建材秒知道
登录
建材号 > 能源科技 > 正文

大数据能用来做什么

冷艳的荔枝
飘逸的芹菜
2023-02-02 04:39:12

大数据能用来做什么?

最佳答案
多情的鞋子
安详的睫毛膏
2025-07-06 22:10:47

大数据为我们提供了巨大的机遇,帮助我们开发新的创意产品和服务,例如手机APP或企业商业智能产品。它可以促进经济的增长和就业机会,可以大大提高人们的生活质量。

一、 医疗:提高诊断和治疗的水平

大数据为提高医疗信息处理效率提供了解决方案,从而为企业、公共部门和公民创造价值。对大型临床数据集的分析可以优化新药和治疗的临床和成本效益,患者可以受益于更及时和适当的护理。数据互操作性至关重要,因为数据来自不同的和异构的来源,如生物信号流、健康记录、基因组学和临床实验室测试等。

二、 商业:企业无形资产,助力企业决策

如今,大数据非常重要,它可以直接影响企业的估值。大数据已经成为企业一种关键的无形资产,可以通过数据收集加以衡量,并计入估值。企业如何使用数据以及基于数据做出的决策也将影响企业决策的成功率。

三、 数据:数据市场的价值

在过去十几年里,信息技术直接或间接地推动了中国的经济增长,数据的作用已经从简单支持商业决策转变为自身的价值存在。在新的网络经济中,开放的数据市场已变得至关重要。

四、 交通:减少事故和交通堵塞

交通部门可以从道路传感器收集大量的数据。智能利用这些大数据,可以支持政府优化交通流管理。市民和公司可以通过使用路线规划大大节约出行时间。

五、 环境:降低能源消耗

大数据革命带来了应对环境挑战的新方式。更好地利用全球可用的数据集有助于科学家开展研究,并使决策者能够就洪水等自然灾害作出知情和决策,以应对气候变化和降低成本。智能城市还设有数据中心,根据可再生能源和其他有用指标的可用性,调整公共建筑的电力消耗。

六、 农业:更安全的食品和更高的生产力

在农业领域智能地使用大数据,可以同时提高生产率、粮食安全和农民收入。通过对传感器和地球观测数据的智能和广泛使用,可以有效改善我们今天的耕作方式。这包括可以在我们的农业实践中更有效地利用自然资源(包括水或阳光)。有了先进的技术,农民也可以获得他们的农业机械正在如何工作的实时数据,以及历史上的天气模式、地形和作物表现。

最新回答
欣慰的小鸭子
超级的小伙
2025-07-06 22:10:47

新能源指标的意思是太阳能、地热能、风能、海洋能、生物质能和核聚变能等得总体数量特征。

新能源又称非常规能源,是指传统能源之外的各种能源形式,指刚开始开发利用或正在积极研究、有待推广的能源,如太阳能、地热能、风能、海洋能、生物质能和核聚变能等。

新能源一般是指在新技术基础上加以开发利用的可再生能源,随着常规能源的有限性以及环境问题的日益突出,以环保和可再生为特质的新能源越来越得到各国的重视。

新能源汽车摇号介绍如下:

基础积分,主申请人2分、其他申请人1分;阶梯(轮候)积分:当前参与普通指标摇号的,现有阶梯数,每1阶梯数加1分;当前参与新能源指标轮候的,个人轮候时间距离以家庭为单位提交申请的时间每满一年加1分。

不足一年的部分按1年计算,以往参加摇号获得的阶梯数合并加分。无车家庭由主申请人和其他家庭申请人两部分组成,家庭成员当中符合以下条件的即可成为主申请人。

动人的西牛
寒冷的芝麻
2025-07-06 22:10:47
清洁能源指标。绿能即清洁能源、可再生能源,其指标指的就是清洁能源指标,代表该能源是绿色清洁能源,这种能源是可持续提供满足当代人的需求,又不损害后代人发展满足其需求可以持续发展的能源。包括风能,太阳能,潮汐能,地热能,生物能。

失眠的月饼
陶醉的哈密瓜
2025-07-06 22:10:47
本科毕业论文写的是风力发电,作为一种安全清洁的可再生能源,虽然并网会给电网带来较大压力,但随着智能电网的普及,风力发电前景喜人。与风力资源类似,数据也是可再生的,而且与对风力资源的利用暂时只局限在发电领域不同,数据可以被称作是可再生的可再生资源。两个可再生并非笔误,而是源自其价值的多样化,对数据利用方式的创新,带来的,是源源不断的数据价值。

数据冰山,更需要仔细勘探,太远,会看不清,太近,会迷失方向,如果不小心撞上,那恐怕只能在数据之海里沉没了。所幸,在大数据思维的指引下,在数据的首要价值被挖掘后,潜在价值也持续不断被释放。

三种创新让我们得以初探冰山全貌。

数据创新1:数据的再利用

数据再利用的前提是收集或控制数据集尤其是大型数据集。有些机构如谷歌、如亚马逊,早早地开启了他们的数据再利用之旅,谷歌基于关键词搜索整理了一个版本的搜索词分析,并公开供人们查询,如实时经济指标以及旅游部门的业务预报服务;而亚马逊则一直致力于让数据的价值再大一点,通过早期为AOL电子商务网站提供后台技术服务的合作,让亚马逊掌握了用户的数据,包括他们在看什么、买什么,进一步帮助亚马逊提高推荐引擎性能。

与这些线上企业对数据利用的敏感度不同,一些线下运作的传统企业,也许还在信息喷泉上安睡。有些数据被收集、被保存,但也把数据带入了坟墓,暂不能见天日。但当他们嗅到了数据所带来的机会后,如一家知名的物流企业,针对其掌握的全球出货信息,成立专门部门,以商业和经济预测的形式出售汇总数据,创造了谷歌搜索查询业务的一个线下版本。

数据创新2:重组数据

还记得那个将某个地区的交通事故发生情况与犯罪发生情况映射到一张地图上的例子么,这就是数据重组,很多时候,1+1>2的效果一次又一次地在证明其强大魔力。其实,两个或者更多个大数据的相加,是更大的大数据,关键在于怎么相加。丹麦癌症协会曾就手机是否增加致癌率这个命题进行研究,通过将1990年至2007年间拥有手机用户的信息和该国所有癌症患者的信息这两个数据集结合后,得出了没有发现使用移动电话和癌症风险增加之间存在任何关系的结论。这就是一个数据与数据相加的实例,虽然未能形成轰动的效果,但至少也能让人们更加放心的使用移动电话了,也为我们提示了大数据运用的更多可能性。

数据创新3:可扩展数据

一个数据集并不会只有一种用途,就如美的发现需要一双发现美的眼睛一样,数据的用途也需要一双发现数据用途的眼睛。零售商店内的监控摄像头,不仅可以用来认出商店扒手,还能跟踪在商店里购物的客户流和他们停留的位置,利用这些信息,零售商可以设计店面的最佳布局并判断营销活动的有效性,正如那句话所说,无心插柳柳成荫。

数据利用的其他可能,还有数据的折旧值、数据废气、开放数据等。其中,开放数据最吸引人眼球,这也是各国政府现在正在努力推进的,其主旨是通过多元主体的参与,唤醒沉睡的数据,虽然真正实施起来,并不是那么容易,但这,必然是大势所趋,方向已经确定,路途的曲折蜿蜒,不过是为了更好地前进。

和谐的金针菇
内向的衬衫
2025-07-06 22:10:47

2021年12月8日,国家发改委、国家能源局等四部门对外发布《贯彻落实碳达峰碳中和目标要求 推动数据中心和5G等新型基础设施绿色高质量发展实施方案》(以下简称《方案》),提出到2025年,数据中心和5G基本形成绿色集约的一体化运行格局,数据中心运行电能利用效率和可再生能源利用率明显提升。

《方案》对未来几年数据中心如何实现绿色集约化发展指明了方向。但实际落实中,波动性强的可再生能源如何同需要持续用能的数据中心结合?在西部省份自身也要符合能源“双控”的大背景下,数据中心要实现“东数西算”还需要哪些障碍要克服?带着这些问题,《中国能源报》专访了国际环保组织绿色和平东亚地区气候与能源项目经理叶睿琪。2021年5月,绿色和平发布了《中国数字基础设施脱碳之路:数据中心与5G减碳潜力与挑战(2020-2035)》报告,对中国数据中心与5G等数字基础设施的能耗与碳排放趋势做出预测。

问:相较于对节能技术与指标的重视程度,数字基础设施产业整体仍未大规模应用可再生能源。在行业实践中,目前已有5G或数据中心应用光伏加储能的商业项目,据贵机构观察,扩大可再生能源在数据中心的应用,在技术上、政策上分别需要克服哪些难题?

叶睿琪:为了推动数据中心行业迈向碳达峰与碳中和,扩大数据中心行业的可再生能源应用规模,我们建议可以从两方面着手:

一方面,进一步升级激励约束机制,正如近日中央经济工作会中所指出的,加速实现“能耗双控”向碳排放总量和强度“双控”转变。在管理数据中心能耗时,从考核数据中心的能耗使用总量与强度过渡至考核数据中心的二氧化碳排放总量与强度,加上数据中心的可再生能源采购与使用总量。同时,还需要进一步完善相关考核体系,将数据中心可再生能源使用比例作为考核指标之一,统筹数据中心的规模化发展与绿色低碳转型。

另一方面,进一步完善数据中心产业使用可再生能源的市场机制,从全国可再生能源市场化交易现状来看:一是需要加速将绿色电力交易试点、省间可再生能源现货交易试点向全国推广;二需要是进一步提高可再生能源电力在特高压通道中的比例,推进可再生能源的跨省跨区交易;三是落实分布式市场化交易机制,以推动本地化分布式可再生能源如分布式光伏与风电的交易。

问:绿色和平曾建议,完善数字基础设施产业使用可再生能源的考核体系,将“双控”目标与新建数据中心的审批政策挂钩,将数据中心可再生能源使用比例作为考核指标之一。据贵机构掌握的情况,国内已经有这样做的区域了么?

叶睿琪:目前,北京市发改委已经明确将数据中心可再生能源使用比例作为规模以上新建或改扩建的数据中心项目考核指标之一。根据北京市《关于进一步加强数据中心项目节能审查的若干规定》,“项目节能报告中应当包括可再生能源利用方案。新建及改扩建数据中心应当逐步提高可再生能源利用比例,鼓励2021年及以后建成的项目,年可再生能源利用量占年能源消费量的比例按照每年10%递增,到2030年实现100%(不含电网既有可再生能源占比)。”

除此之外,多数省市针对数据中心可再生能源使用以方向性鼓励性政策居多,尚未提出具体量化目标,比如根据上海市经济信息化委与市发展改革委《关于做好2021年本市数据中心统筹建设有关事项的通知》,“新建数据中心项目要加大分布式供能、可再生能源使用量的占比,鼓励采用余热回收利用措施,为周边建筑提供热源,提高能源再利用效率。”

问:西部地区电力、能源资源丰富,可承接数据备份及部分高延时业务。国家也在推行“东数西算”,可是在地方能耗“双控”的大前提下,西部省份接收数据中心的积极性会否受到影响?

叶睿琪:正如近日中央经济工作会中所明确,“要科学考核,新增可再生能源和原料用能不纳入能源消费总量控制,创造条件尽早实现能耗“双控”向碳排放总量和强度“双控”转变,加快形成减污降碳的激励约束机制,防止简单层层分解。”

虽然目前部分约束激励政策还有待衔接,未来,随着能耗“双控”向碳排放总量和强度“双控”转变,可以预测西部地区将更积极地为数据中心产业发展提供良好的可再生能源资源。

同时,随着《全国一体化大数据中心协同创新体系算力枢纽实施方案》的进一步落实,包括贵州、内蒙古、甘肃、宁夏等地在内的全国一体化算力网络国家枢纽节点将成为数据中心产业发展的重点区位。

失眠的嚓茶
娇气的丝袜
2025-07-06 22:10:47
随着互联网时代的迅猛发展,大数据全面融入了现代社会的生产、生活中,并将大大改变全球的经济。大数据,它其实不仅仅是一种技术,更是战略资源。

1、对大数据的处理分析正成为新一代信息技术融合应用的结点

移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。

大数据具有催生社会变革的能量。但释放这种能量,需要严谨的数据治理、富有洞见的数据分析和激发管理创新的环境(Ramayya Krishnan,卡内基·梅隆大学海因兹学院院长)。

2、大数据是信息产业持续高速增长的新引擎

面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。

3、大数据利用将成为提高核心竞争力的关键因素各行各业的决策正在从“业务驱动” 转变“数据驱动”。

对大数据的分析可以使零售商实时掌握市场动态并迅速做出应对可以为商家制定更加精准有效的营销策略提供决策支持可以帮助企业为消费者提供更加及时和个性化的服务在医疗领域,可提高诊断准确性和药物有效性在公共事业领域,大数据也开始发挥促进经济发展、维护社会稳定等方面的重要作用。

4、大数据时代科学研究的方法手段将发生重大改变

例如,抽样调查是社会科学的基本研究方法。在大数据时代,可通过实时监测、跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。

暴躁的帽子
饱满的大碗
2025-07-06 22:10:47
世界能源委员会1995年对能源效率的定义为:减少提供同等能源服务的能源投入。对于能耗居高不下的数据中心,研究提高能源效率具有深远的社会效益和经济效益。除了能源效率之外,数据中心还有多项其他性能指标,按照国际标准组织ISO的定义统称为关键性能指标,或称为关键绩效指标,研究这些指标对于数据中心同样具有十分重要的意义。

在已经颁布的数据中心性能指标中最常见的是电能使用效率PUE。在我国,PUE不但是数据中心研究、设计、设备制造、建设和运维人员最为熟悉的数据中心能源效率指标,也是政府评价数据中心工程性能的主要指标。

除了PUE之外,2007年以后还出台了多项性能指标,虽然知名度远不及PUE,但是在评定数据中心的性能方面也有一定的参考价值,值得关注和研究。PUE在国际上一直是众说纷纭、莫衷一是的一项指标,2015年ASHRAE公开宣布,ASHRAE标准今后不再采用PUE这一指标,并于2016年下半年颁布了ASHRAE 90.4标准,提出了新的能源效率;绿色网格组织(TGG)也相继推出了新的能源性能指标。对PUE和数据中心性能指标的讨论一直是国际数据中心界的热门议题。

鉴于性能指标对于数据中心的重要性、国内与国际在这方面存在的差距,以及在采用PUE指标过程中存在的问题,有必要对数据中心的各项性能指标,尤其是对PUE进行深入地研究和讨论。

1.性能指标

ISO给出的关键性能指标的定义为:表示资源使用效率值或是给定系统的效率。数据中心的性能指标从2007年开始受到了世界各国的高度重视,相继推出了数十个性能指标。2015年之后,数据中心性能指标出现了较大变化,一系列新的性能指标相继被推出,再度引发了国际数据中心界对数据中心的性能指标,尤其是对能源效率的关注,并展开了广泛的讨论。

2.PUE

2.1PUE和衍生效率的定义和计算方法

2.1.1电能使用效率PUE

TGG和ASHRAE给出的PUE的定义相同:数据中心总能耗Et与IT设备能耗之比。

GB/T32910.3—2016给出的EEUE的定义为:数据中心总电能消耗与信息设备电能消耗之间的比值。其定义与PUE相同,不同的是把国际上通用的PUE(powerusage effectiveness)改成了EEUE(electricenergy usage effectiveness)。国内IT界和暖通空调界不少专业人士对于这一变更提出了不同的看法,根据Malone等人最初对PUE的定义,Et应为市电公用电表所测量的设备总功率,这里的Et就是通常所说的数据中心总的设备耗电量,与GB/T32910.3—2016所规定的Et应为采用电能计量仪表测量的数据中心总电能消耗的说法相同。笔者曾向ASHRAE有关权威人士咨询过,他们认为如果要将“power”用“electricenergy”来替代,则采用“electricenergy consumption”(耗电量)更准确。显然这一变更不利于国际交流。虽然这只是一个英文缩写词的变更,但因为涉及到专业术语,值得商榷。

ISO给出的PUE的定义略有不同:计算、测量和评估在同一时期数据中心总能耗与IT设备能耗之比。

2.1.2部分电能使用效率pPUE

TGG和ASHRAE给出的pPUE的定义相同:某区间内数据中心总能耗与该区间内IT设备能耗之比。

区间(zone)或范围( boundary)可以是实体,如集装箱、房间、模块或建筑物,也可以是逻辑上的边界,如设备,或对数据中心有意义的边界。

ISO给出的pPUE的定义有所不同:某子系统内数据中心总能耗与IT设备总能耗之比。这里的“子系统”是指数据中心中某一部分耗能的基础设施组件,而且其能源效率是需要统计的,目前数据中心中典型的子系统是配电系统、网络设备和供冷系统。

2.1.3设计电能使用效率dPUE

ASHRAE之所以在其标准中去除了PUE指标,其中一个主要原因是ASHRAE认为PUE不适合在数据中心设计阶段使用。为此ISO给出了设计电能使用效率dPUE,其定义为:由数据中心设计目标确定的预期PUE。

数据中心的能源效率可以根据以下条件在设计阶段加以预测:1)用户增长情况和期望值;2)能耗增加或减少的时间表。dPUE表示由设计人员定义的以最佳运行模式为基础的能耗目标,应考虑到由于数据中心所处地理位置不同而导致的气象参数(室外干球温度和湿度)的变化。

2.1.4期间电能使用效率iPUE

ISO给出的期间电能使用效率iPUE的定义为:在指定时间测得的PUE,非全年值。

2.1.5电能使用效率实测值EEUE-R

GB/T32910.3—2016给出的EEUE-R的定义为:根据数据中心各组成部分电能消耗测量值直接得出的数据中心电能使用效率。使用EEUE-R时应采用EEUE-Ra方式标明,其中a用以表明EEUE-R的覆盖时间周期,可以是年、月、周。

2.1.6电能使用效率修正值EEUE-X

GB/T32910.3—2016给出的EEUE-X的定义为:考虑采用的制冷技术、负荷使用率、数据中心等级、所处地域气候环境不同产生的差异,而用于调整电能使用率实测值以补偿其系统差异的数值。

2.1.7采用不同能源的PUE计算方法

数据中心通常采用的能源为电力,当采用其他能源时,计算PUE时需要采用能源转换系数加以修正。不同能源的转换系数修正是评估数据中心的一次能源使用量或燃料消耗量的一种方法,其目的是确保数据中心购买的不同形式的能源(如电、天然气、冷水)可以进行公平地比较。例如,如果一个数据中心购买当地公用事业公司提供的冷水,而另一个数据中心采用由电力生产的冷水,这就需要有一个系数能使得所使用的能源在相同的单位下进行比较,这个系数被称为能源转换系数,它是一个用来反映数据中心总的燃料消耗的系数。当数据中心除采用市电外,还使用一部分其他能源时,就需要对这种能源进行修正。

2.1.8PUE和EEUE计算方法的比较

如果仅从定义来看,PUE和EEUE的计算方法十分简单,且完全相同。但是当考虑到计算条件的不同,需要对电能使用效率进行修正时,2种效率的计算方法则有所不同。

1)PUE已考虑到使用不同能源时的影响,并给出了修正值和计算方法;GB/T32910.3—2016未包括可再生能源利用率,按照计划这一部分将在GB/T32910.4《可再生能源利用率》中说明。

2)PUE还有若干衍生能源效率指标可供参考,其中ISO提出的dPUE弥补了传统PUE的不足;EEUE则有类似于iPUE的指标EEUE-Ra。

3)EEUE分级(见表1)与PUE分级(见表2)不同。

4)EEUE同时考虑了安全等级、所处气候环境、空调制冷形式和IT设备负荷使用率的影响。ASHRAE最初给出了19个气候区的PUE最大限值,由于PUE已从ASHRAE标准中去除,所以目前的PUE未考虑气候的影响;ISO在计算dPUE时,要求考虑气候的影响,但是如何考虑未加说明;PUE也未考虑空调制冷形式和负荷使用率的影响,其中IT设备负荷率的影响较大,应加以考虑。

2.2.PUE和EEUE的测量位置和测量方法

2.2.1PUE的测量位置和测量方法

根据IT设备测点位置的不同,PUE被分成3个类别,即PUE1初级(提供能源性能数据的基本评价)、PUE2中级(提供能源性能数据的中级评价)、PUE3高级(提供能源性能数据的高级评价)。

PUE1初级:在UPS设备输出端测量IT负载,可以通过UPS前面板、UPS输出的电能表以及公共UPS输出总线的单一电表(对于多个UPS模块而言)读取。在数据中心供电、散热、调节温度的电气和制冷设备的供电电网入口处测量进入数据中心的总能量。基本监控要求每月至少采集一次电能数据,测量过程中通常需要一些人工参与。

PUE2中级:通常在数据中心配电单元前面板或配电单元变压器二次侧的电能表读取,也可以进行单独的支路测量。从数据中心的电网入口处测量总能量,按照中等标准的检测要求进行能耗测量,要求每天至少采集一次电能数据。与初级相比,人工参与较少,以电子形式采集数据为主,可以实时记录数据,预判未来的趋势走向。

PUE3高级:通过监控带电能表的机架配电单元(即机架式电源插座)或IT设备,测量数据中心每台IT设备的负载(应该扣除非IT负载)。在数据中心供电的电网入口处测量总能量,按照高标准的检测要求进行能耗测量,要求至少每隔15min采集一次电能数据。在采集和记录数据时不应该有人工参与,通过自动化系统实时采集数据,并支持数据的广泛存储和趋势分析。所面临的挑战是以简单的方式采集数据,满足各种要求,最终获取数据中心的各种能量数据。

对于初级和中级测量流程,建议在一天的相同时间段测量,数据中心的负载尽量与上次测量时保持一致,进行每周对比时,测量时间应保持不变(例如每周周三)。

2.2.2EEUE的测量位置和测量方法

1)Et测量位置在变压器低压侧,即A点;

2)当PDU无隔离变压器时,EIT测量位置在UPS输出端,即B点;

3)当PDU带隔离变压器时,EIT测量位置在PDU输出端,即C点;

4)大型数据中心宜对各主要系统的耗电量分别计量,即E1,E2,E3点;

5)柴油发电机馈电回路的电能应计入Et,即A1点;

6)当采用机柜风扇辅助降温时,EIT测量位置应为IT负载供电回路,即D点;

7)当EIT测量位置为UPS输出端供电回路,且UPS负载还包括UPS供电制冷、泵时,制冷、泵的能耗应从EIT中扣除,即扣除B1和B2点测得的电量。

2.2.3PUE和EEUE的测量位置和测量方法的差异

1)PUE的Et测量位置在电网输入端、变电站之前。而GB/T32910.3—2016规定EEUE的Et测量位置在变压器低压侧。数据中心的建设有2种模式:①数据中心建筑单独设置,变电站自用,大型和超大型数据中心一般采用这种模式;②数据中心置于建筑物的某一部分,变电站共用,一般为小型或中型数据中心。由于供电局的收费都包括了变压器的损失,所以为了准确计算EEUE,对于前一种模式,Et测量位置应该在变压器的高压侧。

2)按照2.2.2节第6条,在计算EIT时,应减去机柜风机的能耗。应该指出的是,机柜风机不是辅助降温设备,起到降温作用的是来自空调设备的冷空气,降温的设备为空调换热器,机柜风机只是起到辅助传输冷风的作用,因此机柜风机不应作为辅助降温设备而计算其能耗。在GB/T32910.3征求意见时就有人提出:机柜风机的能耗很难测量,所以在实际工程中,计算PUE时,EIT均不会减去机柜风机的能耗。在美国,计算PUE时,机柜风机的能耗包括在EIT中。

3)PUE的测点明显多于GB/T32910.3—2016规定的EEUE的测点。

2.3.PUE存在的问题

1)最近两年国内外对以往所宣传的PUE水平进行了澄清。我国PUE的真实水平也缺乏权威调查结果。GB/T32910.3—2016根据国内实际状况,将一级节能型数据中心的EEUE放宽到1.0~1.6,其上限已经超过了国家有关部委提出的绿色数据中心PUE应低于1.5的要求,而二级比较节能型数据中心的EEUE规定为1.6~1.8,应该说这样的规定比较符合国情。

2)数据中心总能耗Et的测量位置直接影响到PUE的大小,因此应根据数据中心建筑物市电变压器所承担的荷载组成来决定其测量位置。

3)应考虑不同负荷率的影响。当负荷率低于30%时,不间断电源UPS的效率会急剧下降,PUE值相应上升。对于租赁式数据中心,由于用户的进入很难一步到位,所以数据中心开始运行后,在最初的一段时间内负荷率会较低,如果采用设计PUE,也就是满负荷时的PUE来评价或验收数据中心是不合理的。

4)数据中心的PUE低并非说明其碳排放也低。完全采用市电的数据中心与部分采用可再生能源(太阳能发电、风电等),以及以燃气冷热电三联供系统作为能源的数据中心相比,显然碳排放指标更高。数据中心的碳排放问题已经引起国际上广泛地关注,碳使用效率CUE已经成为数据中心重要的关键性能指标,国内对此的关注度还有待加强。

5)GB/T32910.3—2016规定,在计算EIT时,应减去机柜风机的耗能。关于机柜风机的能耗是否应属于IT设备的能耗,目前国内外有不同的看法,其中主流观点是服务器风机的能耗应属于IT设备的能耗,其原因有二:一是服务器风机是用户提供的IT设备中的一个组成部分,自然属于IT设备;二是由于目前服务器所采用的风机基本上均为无刷直流电动机驱动的风机(即所谓EC电机),风机的风量和功率随负荷变化而改变,因此很难测量风机的能耗。由于数据中心风机的设置对PUE的大小影响很大,需要认真分析。从实际使用和节能的角度出发,有人提出将服务器中的风机取消,而由空调风机取代。由于大风机的效率明显高于小风机,且初投资也可以减少,因此这种替代方法被认为是一个好主意,不过这是一个值得深入研究的课题。

6)国内相关标准有待进一步完善。GB/T32910.3—2016《数据中心资源利用第3部分:电能能效要求和测量方法》的发布,极大地弥补了国内标准在数据中心电能能效方面的不足;同时,GB/T32910.3—2016标准颁布后,也引起了国内学术界和工程界的热议。作为一个推荐性的国家标准如何与已经颁布执行的强制性行业标准YD 5193—2014《互联网数据中心(IDC)工程设计规范》相互协调?在标准更新或升级时,包括内容相似的国际标准ISOIEC 30134-2-2016在内的国外相关标准中有哪些内容值得借鉴和参考?标准在升级为强制性国家标准之前相关机构能否组织就其内容进行广泛的学术讨论?都是值得考虑的重要课题。ASHRAE在发布ASHRAE90.4标准时就说明,数据中心的标准建立在可持续发展的基础上,随着科学技术的高速发展,标准也需要不断更新和创新。

7)PUE的讨论已经相当多,事实上作为大数据中心的投资方和运营方,更关心的还是数据中心的运行费用,尤其是电费和水费。目前在数据中心关键性能指标中尚缺乏一个经济性指标,使得数据中心,尤其是大型数据中心和超大型数据中心的经济性无法体现。

2.4.PUE的比较

不同数据中心的PUE值不应直接进行比较,但是条件相似的数据中心可以从其他数据中心所提供的测量方法、测试结果,以及数据特性的差异中获益。为了使PUE比较结果更加公平,应全面考虑数据中心设备的使用时间、地理位置、恢复能力、服务器可用性、基础设施规模等。

3.其他性能指标

3.1.ASHRAE90.4

ASHRAE90.4-2016提出了2个新的能源效率指标,即暖通空调负载系数MLC和供电损失系数ELC。但这2个指标能否为国际IT界接受,还需待以时日。

3.1.1暖通空调负载系数MLC

ASHRAE对MLC的定义为:暖通空调设备(包括制冷、空调、风机、水泵和冷却相关的所有设备)年总耗电量与IT设备年耗电量之比。

3.1.2供电损失系数ELC

ASHRAE对ELC的定义为:所有的供电设备(包括UPS、变压器、电源分配单元、布线系统等)的总损失。

3.2.TGG白皮书68号

2016年,TGG在白皮书68号中提出了3个新的能源效率指标,即PUE比(PUEr)、IT设备热一致性(ITTC)和IT设备热容错性(ITTR),统称为绩效指标(PI)。这些指标与PUE相比,不但定义不容易理解,计算也十分困难,能否被IT界接受,还有待时间的考验。

3.2.1PUE比

TGG对PUEr的定义为:预期的PUE(按TGG的PUE等级选择)与实测PUE之比。

3.2.2IT设备热一致性ITTC

TGG对ITTC的定义为:IT设备在ASHRAE推荐的环境参数内运行的比例。

服务器的进风温度一般是按ASHRAE规定的18~27℃设计的,但是企业也可以按照自己设定的服务器进风温度进行设计,在此进风温度下,服务器可以安全运行。IT设备热一致性表示符合ASHRAE规定的服务器进风温度的IT负荷有多少,以及与总的IT负荷相比所占百分比是多少。例如一个IT设备总负荷为500kW的数据中心,其中满足ASHRAE规定的服务器进风温度的IT负荷为450kW,则该数据中心的IT设备热一致性为95%。

虽然TGG解释说,IT设备热一致性涉及的只是在正常运行条件下可接受的IT温度,但是IT设备热一致性仍然是一个很难计算的能源效率,因为必须知道:1)服务器进风温度的范围,包括ASHRAE规定的和企业自己规定的进风温度范围;2)测点位置,需要收集整个数据中心服务器各点的进风温度,由人工收集或利用数据中心基础设施管理(DCIM)软件来统计。

3.2.3IT设备热容错性ITTR

TGG对ITTR的定义为:当冗余制冷设备停机,或出现故障,或正常维修时,究竟有多少IT设备在ASHRAE允许的或建议的送风温度32℃下送风。

按照TGG的解释,ITTR涉及的只是在出现冷却故障和正常维修运行条件下可接受的IT温度,但是ITTR也是一个很难确定的参数。ITTR的目的是当冗余冷却设备停机,出现冷却故障或在计划维护活动期间,确定IT设备在允许的入口温度参数下(<32℃)运行的百分比,以便确定数据中心冷却过程中的中断或计划外维护的性能。这个参数很难手算,因为它涉及到系统操作,被认为是“计划外的”条件,如冷却单元的损失。

3.3.数据中心平均效率CADE

数据中心平均效率CADE是由麦肯锡公司提出,尔后又被正常运行时间协会(UI)采用的一种能源效率。

CADE提出时自认为是一种优于其他数据中心能源效率的指标。该指标由于被UI所采用,所以直到目前仍然被数量众多的权威著作、文献认为是可以采用的数据中心性能指标之一。但是笔者发现这一性能指标的定义并不严谨,容易被误解。另外也难以测量和计算。该指标的提出者并未说明IT资产效率如何测量,只是建议ITAE的默认值取5%,所以这一指标迄今为止未能得到推广应用。

3.4.IT电能使用效率ITUE和总电能使用效率TUE

2013年,美国多个国家级实验室鉴于PUE的不完善,提出了2个新的能源效率——总电能使用效率TUE和IT电能使用效率ITUE。

提出ITUE和TUE的目的是解决由于计算机技术的发展而使得数据中心计算机配件(指中央处理器、内存、存储器、网络系统,不包括IT设备中的电源、变压器和机柜风机)的能耗减少时,PUE反而增加的矛盾。但是这2个性能指标也未得到广泛应用。

3.5.单位能源数据中心效率DPPE

单位能源数据中心效率DPPE是日本绿色IT促进协会(GIPC)和美国能源部、环保协会、绿色网格,欧盟、欧共体、英国计算机协会共同提出的一种数据中心性能指标。GIPC试图将此性能指标提升为国际标准指标。

3.6.水利用效率WUE

TGG提出的水利用效率WUE的定义为:数据中心总的用水量与IT设备年耗电量之比。

数据中心的用水包括:冷却塔补水、加湿耗水、机房日常用水。根据ASHRAE的调查结果,数据中心基本上无需加湿,所以数据中心的用水主要为冷却塔补水。采用江河水或海水作为自然冷却冷源时,由于只是取冷,未消耗水,可以不予考虑。

民用建筑集中空调系统由于总的冷却水量不大,所以判断集中空调系统的性能时,并无用水量效率之类的指标。而数据中心由于全年制冷,全年的耗水量居高不下,已经引起了国内外,尤其是水资源贫乏的国家和地区的高度重视。如何降低数据中心的耗水量,WUE指标是值得深入研究的一个课题。

3.7.碳使用效率CUE

TGG提出的碳使用效率CUE的定义为:数据中心总的碳排放量与IT设备年耗电量之比。

CUE虽然形式简单,但是计算数据中心总的碳排放量却很容易出错。碳排放量应严格按照联合国气象组织颁布的计算方法进行计算统计。

柔弱的眼睛
甜美的汉堡
2025-07-06 22:10:47

数据中心作为经济社会运行不可或缺的关键基础设施,是公认的高耗电行业。

据前瞻产业研究院分析,过去十年间,我国数据中心整体用电量以每年超过 10% 的速度递增,其耗电量在 2020 年突破 2000 亿千瓦时,约占全社会用电量的 2.71%,2014-2020 年,数据中心耗电量占比逐年升高。数据中心供电结构中,火电占比超过 70%,会产生相对大量的温室气体和其他污染物。

PUE (Power Usage Effectiveness,电能利用效率) 是衡量数据中心能源使用效率的重要指标。PUE 越接近于 1,代表数据中心对于电能的利用越有效率。截至 2019 年年底,全国超大型数据中心平均 PUE 为 1.46,大型数据中心平均 PUE 为 1.55。这与《关于加快构建全国一体化大数据中心协同创新体系的指导意见》建议的 1.3 以下相比,尚有一段距离。

可见,限‌电对于数‌据中心产业影响挺大的。顺应碳中和发展趋势,逐步降低碳排放,是数据中心亟需做出的改变。

数据中心降碳,可双管齐下

数据中心如何才能提升能源效率,为降碳做出贡献?主流的数据中心降碳举措可分为 IT 和 非 IT 基础设施两个方面。

非 IT 基础设施方面,常见的有数据中心选址靠近绿色清洁能源、尽量使用可再生能源、采用液冷技术取代风扇散热、数据中心余热回收再利用等等。这其中最为有效的不外乎在数据中心乃至公司运营范围内 100% 使用可再生能源,但这绝非易事——苹果用了 5 年时间才实现公司运营范围内 100% 可再生能源利用。

而在 IT 基础设施方面,企业可立即采用诸多举措来提升能源效率:通过分布式和虚拟化技术将“僵尸”服务器连接起来,最大程度减少 IT 设备空闲;实现服务器和存储的虚拟化与池化,从而大幅提升硬件利用率;通过采用更高能效的芯片产品,结合芯片的自适应电源管理功能来有效管理芯片用电,等等。

其中,虚拟化和超融合基础设施 (HCI) 有望引领数据中心能效的提升。

虚拟化已十分普遍,超融合基础设施也在近年来逐渐成为主流。作为一种融合的、统一的 IT 基础架构,超融合包含了数据中心常见的元素:计算、存储、网络以及管理工具。超融合以软件为中心,结合 x86 或 ARM 架构的硬件替代传统架构中的专用硬件,从而解决传统架构中管理复杂、难以扩展等问题。

相比传统架构,超融合将架构由三层缩减至两层,不仅可以大幅度节省机房空间,还能进一步整合计算资源,从而提升机房能效。超融合架构自带计算虚拟化和分布式存储,取代了传统物理环境和传统虚拟环境,对数据中心降碳的影响显著。

经过通用场景下的对比计算,从传统物理环境到传统虚拟环境,仅是虚拟化这一层即可带来 20%-80% 的节能;而从传统虚拟环境进一步过渡到超融合架构,通过将分布式存储融合到计算侧,可再带来高达 31% 的能耗节省。以下为计算详情(以下为理论值,不同负载情况下物理服务器能耗会有有所不同,不同服务器也会表现不同,同时不考虑交换机等因素)。

计算虚拟化:节能 20%-80%,虚拟化程度越高越节能

计算虚拟化是从 IT 基础设施层面提升能效的关键。它实现了 IT 基础设施从物理架构到虚拟化的跃升,减少物理服务器的数量、增加 IT 资源的利用率,让数据中心得以使用更少的基础设施即可运行更大的工作负载。IDC 报告指出,数据中心中计算、存储、网络层虚拟化程度越高,所带来的碳影响就越小。

以 4 台物理服务器搭配 1 台存储系统的配置为例,通过用虚拟化取代原有的物理机,能实现约为 20% 到 80% 的能耗节省(取决于虚拟机部署的密度)。

传统物理环境 vs. 传统虚拟环境

(以 4 台物理服务器搭配 1 台存储系统为例)

如图所示,此场景中两种架构的最大差异在于对计算资源的利用率不同:在相同的硬件条件下,计算资源的利用率越高,能获得的节能优势就越大。虚拟化架构通过高度利用 CPU 资源(此场景预设的 CPU 超分比例为 1:4,通常属于中到重度计算需求使用),可将平均每计算核心耗能降低约 74%。

在实际使用场景中,虚拟机部署密度的不同,也会带来不同的节能效果:

高密度虚拟机场景下(1 : 20,1 台物理服务器支撑 20 台虚拟机),平均每台服务器(虚拟机)耗能为 321 W/Hr,相比物理服务器降低约 80%;

低密度虚拟机场景下(1:5,1 台物理服务器支撑 5 台虚拟机),平均每台服务器(虚拟机)耗能 1284 W/Hr,相比物理服务器降低约 20%。

若进一步将 CPU 超分比例提高,物理环境和虚拟环境的耗能差距将会更大。

存储与计算节点融合部署:再节能约 31%

超融合基础设施将计算与存储服务模块融合部署在同一物理服务器(物理节点),完全舍弃了传统集中存储的需求,能够在虚拟化降低能耗的基础上,进一步为数据中心节能。

以相同的硬件配置为例(4 台物理服务器搭配 1 台存储系统),超融合架构通过去除传统集中存储硬件,可将平均每计算核心耗能再降低约 31%。

传统虚拟环境 vs. 超融合

(以 4 台物理服务器搭配 1 台存储系统为例)

请点击输入图片描述

以上场景所设定的硬件配置为 4 台物理服务器搭配 1 台存储系统,若单纯增加物理服务器的数量而存储系统保持不变,则两种架构的能耗会趋于接近。不过,计算资源(物理服务器)的增加,通常意味着对存储资源(性能与容量)的需求也会随之提升,所以从实际部署的场景来看,传统虚拟化架构的计算资源增加与相应的存储资源提升,整体的能耗与超融合架构相比仍存在不小的差距。

懵懂的电脑
专注的美女
2025-07-06 22:10:47
能流密度是在一定空间范围内,单位面积(如平方米)所能取得的或单位重量(如公斤)能源所能产生的某种能源的能量或功率。是评价能源的主要指标之一。 如能流密度很小,即很难作为主要能源。按21世纪初的技术水平,太阳能和风能的能流密度很小...

生动的魔镜
害羞的羽毛
2025-07-06 22:10:47
能源大数据理念是将电力、石油、燃气等能源领域数据进行综合采集、处理、分析与应用的相关技术与思想。能源大数据不仅是大数据技术在能源领域的深入应用,也是能源生产、消费及相关技术革命与大数据理念的深度融合,将加速推进能源产业发展及商业模式创新。随着企业更加注重科技创新,大数据在能源行业应用的前景将越来越广阔。

能源大数据以数据开放共享为核心理念,是应用互联网机制与技术改造传统能源系统的最佳切入点,是推进能源系统智慧化转型升级的有效手段。能源大数据是打破行业壁垒,促进各种能源系统融合的助推剂,将催生一批智慧能源新兴业态,亦是实现能源行业转型升级、打造新的经济增长点的关键技术。

能源大数据能够将电力、石油、煤炭等能源领域数据以及人口、地理、气象等诸多领域数据,进行综合采集、处理、分析与应用,发展能源大数据将加速推进能源产业发展及商业模式创新。随着能源行业科技化和信息化程度的加深,以及各种监测设备和智能传感器的普及,大量包括石油、煤炭、太阳能、风能等等的数据信息得以产生并被存储下来,这就为构建实时、准确、高效的综合能源管理系统提供了数据源,可以让能源大数据发挥作用。

关于大数据对能源发展有什么作用,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。