建材秒知道
登录
建材号 > 能源科技 > 正文

土地到底是可再生资源还是不可再生资源,给个明确答案

帅气的外套
和谐的吐司
2023-02-02 04:00:25

土地到底是可再生资源还是不可再生资源,给个明确答案

最佳答案
勤劳的水池
美好的毛豆
2025-07-06 03:01:09

土地属于不可再生资源资源。

土地资源是指已经被人类所利用和可预见的未来能被人类利用的土地。土地资源既包括自然范畴,即土地的自然属性,也包括经济范畴,即土地的社会属性,是人类的生产资料和劳动对象。

土地资源指可供农、林、牧业或其它各利用的土地,是人类生存的基本资料和劳动对象,具有质和量两个内容。在其利用过程中,可能需要采取不同类别和不同程度的改造措施。土地资源具有一定的时空性,即在不同地区和不同历史时期的技术经济条件下 ,所包含的内容可能不一致。如大面积沼泽因渍水难以治理,在小农经济的历史时期,不适宜农业利用,不能视为农业土地资源。但在已具备治理和开发技术条件的今天,即为农业土地资源。由此,有的学者认为土地资源包括土地的自然属性和经济属性两个方面。

土地资源可分为已利用土地耕地、林地、草地、工矿交通居民点用地等;宜开发利用土地、宜垦荒地、宜林荒地。宜牧荒地、沼泽滩涂水域等;暂时难利用土地枣戈壁、沙漠、高寒山地等。这种分类着眼于土地的开发、利用,着重研究土地利用所带来的社会效益、经济效益和生态环境效益。评价已利用土地资源的方式、生产潜力,调查分析宜利用土地资源的数量、质量、分布以及进一步开发利用的方向途径,查明暂不能利用土地资源的数量、分布,探讨今后改造利用的可能性,对深入挖掘土地资源的生产潜力,合理安排生产布局,提供基本的科学依据。

最新回答
清秀的鸭子
贪玩的牛排
2025-07-06 03:01:09

土壤属可再生资源,是因为土壤肥力可以通过人工措施和自然过程而不断更新。但土壤又有不可再生的一面,人们对土壤的不合理的开发和利用,会造成土壤资源的流失;尤其是土壤被污染,会造成土壤成分、结构、性质和功能的变化,如失去肥力和净化能力,或是发生沙漠化。这些都是在短期内不能恢复的。

土地资源

土地资源指可供农、林、牧业或其它各利用的土地,是人类生存的基本资料和劳动对象,具有质和量两个内容。

在其利用过程中,可能需要采取不同类别和不同程度的改造措施。土地资源具有一定的时空性,即在不同地区和不同历史时期的技术经济条件下,所包含的内容可能不一致。如大面积沼泽因渍水难以治理,在小农经济的历史时期,不适宜农业利用,不能视为农业土地资源。

但在已具备治理和开发技术条件的今天,即为农业土地资源。由此,有的学者认为土地资源包括土地的自然属性和经济属性两个方面。

自然综合体,也是人类生产劳动的产物。因此,土地资源既具有自然属性,也具有社会属性,是“财富之母”。

动人的小懒虫
甜蜜的柚子
2025-07-06 03:01:09

1.我国的生物质能资源情况

我国拥有丰富的生物质能资源,据测算,我国理论生物质能资源50×108t左右,是我国目前总能耗的4倍。生物质能资源按原料的化学性质分,主要为糖类、淀粉和木质纤维素类。按原料来源分,则主要包括以下几类:(1)农业生产废弃物,主要为作物秸秆。(2)薪柴、枝丫柴和柴草。(3)农林加工废弃物,木屑、谷壳和果壳。(4)人畜粪便和生活有机垃圾等。(5)工业有机废弃物、有机废水和废渣等。(6)能源植物,包括所有可作为能源用途的农作物、林木和水生植物资源等。其中来源最广、储量最大、利用前景最可观的是农业生物质和林业生物质这两大类。

1)农业生物质

农业生物质资源包括农产品加工废弃物和农作物秸秆,如图7.13所示。农产品加工废弃物有花生壳、玉米芯、稻壳和甘蔗渣等;农作物秸秆包括水稻秸秆、小麦秸秆和玉米秸秆等。据统计,我国各地区主要农业生物质的可利用总量约为5.6×108t,排名前三的地区分别是山东、河南、河北,而秸秆类农业生物质资源利用的主要方向为24%用于饲用,15%用于还田,2.3%用于工业,剩余的约60%用于露地燃烧或薪柴。因此,我国的农业生物质资源的应用潜力非常大。

图7.13 农业生物质

2)林业生物质

我国现有森林面积约1.95×108hm2,林业生物质总量超过180×108t,其中可利用的林业生物质资源有以下三类:一类是木本淀粉类资源,如栎类、果实、橡子等;二类是木本油料资源,如油桐、油茶、黄连木、文冠果、麻疯树等;三类是木质燃料资源,如灌木林、薪炭林、林业“三剩物”等。而且,我国还有近4000×104hm2的宜林荒山、荒地可用于种植能源林,还有近600×104hm2疏林地和5000×104hm2郁闭度(指森林中乔木树冠遮蔽地面的程度)低于0.4的低产林地可用于改造。

目前世界上已有20多个国家在种植“柴油树”。我国河北省武安市马家庄乡连绵起伏的青山上,满山遍野生长着枝繁叶茂的黄连木树,这种树木的果实可以提炼柴油,当地群众将它称为“柴油树”。现在武安市共有这样的“柴油树”10万亩,年提炼柴油产量可达1000×104kg。据介绍,到2012年,武安市计划将“柴油树”发展到20万亩,年产柴油量达到2000×104kg。

2.生物质能资源的利用

主要应用在生物乙醇、生物柴油、生物质固体成型燃料和生物质能发电行业。

1)生物乙醇的应用

生物乙醇是指通过微生物的发酵将各种生物质转化为燃料酒精。它可以单独或与汽油混配制成乙醇汽油作为汽车燃料。我国生产生物乙醇的原料有甘蔗、甜高粱、木薯等高能品种,并建立了年产能力达5000t的甜高粱茎秆生产乙醇的工业示范装置。因传统粮食生产乙醇价格昂贵,为降低生产成本,我国已转向对微生物混合发酵法的研发。国家发展和改革委员会称,到2020年,我国15%生物质燃料将应用在汽车、轮船等行业。

2)生物柴油的应用

可从动植物油,如大豆、油菜、动物油脂以及餐饮垃圾中提炼生物柴油,因其环保性、润滑性、安全性能良好,可与石化柴油混合作为燃料。2005年6月,我国使用自主研发的生物酶法生产生物柴油,技术指标达到欧美生物柴油标准,标志着我国生物柴油研究取得了突破性进展。2010年生物柴油产能达300×104t/年,主要用于交通运输行业。我国提出了在2020年,生物柴油产能达200×104t的目标,已在海南建立了6×104t/年装置,产量居我国首位。

3)生物质固体成型燃料的应用

生物质固体成型燃料是将城市垃圾或农林废弃物,通过外力作用,压缩成型来增加其密度的可燃物质,具有高效、清洁、无污染等优点。图7.14为生物质捆装压缩示意图。我国的生物质成型燃料生产设备有螺旋挤压式、活塞冲压式、模辊碾压式,燃料形状主要有块状、棒状、颗粒状三种。北京奥科瑞丰公司生物质固体成型燃料年产量为60×104t,居全国首位,主要应用在直接燃烧取暖与工业锅炉等方面。

图7.14 生物质捆装压缩

4)生物质能发电的应用

生物质能发电是利用生物质所具有的生物质能进行的发电,是可再生能源发电的一种,包括农林废弃物直接燃烧发电、农林废弃物气化发电、垃圾焚烧发电、垃圾填埋气发电、沼气发电。为推动生物质能发电技术的发展,2003年以来,国家先后核准批复了河北晋州、山东单县和江苏如东三个秸秆发电示范项目,颁布了《中华人民共和国可再生能源法》,并实施了生物质能发电优惠上网电价等有关配套政策,从而使生物质能发电,特别是秸秆发电迅速发展。

2008年,蒙牛建成全球最大的生物质能沼气发电厂,得到联合国开发计划署环保基金的大力支持。图7.15为蒙牛生物质能沼气发电厂。

图7.15 蒙牛的全球最大生物质能沼气发电厂

3.生物质能开发利用的主要技术

生物质能开发利用在目前阶段的主要技术有三大类:物理转化、化学转化和生物转化。涉及压缩成型、气化、液化、热解、发酵、水解等具体技术,具体情况如图7.16所示。

1)物理转化

生物质的物理转化是将农林废弃物,如秸秆、锯屑、稻壳、蔗渣等,干燥后在一定压力的作用下,压制成棒状、粒状、块状的成型燃料或饲料。农林废弃物主要由纤维素、半纤维素和木质素构成,生物质压缩成型主要是靠木质素的胶结作用。木质素为光合作用形成的天然聚合体,具有复杂的三维结构,是高分子物质,在植物中含量约为15%~30%。当温度达到70~100℃时,木质素开始软化并具有一定的黏度,当温度达到200~300℃时,木质素呈熔融状态,黏度变高,此时施加一定压力就能使木质素与纤维素黏结,使植物体积大量减少,密度显著增加,取消外力后,由于非弹性的纤维分子间的相互缠绕,其仍能保持给定形状,冷却后强度进一步增加,大大降低农林废弃物的体积,便于运输和储存。

图7.16 生物质能开发利用的主要技术

2)化学转化

生物质的化学转化涉及气化、液化和热解等三个方面。

(1)气化:

生物质气化是指在一定的温度条件下,借助氧气或水蒸气的作用,使高聚合的生物质发生热解、氧化、还原等反应,最终转化为CO,H2和低分子烃类等可燃气体的过程。在我国,应用生物质气化技术最广的领域是生物质气化发电(BGPG)。生物质气化发电的成本约为0.2~0.3元/(kW·h),已经接近或优于常规发电,其单位投资约为3500~4000元/kW,仅为煤电的60%~70%,具备进入市场竞争的条件,发展前景非常广阔。

(2)液化:

生物质液化技术是指在高温高压的条件下,进行生物质热化学转化的过程。通过液化,可将生物质转化成高热值的液体产物,即将固态的大分子有机聚合物转化成液态的小分子有机物,生物柴油就是利用生物质液化技术生产出的可再生燃料。油料作物如大豆、油菜、棕榈等在酸性或碱性催化剂和高温的作用下发生酯交换反应,生产相应脂肪酸甲酯或乙酯,再经过洗涤干燥后得到生物柴油。与传统的石化能源相比,其硫和芳烃含量低,十六烷值高,闪点高,具有良好的润滑性,可添加到化石柴油中。

(3)热解:

生物质热解是指利用热能将生物质的大分子打断,从而转化为含碳原子数目较少的低分子化合物的过程,即生物质在完全缺氧条件下,经加热或不完全燃烧后,最终转化成高能量密度的气体、液体和固体产物的过程,而木炭就是利用生物质热解技术生产出的重要产物。木炭产品包括白炭、黑炭、活性炭、机制炭四大类,其中应用范围最广的是活性炭。活性炭是具有发达孔隙结构、强吸附力、比表面积巨大等一系列优点的木炭。在我国,活性炭广泛应用于葡萄糖、味精和医药等产业的生产。

3)生物转化

生物转化技术是指依靠微生物发酵或者酶法水解作用,对生物质进行生物转化,生产出乙醇、氢、甲烷等液体或气体燃料的技术。生物转化的生物质原料包括淀粉和木质纤维素两大类。玉米、木薯、小麦等淀粉类粮食作物是生物转化的主体,但是以农作物为原料转化的产品成本较高,且易受土地和人口的因素限制,产量无法大幅度增加。因此以廉价的农作物废料等木质纤维素为原料的生物转化技术才是解决能源危机的有效途径。然而,木质纤维素的结构和组分与淀粉类原料有很大的不同,解决高效、低成本降解木质纤维素原料的问题是木质纤维素转化产物取代化石燃料的根本途径。

开心的乐曲
悲凉的唇彩
2025-07-06 03:01:09
地热能和风能都是可再生资源,属于陆地自然资源。

地热能来自于地球内部热能,属于矿产资源中的能源。

风能是气候资源。

附:陆地自然资源系列

土地资源 耕地资源

草地资源

林地资源

荒地资源

水资源 地表水资源

地下水资源

冰雪资源

气候资源 光能资源

热能资源

水分资源

风力资源

空气资源

生物资源 植物资源

动物资源

微生物资源

矿产资源 金属矿资源

非金属矿资源

能源资源

长情的鸭子
深情的夕阳
2025-07-06 03:01:09
海洋不仅辽阔广大、深不可测,而且极为富饶,是一个巨大的资源宝库。

海洋资源按成因分类,大致可以分为以下几种:

生物资源即生活在海洋中可被人们利用的动、植物资源,包括鱼、虾、贝、藻及其他各种野生海洋动、植物。

化石燃料资源主要指海洋石油和天然气、海底煤矿。这些都是埋藏在海底岩层中的碳氢化合物,可做燃料。通常认为它们是古生物遗体经地质变化生成的,所以被称为化石燃料资源。

深海矿物资源包括大洋锰结核、海底钴结壳和海底热液矿床等。它们都是分布在海底表层,在深海条件下自生成矿的多金属矿产资源。

海滨砂矿资源主要是指因海水流动而使金属或非金属固体矿物砂粒在海滨聚集而形成的次生矿床。包括砂、砾石及其他各种珍贵的金属、非金属砂矿资源。

海水化学资源海水、陆地水和大气中的水构成地球的水圈,是一个无限循环的系统。在地球水无限循环过程中,各种物质溶解并富集在海水中。现在已经从海水中检测出80多种元素,占地球上已知元素的80%左右。海水化学资源包括海水水资源、地下卤水资源(渗入地下贮藏起来的浓缩海水)和其他海水化学物质资源(盐、溴、碘、氯化镁、氯化钾、铀、重水和其他可提取的稀有化学元素等)等。

海洋能源因海水运动和态势而形成的可再生能源,包括潮汐能、波浪能、海流能、温差能和盐差能等。

海洋空间资源指可以利用的各种海洋空间,例如:港湾、航道、滩涂、湿地和退海荒地等。海洋风景旅游地和可用于科学研究、实验的场地等,也可列入海洋空间资源。据估计,地球上80%的生物资源在海洋中。有人计算过,在不破坏生态平衡的条件下,海洋每年可提供30亿吨水产品,能够养活300亿人口。在海洋水产品中,人们吃的最多的是鱼类。全世界有鱼类2万多种,中国海域约有2000种。世界渔场大都分布在大陆架。

海洋也像陆地一样,有肥美丰产的地方,也有贫瘠荒凉的不毛之地。全世界海洋渔获量的97%是在只占全球海洋面积7%的大陆架海域捕捞的。盛产鱼的海域称为渔场。世界最著名的四大渔场是:北太平洋渔场、东北大西洋渔场、西北大西洋渔场和秘鲁沿海(东太平洋)渔场。这些渔场中出产的主要经济鱼种有鲱鱼(青鱼)、鳕鱼(明太鱼)、鲭鱼(鲅鱼、马鲛鱼)、大马哈鱼(鲑鱼)、鲽鱼(比目鱼)、金枪鱼、沙丁鱼、乌贼(鱿鱼)、虾、蟹和鲸等。中国沿海,东非、西非沿海,澳大利亚以东的太平洋和以西的印度洋海域也是世界上著名的渔场。南极海域则是磷虾资源丰富的海域和大型海洋哺乳动物鲸的出没之地。

我国东、南两面为海洋环绕。我国沿海自北向南划分为渤海、黄海、东海和南海四个海区,跨越温带、暖温带、亚热带和热带四个气候带。我国近海大陆架宽广,有长江、黄河、珠江和辽河等大小5000多个河流汇入。发源于台湾东南赤道海域的暖流,即著名的”黑潮“,自南向北流经我国海域,与北方的沿岸寒流相交汇。这样优越的自然条件造就我国近海的渔场富饶多产。我国近海渔场面积150万平方千米,主要渔场有黄渤海渔场、吕泗渔场、大沙渔场、舟山渔场、南海沿岸渔场、东沙渔场、北部湾渔场、中沙渔场、西沙渔场和南沙渔场等。其中的黄渤海渔场、舟山渔场、南海沿岸渔场和北部湾渔场由于产量高,被称为中国的四大渔场。

我国近海渔场有鱼类1700多种。主要经济鱼类有70多种,包括大黄鱼、小黄鱼、带鱼、鲐鱼、鲳鱼、鳓鱼、纳鱼、马鲛鱼、青鱼、鳗鱼、马面钝、蝶鱼、石斑鱼、金枪鱼以及墨鱼(乌贼)、对虾、毛虾、梭子蟹和海蜇等。其中大黄鱼、小黄鱼、带鱼和墨鱼是我国人民喜欢食用而且产量较大的海洋水产品,被称为”中国四大海产“。

可靠的吐司
舒心的唇膏
2025-07-06 03:01:09
物质能源的“至美”之处在于其既是保障能源安全的重要途径之一,又兼具减轻环境污染的特点。在这一点上,作为生物质能源家族一员的能源作物更是表现得淋漓尽致。如甜高粱,不仅可以通过能量转换替代化石液体燃料,保障能源安全,同时还能保障粮食安全,而且还能吸收二氧化碳,加工过程中无污染,原料得以物尽其用。 生物质能源的“美”还在于它是可再生能源领域唯一可以转化为液体燃料的能源。它不仅具有资源再生、技术可靠的特点,而且还具有对环境无害、经济可行、利国利农的发展优势。 生物质能源的“美”还在于它可以有效促进能源农业的发展,能够助推社会主义新农村建设的发展。能源作物的大面积种植可以开发利用闲置的荒漠地、盐碱地,有利于这些质地差的土壤逐渐改良,更有利于农业产业结构调整,还可以培育出致力于可再生能源利用领域的新型农民。不仅如此,它还可以吸纳农村剩余劳动力,增加农民收入,农民的收入来源也变得更加多元化。 生物能源又称绿色能源,是指从生物质得到的能源,它是人类最早利用的能源.古人钻木取火,伐薪烧炭,实际上就是在使用生物能源. “万物生长靠太阳”,生物能源是从太阳能转化而来的,只要太阳不熄灭,生物能源就取之不尽。其转化的过程是通过绿色植物的光合作用将二氧化碳和水合成生物质,生物能的使用过程又生成二氧化碳和水,形成一个物质的循环,理论上二氧化碳的净排放为零。生物能源是一种可再生的清洁能源,开发和使用生物能源,符合可持续的科学发展观和循环经济的理念。因此,利用高新技术手段开发生物能源,已成为当今世界发达国家能源战略的重要内容。 但是通过生物质直接燃烧获得的能量是低效而不经济的.随着工业革命的进程,化石能源的大规模使用,使生物能源逐步被煤和石油天然气为代表的化石能源所替代.但是,工业化的飞速发展,化石能源也被大规模利用,产生了大量的污染物,破坏了自然界的生态平衡,为了进行可持续发展,以及化石能源的弊端日益显现,生物能源的开发和利用又被人们所侧重.张国宝会见美国能源部助理部长卡斯纳先生因此,人类走向以生物能源开发利用为标志的可再生能源时代,意义十分重大:能大量利用农村的土地,提高农民收入.直接增加能源供给,改善大气环境,使二氧化碳的排放与吸收形成良性循环,缓解二氧化碳排放的压力.当前生物能源的主要形式有沼气,生物制氢,生物柴油和燃料乙醇. 沼气是微生物发酵秸秆,禽畜粪便等有机物产生的混合气体,主要成分是可燃的甲烷.生物氢可以通过微生物发酵得到,由于燃烧生成水,因此氢气是最洁净的能源.生物柴油是利用生物酶将植物油或其他油脂分解后得到的液体燃料,作为柴油的替代品更加环保.燃料乙醇是植物发酵时产生的酒精,能以一定比例掺入汽油,使排放的尾气更清洁.虽然现在的主要能源还是化石能源,但是生物能源的前途无量.虽然生物能源的开发利用处于起步阶段,生物能源在整个能源结构中所占的比例还很小,但是其发展潜力不可估量.以我国为例,目前全国农村每年有7亿吨秸秆,可传化为1亿吨的酒精.南方有大量沼泽地,可以种植油料作物,发展生物柴油产业.加上禽畜粪便,森林加工剩余物等.我国现有可供开发用于生物能源的生物质资源至少达到4.5亿吨标准煤,相当于我国2000年全部一次能源消费的40%. 生物能源的开发利用,可带来以可持续发展为目标的循环经济.以巴西以例,垃圾正在变成有价值的能源.根据巴西有关行业协会统计,2004年巴西回收铝易拉罐90亿个,回收率达到96%,居世界第一.其他各类垃圾的回收率也居世界前列,创造了循环经济模式.回收的垃圾,根据分类,被用于不同的方面,其中大部分非金属类的垃圾均可以转化为能源.生物能源作为绿色能源,具有可再生的特点,而化石能源却是不可再生能源,这是生物能源的一大优势.根据估算,地球的石油枯竭期最多可延长到百年,而对于中国这个石油资源相对贫乏的国家来说,石油稳定供给不会超过20年.而生物能源主要利用淀粉质生物如植物,薯类,作物秸秆等加工成其他燃料,从大范围来看具有大量的来源.据专家估计,全球每年产生的生物质能的储量为1800亿吨,是取之不尽,用之不竭的资源.因此,生物能源在将来大有可为,尤其是在石油供应紧张的时候,生物能源将大显身手. 面对如此数量巨大的生物质资源,如何提高生物能源的开发利用水平也是一个科学性的问题.在化石能源仍为主要能源的时代,生物能源的开发技术也异常重要,因为化石能源是不可再生能源.以生物能源和生物化工非粮引导政策文件我国为例,国内大约有20亿亩荒山荒地可用于发展能源农业和能源林业,而且我国的产能微生物研究,生物转化研究,过程与设备研究等已趋成熟,石油替代产品的开发技术也具备进行大规模工业化生产的条件.因此,政府应适应形势发展的需要,制定生物能源的发展政策焉规划,合理利用各种手段来支持和推进生物能源的开发利用.应借鉴国外的成功经验,与我国的实际相结合,极大地推动生物能源的开发利用. 21世纪是生物的世纪,是科学技术飞速发展的新世纪,可持续发展是当前经济发展的趋势所在.面对化石能源的枯竭和环境的污染,生物能源的开发利用为经济的可持续发展带来了曙光.生物能源作为可再生,污染极小的能源,具有无可比拟的优越性,必将为21世纪的经济发展和环境保护注入强大的推动力.

现实的蜻蜓
优雅的鸡翅
2025-07-06 03:01:09
看看这篇文章,你就会选择正确答案了:生物质能的来源 能源是人类活动的物质基础之一,一般新能源主要包含太阳能、核能、海洋能、风能、地热能、水能、生物质能等几种形式,本文主要讲解生物质能的来源。 生物质能就是太阳能以化学能形式贮存在生物质中的能量形式,即以生物质为载体的能量。它直接或间接地来源于绿色植物的光合作用,可转化为常规的固态、液态和气态燃料,取之不尽、用之不竭,是一种可再生能源,同时也是唯一一种可再生的碳源。 生物质能源的来源非常广泛,其中主要分为以下几类: 1、清洁能源生物质能从农作物相关的材料中获得 从小麦、玉米、红薯等粮食作物制取燃料乙醇、生物柴油等生物能源,随着粮食安全问题的日益显著,“与人争粮”的问题直接制约着此种方法的发展,极端的说法甚至认为这是粮食价格上涨的主要原因,直接导致了粮食危机。 2、清洁能源生物质能藻类制取 我国的有机碳组成中,海洋藻类占了1/3,藻类是一种数量巨大的可再生资源,也是生产生物质能源的潜在资源,其中微型藻类的含油量非常高,可以用于制取生物柴油。我国大规模养殖的微藻包括螺旋藻、小球藻、盐藻、栅藻、雨生红球藻等。山东培育出的富油微藻,最高含油比已经达到68%。 3、清洁能源生物质能从废弃物中获得 农作物秸秆,人畜粪便(人、牛、马、猪、鸡、羊)、农作物秸秆、树叶,杂草,菜叶,淀粉废渣、城市有机垃圾、污水处理厂的污泥等原材料可以通过微生物发酵生成生物沼气的形式,这种方法可以减少此种原料对环境的污染,同时解决了能源的问题。 沼气从1776年被意大利物理学家A.沃尔塔在沼泽地发现后,经过三百多年的发展,因其可再生,既可替代秸秆、薪柴等传统生物质能源,也可替代煤炭等商品能源,而且能源效率明显高于秸秆、薪柴、煤炭等特点,在全世界的发展热度长久不衰,特别是在农村地区,农村沼气把能源建设、生态建设、环境建设、农民增收链接起来,促进了生产发展和生活文明,是我国能源战略重要的一个环节。 4、清洁能源生物质能从生物质作物中获得 大批涌现的植物如:棕榈树、千年桐、麻风树、黄连木、光皮树、文冠木、柳枝稷、芦竹和荻等,都可作为能源植物生产纤维素乙醇,目前我国已启动能源植物储备计划,按照国家林业局编制的《全国能源林建设规划》、《林业生物柴油原料林基地“十一五”建设方案》,使林业生物质能源达到从原料培育、加工生产到销售利用的“林油一体化”、“林电一体化”发展模式。 能源植物生命力较强,不占用耕地,可以在荒地、滩地、盐碱地、沙地和裸露土地等边际土地上种植,而且还可起到固沙、改善土壤、绿化荒地的作用,很好的解决了生物质能源“与人争粮”的问题。 5、清洁能源生物质能通过转化二氧化碳生成 利用转基因的微生物在阳光的作用下,将二氧化碳和水转化为乙醇或碳氢化合物燃料。 6、清洁能源生物质能从动物相关物中获得 动物体内含有的大量脂肪可以作为制造能源的原料,迄今,已有人提议将有毒的格陵兰鲨肉作为生物燃料之用将食用动物屠宰后的废料羽毛、内脏、血中所含的脂肪提取出来制作为生物燃料。 参考资料:格润清洁能源网

直率的万宝路
执着的睫毛
2025-07-06 03:01:09
我国生物质能发展方向与对策

--------------------------------------------------------------------------------

生物桥 2005-09-27 11:45:07

生物质能是由植物的光合作用固定于地球上的太阳能,最有可能成为21世纪主要的新能源之一。据估计,植物每年贮存的能量约相当于世界主要燃料消耗的10倍;而作为能源的利用量还不到其总量的l%。这些未加以利用的生物质,为完成自然界的碳循环,其绝大部分由自然腐解将能量和碳素释放,回到自然界中。事实上,生物质能源是人类利用最早、最多、最直接的能源,至今,世界上仍有15亿以上的人口以生物质作为生活能源。生物质燃烧是传统的利用方式,不仅热效率低下,而且劳动强度大,污染严重。通过生物质能转换技术可以高效地利用生物质能源,生产各种清洁燃料,替代煤炭,石油和天然气等燃料,生产电力。而减少对矿物能源的依赖,保护国家能源资源,减轻能源消费给环境造成的污染。专家认为,生物质能源将成为未来持续能源重要部分,到2015年,全球总能耗将有40%来自生物质能源。

1.2能源与环境

人类正面临着发展与环境的双重压力。经济社会的发展以能源为重要动力,经济越发展,能源消耗多,尤其是化石燃料消费的增加,就有两个突出问题摆在我们面前:一是造成环境污染日益严重,二是地球上现存的化石燃料总有一天要掘空。按消费量推算,世界石油资源在今后50年到80年间将最终消耗殆尽。到2059年,也就是世界上第一口油井开钻二百周年之际,世界石油资源大概所剩无几。另一方面,由于过度消费化石燃料,过快、过早地消耗了这些有限的资源,释放大量的多余能量和碳素,打破了自然界的能量和碳平衡,是造成臭氧层破坏,全球气候变暖,酸雨等灾难性后果的直接因素。这就是说,如果不发展出新的能源来取代化石常规能源在能源结构中的主导地位,在21世纪必将发生严重的、灾难性的能源和环境危机,是人类在下一世纪所面临的三大最可能发生的灾难之一。

1.3国家安全

固然,发展生物质能源不是获得新的能源的唯一途径,人类可以采用高技术手段获得核能源,甚至从外太空获得能源,但其中的危害也是有目共睹的。首先,核能源的发展极可能给已经不安的世界带来新的不稳定因素,甚至直接威胁到人类的生存环境;其次,各国或各集团在人类下世纪技术水平下所能到达的有限外太空区域内进行的能源开发,将不可避免地引发新的争夺或争端,其祸福不言自明。而生物质能源则不仅是最安全、最稳定的能源,而且通过一系列转换技术,可以生产出不同品种的能源,如固化和炭化可以生产因体燃料,气化可以生产气体燃料,液化和植物油可以获得液体燃料,如果需要还可以生产电力等等。目前,世界各国,尤其是发达国家,都在致力于开发高效、无污染的生物质能利用技术,保护本国的矿物能源资源,为实现国家经济的可持续发展提供根本保障。

2.国外生物质能技术的发展状况

生物质能源的开发利用早已引起世界各国政府和科学家的关注。有许多国家都制定了相应的开发研究计划,在日本的阳光计划、印度的绿色能源工程、美国的能源农场和巴西的酒精能源计划等发展计划。其它诸如丹麦、荷兰、德国、法国、加拿大、芬兰等国,多年来一直在进行各自的研究与开发,并形成了各具特色的生物质能源研究与开发体系,拥有各自的技术优势。

2.1沼气技术

主要为厌氧法处理禽畜粪便和高浓度有机废水,是发展较早的生物质能利用技术。80年代以前,发展中国家主要发展沼气池技术,以农作物秸秆和禽畜粪便为原料生产沼气作为生活炊事燃料。如印度和中国的家用沼气池;而发达国家则主要发展厌氧技术,处理禽畜粪便和高浓度有机废水。目前,日本、丹麦、荷兰、德国、法国、美国等发达国家均普遍采取厌氧法处理禽畜粪便,而象印度、菲律宾、泰国等发展中国家也建设了大中型沼气工程处理禽畜粪便的应用示范工程。采用新的自循环厌氧技术。荷兰IC公司已使啤酒废水厌氧处理的产气率达到10m3/m3.d的水平,从而大大节省了投资、运行成本和占地面积。美国、英国、意大利等发达国家将沼气技术主要用于处理垃圾,美国纽约斯塔藤垃圾处理站投资2000万美元,采用湿法处理垃圾,日产26万m3沼气,用于发电、回收肥料,效益可观,预计10年可收回全部投资。英国以垃圾为原料实现沼气发电18MW,今后10年内还将投资1.5亿英镑,建造更多的垃圾沼气发电厂。

2.2生物质热裂解气化

早在70年代,一些发达国家,如美国、日本、加拿大、欧共体诸国,就开始了以生物质热裂解气化技术研究与开发,到80年代,美国就有19家公司和研究机构从事生物质热裂解气化技术的研究与开发;加拿大12个大学的实验室在开展生物质热裂解气化技术的研究;此外,菲律宾、马来西亚、印度、印尼等发展明家也先生开展了这方面的研究。芬兰坦佩雷电力公司开始在瑞典建立一座废木材气化发电厂,装机容量为60MW,产热65MW,1996年运行:瑞典能源中心取得世界银行贷款,计划在巴西建一座装机容量为20-3OMW的发电厂,利用生物质气化、联合循环发电等先进技术处理当地丰富的蔗渣资源。

2.3生物质液体燃料

另一项令人关注的技术,因为生物质液体燃料,包括乙醇、植物油等,可以作为清洁燃料直接代替汽油等石油燃料。巴西是乙醇燃料开发应用最有特色的国家,70年代中期,为了摆脱对进口石油的过度依赖,实施了世界上规模最大的乙醇开发计划,到1991年,乙醇产量达到130亿升,在980万辆汽车中,近400万辆为纯乙醇汽车,其余大部分燃用20%的乙醇-汽油混合燃料,也就是说乙醇燃料已占汽车燃料消费量的50%以上。1996年,美国可再生资源实验室已研究开发出利用纤维素废料生产酒精的技术,由美国哈斯科尔工业集团公司建立了一个1MW稻壳发电示范工程:年处理稻壳12,000吨,年发电量800万度,年产酒精2,500吨,具有明显的经济效益。

2.4其它技术

此外,生物质压缩技术可书固体农林废弃物压缩成型,制成可代替煤炭的压块燃料。如美国曾开发了生物质颗粒成型燃料:泰国、菲律宾和马来西亚等第三世界国家发展了棒状成型燃料。

3.我国的生物质能源

我国基本上是一个农业国家农村人口占总人口的70%以上,生物质一直是农村的主要能源之一,在国家能源构成中也占有益要地位。

3.1生物质能资源

我国现有森林、草原和耕地面积41.4亿公顷,理论上生物质资源理可达650亿吨/年以上(在但第平方公里土地面积上,植物经过光合作用而产生的有机碳量,每年约为158吨)。以平均热值为15,000千焦/公斤计算,折合理论资源最为33亿标准煤,相当于我国目前年总能耗的3倍以上.

实际上,目前可以作为能源利用的生物质主要包括秸秆、薪柴、禽畜粪便、生活垃圾和有机废渣废水等。据调查,目前我国秸秆资源量已超过7.2亿吨,约3.6亿吨标准煤,除约1.2亿吨作为饲料、造纸、纺织和建材等用途外其余6亿吨可作为能源用途:薪柴的来源主要为林业采伐、育林修剪和薪炭林,一项调查表明:我国年均薪柴产量约为1.27亿吨,折合标准煤0.74亿吨:禽畜粪便资源量约1.3亿吨标准煤;城市垃圾量生产量约1.2亿吨左右,并以每年8%-10%的速度增,据估算,我国可开发的生物质能资源总量约7亿吨标准煤。

3.2生物质能源和利用

我国生物质的能源利用绝大部分用于农村生活能源,极少部分用于乡镇企业的工业生产:而利用方式长期来一直以直接燃烧为主,只是近年来才开始采用新技术利用生物质能源,但规模较小。普及程度较低,在国家,甚至农村的能源结构中占有极小的比例。

生物质直接燃烧方式不仅热效率低下,而且大量的烟尘和余灰的排放使人们的居住和生活环境日益恶化,严重损害了妇女、儿童的身心健康。此外,还对生态、社会和经济造成极其不利的影响:

1.在必须使用生物质能源而利用方式不合理的情况下,必然对森林等自然资源进行不合理采伐,破坏了自然植被和生态平衡;

2.对于有机垃圾、有机废水、有机废渣、禽畜粪便以及部分农业废弃物等资源没有充分加以利用,不仅造成资源浪费,而且使其成为主要的有机污染源,除造成严重的大气和水污染之外,还排放大量的温室气体,加剧了全球温室效应;

3.同时,随着经济的迅速发展和人民生活水平的提高,能源短缺问题必将成为21世纪阻碍国家经济的持续发展的重大问题,必须予以足够的重视,并采取有效措施着力加以解决。

事实上,大力开发和利用生物质能源,对于缓解21世纪的能源、环境和生态问题具有重要意义,产生诸多利益;

4.减少污染,改善人民生活条件。不管是有机污水处理、城镇垃圾能源的利用还是秸秆热解利用中一个重要的共同点解决环境污染问题,这也是大部分生物质利用的首要目标。

5.解决农村能源供应问题,提高农民生活水平。

我国农村能源供应紧张,而生物质源丰富,所以可利开展利用生物质能,可以改善农村的能量供应。提高他们的生活水平。

6.改善能源结构,减轻对对环境的压力。我国可开发的生物资源达7亿吨,如果能充分开发,可以在我国的能源消费中占重要的地方,这对改善我国能源结构,减少我国对石化燃料的依赖,进而减少我国CO2和SO2等污染物的排放,最终缓解能源消耗给环境造成的压力有重要的意义。

3.3市场需求

可以预计,随着国民经济的发展和人民生活水平的提高,生物质能利用技术和装置的市场前景将会越来越广阔。主要依据:

1.目前,绝大部分农作物秸秆因得不到有效利用而就地焚烧于农田,不仅浪费了大量的能源,而成了严重的环境污染,给社会生活和经济发展造成了一定程度的负面影响。如发生在成都双流机场和首都机场的烟尘事件。逐渐富裕起来的农民,随着生活水平的提高,迫切改变原来直接燃用秸秆薪柴烟薰火燎的炊事取暖局面,以生物质可燃气作为他们的生活能源,就会改善其卫生环境,提高生活质量,减轻劳动强度。

2.众多粮食、木材、茶叶、果类等加工厂,每天都有大量的谷壳、锯末、木屑、果壳等废弃物产出堆放,利用生物质气化技术将其转换成可燃气,生产出优质能源,变废为宝,可谓一举两得。

3.禽畜粪便既是极为有害大环境污染源泉又是重要的生物质能资源,随着大型畜牧场的不断建成和发展,所产生的环境污染也日趋严重。应用厌氧技术处理禽畜粪便更具有能源与环境双重意义。

4.随着我国社会经济的迅速发展,城市人口的增多和居民生活的改善,城市的垃圾处理问题便显得日益突出。我国的以北京为例,1995年,年垃圾产量均已突破400万吨,1996年北京的垃圾量则达485万吨。采用厌氧技术处理有机垃圾,不仅可获得能源,而且达到低费用治理污染的目的。

5.我国的边远地区,生物质资源丰富,多属于缺电、少电地区,可将生物质气化发电,或供热可自产自用。

6.事买上,生物质能源技术之所以具有广阔的市场前景,其优势在于开发利用生物质能源不仅可以获得取之不尽的能源,而且具有保护环境,节省资源的功能。

3.4我国生物质能技术发展现状与问题

我国政府及有关部门对生物质能源利用极为重视,国家几位主要领导人曾多次批示和指示加强农作物秸秆的能源利用。国家科委已连续在三个国家五年计划中将生物质能技术的研究与应用列为重点研究项目,涌现出一大批优秀的科研成果和成功的应用范例,如产用沼气池、禽畜粪便沼气技术、生物质气化发电和集中供气、生物压块燃料等,取得了可观的社会效益和经济效益。同时,我国已形成一支高水平的科研队伍,包括国内有名的科研院所和大专院校:拥有一批热心从事生物质热裂解气化技术研究与开发的著名专家学者。

a.沼气技术是我国发展最早、曾晋遍推厂的生物质能源利用技术。70年代,我国为解决农村能源短缺的问题,曾大力开发和推广户用沼气地技术,全国已建成525万户用沼气池。在最近的连续三个五年计划中,国家都将发展新的沼气技术列为重点科技攻关项目,计划实施了一大批沼气及其利用的研究项目和示范工程。至今,我国已建设了大中型沼气池3万多个,总容积超过137万m3,年产沼气5,500万m3,仅100m3以上规模的沼气工程就达630多处,其中集中供气站583处,用户8.3万户,年均用气量431m3,主要用于处理禽畜粪便和有机废水。这些工程都取得了一定程度的环境效益和社会效益,对发展当地经济和我国厌氧技术起到了积极作用。在“九五”计划中,应用于处理高浓度有机废水和城市垃圾的高效厌氧技术被列为科技攻关重点项目,分别由中科院成都生物研究所和杭州能源环境研究所承担实施,现已取得预期的进展。

我国厌氧技术及工程中存在的主要问题:相关技术研究少、辅助设备配套性差、自动化程度低、非标设备加工粗糙、工程造价高、开放式前后处理的二次污染严重等。

b.我国的生物质气化技术近年有了长足的发展,气化炉的形式从传统上吸式、下吸式到最先进的流化床、快速流化床和双床系统等,在应用上除了传统的供热之外,最主要突破是农村家庭供气和气化发电上。“八五”期间,国家科委安排了“生物质热解气化及热利用技术”的科技攻关专题,取得了相当成果:采用氧气气化工艺,研制成功生物质中热值气化装置;以下吸式流化床工艺,研制成功l00户生物质气化集中供气系统与装置:以下吸式固定床工艺,研制成功食品与经济作物生物质气化烘干系统与装置;以流化床干馏工艺,研制成功1000户生物质气化 集中供气系统与装置。“九五”期间,国家科委安排了“生物质热解气化及相关技术”的科技攻关专题,重点研究开发1MW大型生物质气化发电技术和农村秸秆气化集中供气技术。目前全国已建成农村气化站近200多个,谷壳气化发电100多台套,气化利用技术的影响正在逐渐扩大。

c.“八五”期间,我国开始了利用纤维素废弃物制取乙醇燃料技术的探索与研究,主要研究纤维素废弃物的稀酸水解及其发酵技术,并在“九五”期间进入中间试验阶段。我国已对植物油和生物质裂解油等代用燃料进行了初步研究:如植物油理化特性、酯化改性工艺和柴油机燃烧性能等方面进行了初步试验研究。“九五”期间,开展了野生油料植物分类调查及育种基地的建设。我国的生物质液化也有一定研究,但技术比较落后,主要开展高压液化和热解液化方面的研究。

d.此外,在“八五”期间,我国还重点对生物质压缩成型技术进行了科技攻关,引进国外先进机型,经消化、吸收,研制出各种类型的适合我国国情的生物质压缩成型机,用以生产棒状、块状或颗粒生物质成型燃料。我国的生物质螺旋成型机螺杆使用寿命达500小时以上,属国际先进水平。

虽然我国在生物质能源开发方面取得了巨大成绩,技术水平却与发达国家相比仍存在一定差距,如:

a.新技术开发不力,利用技术单一。我国早期的生物质利用主要集中在沼气利用上,近年逐渐重视热解气化技术的开发应用,也取得了一定突破,但其他技术开展却非常缓慢,包括生产酒精、热解液化、直接燃烧的工业技术和速生林的培育等,都没有突破性的进展。

b.由于资源分散,收集手段落后,我国的生物质能利用工程的规模很小;为降低投资,大多数工程采用简单工艺和简陋设备,设备利用率低,转换效率低下。所以,生物质能项目的投资回报率低,运行成本高,难以形成规模效益,不能发挥其应有的、重大的能源作用。

c.相对科研内容来说,投入过少,使得研究的技术含量低,多为低水平重复研究,最终未能解决一些关键技术,如:厌氧消化产气率低,设备与管理自动化程度较差;气化利用中焦油问题没有彻底解决,给长期应用带来严重问题;沼气发电与气化发电效率较低,相应的二次污染问题没彻底解决。导致许多工程系统常处于维修或故障的状态,从而降低了系统运行强度和效率。

此外,在我国现实的社会经济环境中,还存在一些消极因素制约或阻碍着生物质能利用技术的发展、推广和应用,主要表现为:

a.在现行能源价格条件下,生物质能源产品缺乏市场竟争能力,投资回报率低挫伤了投资者的投资积极性,而销售价格高又挫伤了消费者的积极性。

b.技术标准未规范,市场管理混乱。在秸杆气化供气与沼气工程开发上,由于未有合适的技术标准和严格的技术监督,很多未具备技术力量的单位和个人参与了沼气工程承包和秸杆气化供气设备的生产,引起项目技术不过关,达不到预期目标,甚至带来安全问题,这给今后开展生物质利用工作带来很大的负面影响。

c.目前,有关扶持生物质能源发展的政策尚缺乏可操作性,各级政府应尽快制定出相关政策,如价格补贴和发电上网等特殊优惠政策。

d.民众对于生物质能源缺乏足够认识,应加强有关常识的宣传和普及工作。

e.政府应对生物质能源的战略地位予以足够重视,开发生物质能源是一项系统工程,应视作实现可持续发展的基本建设工程。

4.发展方向与对策

4.1发展方向

我国的生物质能资源丰富,价格便宜,而经济环境和发展水平对生物质技术的发展处于比较有利的阶段。根据这些特点,我国生物质的发展既要学习国外先进经验,又要强调自己的特色,所以,今后的发展方向应朝着以下几方面:

a.进一步充分发挥生物质能作为农村补充能源的作用,为农村提供清洁的能源,改善农村生活环境及提高人民生活条件。这包括沼气利用、秸杆供气和小型气化发电等实用技术。

b.加强生物质工业化应用,提高生物质能利用的比重,提高生物质能在能源领域的地位。这样才能从根本上扩大生物质能的影响,为生物质能今后的大规模应用创造条件,也是今后生物质能能否成为重要的替代能源的关键。

c.研究生物质向高品位能源产品转化的技术,提高生物质能的利用价值。这是重要的技术储备,是未来多途径利用生物质的基础,也是今后提高生物质能作用和地位的关键。

d.同时,利用山地、荒地和沙漠,发展新的生物质能资源,研究、培育、开发速生、高产的植物品种,在目前条件允许的地区发展能源农场、林场,建立生物质能源基地,提供规模化的木质或植物油等能源资源。

4.2对策

根据上面的主要发展方向,今后我国生物质利用技术能否得到迅速发展,主要取决于以下几个方面:

a.在产业化方面:加强生物质利用技术的商品化工作,制定严格的技术标准,加强技术监督和市场管理,规范市场活动,为生物质技术的推广创造良好的市场环境。

b.在工业化生产与规模化应用方面:加强生物质技术与工业生产的联系,在示范应用中解决关键的技术在技术研究方面:既重点解决推广应用中出现的技术难题,在生产实践中提高并考验生物质能技术的可靠性和经济性,为大规模使用生物质创造条件。

c.在技术研究方面:既重点解决推广应用中出现的技术难题,如焦油处理,寒冷地区的沼气技术等,又要同时开展生物质利用新技术的探索,如生物质制油,生物质制氧等先进技术的研究。

d.制定一项生物质能源国家发展计划,引进新技术、新工艺,进行示范、开发和推广,充分而合理地利用生物质能资源。在21世纪,逐步以优质生物质能源产品(固体燃料、液体燃料、可燃气、由、执等形式)取代部分矿物燃料,解决我国能源短缺和环境污染等问题。

4.3优先领域

.秸秆能源利用

.有机垃圾处理及能源化

.工业有机废渣与废水处理及能源化

.生物质液体燃料

4.4重大关键技术

.高效生物质气化发电技术

.有机垃圾IGCC发电技术

.高效厌氧处理及沼气回收技术

.纤维素制取酒精技术

.生物质裂解液化技术

.能源植物培育及利用技术

5.结语

生物质能源在未来世纪将成为可持续能源重要部分。我国幅员辽阔,但化石能源资源有限,生物质资源丰富,发展生物质能源具有重要的战略意义和现实意义。采用高新技术将秸秆、禽畜粪便和有机废水等生物质转化为高品位能源,开发生物质能源将涉及农村发展、能源开发、环境保护、资源保护、国家安全和生态平衡等诸多利益。希望得到社会各界、各级政府、专家学者的广泛关注与支持,为我国的生物质能源事业创造有益的发展环境。

http://www.newenergy.org.cn/energy/ocean/read.asp?id=397

懵懂的中心
大意的斑马
2025-07-06 03:01:09

1、森林资源:根据联合国的统计,全球森林覆盖率约为40亿公顷,占世界陆地面积的30%左右,世界森林资源蓄积推算约为4 300亿m3。虽然森林退化和消失的速度有所减缓,但每天仍有将近200平方公里的森林消失。

2、物种灭绝:曾经生活在地球上的冰岛大海雀、北美旅鸽、南非斑驴、澳洲袋狼、直隶猕猴、高鼻羚羊、台湾云豹、中国犀牛、南极狼等物种已不复存在。白鱀豚、苏门答腊虎、北部白犀牛、.奥里诺科鳄鱼、小嘴狐猴等动物也濒临灭绝。

3、淡水污染:水污染有三个主要来源,生活废水、工业废水和含有农业污染物的地面径流。如1986年莱茵河化学品泄漏事故就造成了莱茵河水的长期污染。据世界银行的报告估计,由于水污染和缺少供水设施,全世界有10亿多人口无法得到安全的饮用水。

扩展资料:

随着对淡水需求量的不断增长,在许多干旱和半干旱地区,淡水成为决定经济发展的重要限制因素,部门之间、地区之间和国家之间争夺淡水资源的情况越来越突出。在水资源比较丰富的地区,不同功能用途之间的矛盾和冲突也越来越显著。

因此,全球跨国的水资源管理是国际环境与资源保护的重要领域。在西亚和北非等一些干旱和半干旱地区,水贵如油,各国在跨国河流和地下蓄水层开发利用上的矛盾往往十分尖锐。有时甚至引发军事上的对峙,成为国际冲突的导火索。

参考资料来源:百度百科-森林资源

参考资料来源:百度百科-物种灭绝

参考资料来源:百度百科-淡水资源