大规模发展应用打好基础。
那么储能的应用场景还包括电网侧、用户侧,随着电网灵活性需求的增加和商业模式逐渐理顺,也将一同驱动储能的规模化发展。在电网侧,储能电站目前主要用于提供电力市场辅助服务,比如系统调频。由于电网频率的变化会对电力设备的安全高效运行以及寿命产生影响,储能、尤其是电化学储能的调频效率较高,能在电网侧发挥重要保障作用。除了提供辅助服务以外,储能设备还可以缓解电网阻塞、提高电网输配电能力从而延缓设备升级扩容等。
智能风电解决方案
为了使风力发电得到集中化管控,提升用户企业数字化、智能化水平,实现数据可视化管理,打造一套适配新能源的三维可视化集中管理模块就成了新的主流趋势。Hightopo实现可交互式的 Web 风力发电数字孪生三维场景。可根据时间和天气接口实现白天、黑夜、晴、阴、雨的切换,呈现出与现实世界一致的时空状态。
1、升压站监测
风电场升压站是指将风电机组的输出电压升高到更高等级电压并送出的设施。由于风机大多为异步发电机,风电场在发出有功功率的同时会吸收无功功率,且风电机组大多不能进行持续有效的有功、无功调节,如不采取相应的控制措施,可能对电网的无功、电压稳定性造成影响,或者增加电网的网络损耗。
为解决大规模风电场并网运行时带来的送出系统电压稳定问题,风电场汇集升压站内无功补偿方式一般采用静止无功发生器(SVG)和并联电容器组联合运行的方式。点击升压站三维模型可跳转至升压站视角,展示站内主要观测数据,如环境信息、负荷统计、风功率预测、消防检查信息、巡检车信息等。
2、环境信息
图扑软件数字孪生三维可视化系统中的升压站环境信息监测主要整合了整个风电基地的天气、平均温度、主要风向、平均风速数据,方便实施把控风场大环境信息。
3、风功率预测
用图扑软件丰富得可视化图表组件,双曲线图的形式展现风电基地整体实时功率与预测功率,方便管理人员随时进行决策分析,有效进行节能减排。
4、配电室
点击 Hightopo 智慧风电监管平台的 3D 升压站内配电室建筑模型,可跳转至配电室内部,主场景采用写实风格还原配电室的内部布局,点击相应配电柜可显示不同主变高压侧测控的数据。
5、生产监测
风力发电机因风量不稳定,且对电力系统运行的支撑能力不如其他发电领域,所以对风电基地设施的监测数据更需要具备时效性。将风电场的关键生产数据集中于界面的左右两侧,为管理人员提供直观的数据展示,及时掌控。
图扑软件三维可视化技术采用 B/S 架构,页面自适应多种分辨率,用户可通过 PC 、 PAD 或是智能手机,只要打开浏览器可随时随地访问三维可视化系统,实现远程监查和管控。
利用图扑软件的可视化场景将智能设备的实时运行参数接入两侧的 2D 面板,将项目概况、实时指标、机组状态、环境参数、发电统计、节能减排等复杂、抽象的数据以丰富的图表、图形和设计元素展现,实现集中管控。通过对历史数据的融合分析,管理者可实现资源的优化配置,构建智慧风电管理系统。
6、实时指标
通过图扑软件 HT 2D 面板可以实时观测整个风电场总的风电负荷,从“风机预警处理率”以及“未处理风机数”可及时进行事件决策与处理。
7、环境参数
风速及风向的变化对大型风力发电机的发电量有较大的影响,可将环境监测系统接入图扑软件的可视化场景,完成对能见度、降水量、风速、温度的实时监测,在恶劣天气来临前做好应对措施。
8、发电统计
发电量是生产监测模块管理人员最关注的数据,面板中展示了当日发电量、当月发电量以及累计发电量;用柱状图的形式展现了所有风力发电机日发电量排行情况。
9、节能减排
通过图扑软件的可视化系统远程监测风电基地氮氧化合物的排放数据并作统计,可遵循规律达到节能减排的最优解。
10、机组状态数量
运用图扑软件的多样化图表形式,显示正常发电、带病发电、待机、自身限功率、计划停机、通讯中断的风力发电机数量,方便实时获取全场风机的运行状态。
短期来看,政策是我国储能装机发展的主要驱动力,而系统经济性的提升才能打开中长期规模化发展的空间。因而,随着市场机制的逐步改善。储能系统经济性的拐点也在“渐行渐远”。
新能源长期稳定提供电力保障的能力较差,且受气象数据滚动更新影响,新能源功率预测仍然与实际结果存在偏差。新能源大规模接入使既有常规电源和抽蓄调节能力消耗殆尽,“源随荷动”的平衡模式难以为继,系统平衡调节能力亟待提升,需加快构建“源网荷储”互动的新型电力系统。
私人不能安装风力发电的。
风力发电是指把风的动能转为电能。风能是一种清洁无公害的的可再生能源能源,很早就被人们利用,主要是通过风车来抽水、磨面等,人们感兴趣的是如何利用风来发电。利用风力发电非常环保,且风能蕴量巨大,因此日益受到世界各国的重视。我国风能资源丰富,可开发利用的风能储量约10亿kW,其中,陆地上风能储量约2.53亿kW(陆地上离地10m高度资料计算),海上可开发和利用的风能储量约7.5亿kW,共计10亿kW。而2003年底全国电力装机约5.67亿kW。
风是没有公害的能源之一。而且它取之不尽,用之不竭。对于缺水、缺燃料和交通不便的沿海岛屿、草原牧区、山区和高原地带,因地制宜地利用风力发电,非常适合,大有可为。海上风电是可再生能源发展的重要领域,是推动风电技术进步和产业升级的重要力量,是促进能源结构调整的重要措施。我国海上风能资源丰富,加快海上风电项目建设,对于促进沿海地区治理大气雾霾、调整能源结构和转变经济发展方式具有重要意义。