当代高科技术主要有哪六大领域
1、信息技术领域
信息技术是六大高技术的前导。主要指信息的获取、传递、处理等技术。信息技术以电子技术为基础,包括通信技术、自动化技术、微电子技术、光电子技术、光导技术、计算机技术和人工智能技术等。
2、生物技术领域
生物技术是以生命科学为基础,利用生物体和工程原理等生产制品的综合性技术,包括基因工程、细胞工程、酶工程、微生物工程四个领域。生物技术是21世纪技术的核心。它有两个标志性技术,基因工程和蛋白质工程。
3、新材料技术领域
新材料主要是指最近发展或正在发展之中的具有比传统材料更优异性能的一类材料。
新材料技术是高新技术的物质基础,包括对超导材料、高温材料、人工合成材料、陶瓷材料、非晶态材料、单晶材料等的开发和利用。它有两个标志:一个是材料设计或分子设计,即根据需要来设计新材料;另一个是超导技术。
4、新能源技术领域
能源是人类生存和发展的基本保障。现代的新能源技术按照其创新性和是否能够再生或连续使用的性质可划分为新能源技术和可再生能源技术。新能源与可再生能源技术主要包括核能、太阳能、水能、地热能等。
5、空间技术领域
空间技术即新型高科技航天技术,是探索、开发和利用太空以及地球以外的天体的综合性工程技术,包括对大型运载火箭、巨型卫星、宇宙飞船等空间军事技术的研究与开发。空间技术是21世纪技术的外向延伸,其两个标志是航天飞机和永久太空站。它不仅把高技术用于地球上,还把人类整体生存机构引向了外层空间。
6、海洋技术
世界海洋总面积为36亿平方公里,占地球总面积的70%以上,海洋的平均深度为3800米,蕴藏着极为丰富的资源和能量。海洋技术是21世纪技术的内向拓展,其标志技术是深海挖掘和海水淡化。
参考资料来源:百度百科-高新技术
楼主所指的酶应该具体到工业酶吧。。
美国的科技一直走在前列,那就以美国为例,说说工业酶在新能源方面的科技进步。
节能环保是发展动力 2006年,美国工业酶市场规模为3.9亿美元(不包括医药行业)。预计到2013年,这一市场的规模将达到7.5亿美元,其间年均增长率为9.6%。
技术的更新将引领工业酶市场发展。节能降耗是推动美国工业酶市场发展的首要因素。美国总统在2007年的国情咨文演讲中提出,用《替代燃料标准》法案取代原有的《可再生燃料标准》法案。美国政府在新的标准中提出,至2017年,生物乙醇产量应达到全美年度汽油用量的15%,即350亿加仑。生物乙醇产业的发展促进了工业酶研发的巨额投入。诺维信和杰能科都在生物乙醇酶领域投入了更多的研发经费。
进入2007年,美国全国上下动作频频,大力促进纤维素乙醇技术的开发和纤维素乙醇的商业化生产。美国舆论认为,生物技术的应用由此进入了“第三次浪潮”
诺维信公司在基于生物技术的工业酶制剂和微生物制剂领域处于世界领先地位,在这两个领域全球市场份额均占40%,其业务是向以玉米为原料的燃料乙醇生产商提供各种酶制剂。近年来,它与美国能源部及国家可再生能源实验室合作开发以玉米秸秆等农林业剩余物为原料生产燃料乙醇的酶技术。
美国工业酶市场的竞争格局较为明朗,两家主要的生产商诺维信和杰能科占据了大部分的市场份额。
工业酶的产业链构成较为复杂。出于利用中游企业丰富的人力资源和既有分销渠道为客户服务的考虑,诺维信和杰能科等工业酶制造商多将产品出售给配方设计公司或者德固赛、巴斯夫、巴克曼等化工企业,后者再将制成的化学品销售给纺织、皮革、纸浆和造纸等行业的终端客户。工业酶制造商提供工业酶产品,下游的化工企业根据客户需求制造成品,这样的互补模式很好地利用了双方的长处。
作为间接供货方式的补充,部分工业酶制造商也直接向终端用户供货。但这种方式对制造商的整体实力、销售网络和直销经验等提出了更高的要求,只有居于领导地位的公司才可能采取这一方式,诺维信就借助其自身分销网络向皮革、纸浆和造纸行业的客户直接供货。
此外,终端应用行业的领军企业也在向上整合产业链。以洗衣粉行业和医药行业为例,汉高和花王分别在欧洲和亚洲洗衣粉市场占据首把交椅,这两家公司都生产洗衣粉酶供自家产品使用;而医药行业的巨头们对药用酶制造的垄断就更为彻底了。
在主流产业链之外,美国这一市场还存在着数量众多的服务商、独立工业酶制造和微生物培养商以及设备供应商。
市场发展面临挑战
然而,工业酶市场的发展也面临不少的挑战。特别是产品生命周期已处于成熟和衰退阶段的工业酶市场(如洗衣粉、纺织和制革)面临销售下滑的局面。
另一个限制市场壮大的重要因素来自于酶对人体的影响。因为工业酶具有生物活性,过量接触有可能导致人体出现不适反应。市场面临的其他挑战还包括产品质量、技术支持、客户需求、价格竞争力和质量一贯性。
未来价格仍将上涨
由于应用领域不同,每种工业酶的价格趋势有所不同。但总的来看,产品未来的价格都将缓慢上涨。这主要归因于美国市场原料、人工、电力和能源价格的不断提高。
2006年,美国纤维素酶的平均价格是7美元/千克,洗衣粉用酶的平均价格是10.9美元/千克。预计至2013年,纤维素酶价格随着生产成本上升会有上涨,但受制于纺织制造商控制成本的压力,上涨幅度将保持在每年2.0%左右。洗衣粉用酶新品的价格会高于现有产品,产品价格也将以每年2.0%左右的幅度上涨。
本专业学生主要学习微生物学,生物化学,化学工程,发酵工程等方面的基本理论和基本知识,受到生物细胞培养与选育、生物技术与工程等方面的基本训练,具备在生物技术与工程领域从事设计,生产,管理和新技术研究,新产品开发的基本能力。
本专业学生还要学习高等数学,线性代数,无机化学与化学分析,植物组织培养技术,有机化学,生物化学,化工原理,物理化学,化学工程,生化工程,生物分离工程,微生物学。细胞生物学,遗传学,胚胎工程,分子生物学,基因工程,细胞工程,蛋白质工程,微生物工程,生物工程下游技术,发酵工程设备,概率论与数理统计,生物统计学,免疫学,动物生理学,生态学,生物药剂学及药物动力学,生物制药工程,生物分离工程,药物分析,仪器分析等。
读研如选择生命科学类,则向理科研究方向发展,一般会一直从事研究工作,如继续本专业或转向发酵工程,制药工程,食品科学等,硕士毕业后会有很好的就业前景。
读研选择余地大,可以转向很多相关领域,如生物,制药,食品等;保研几率比较大,且各学校,各科研院所交叉保送机会很大。
生物工程是分子遗传学、微生物学、细胞生物学、生物化学、化学工程和能源学等各学科的结合。
生物工程,是20世纪70年代初开始兴起的一门新兴的综合性应用学科。
扩展资料
生物工程包括五大工程,即遗传工程(基因工程)、细胞工程、微生物工程(发酵工程)、酶工程(生化工程)和生物反应器工程。
生物工程的应用领域非常广泛,包括农业、工业、医学、药物学、能源、环保、冶金、化工原料、动植物、净化等。它必将对人类社会的政治、经济、军事和生活等方面产生巨大的影响,为世界面临的资源、环境和人类健康等问题的解决提供美好的前景。
参考资料来源
百度百科-生物工程
学科概况
生物化工(Biological Chemistry)是一门以实验研究为基础、理论和工程应用并重,综合遗传工程、细胞工程、酶工程与工程技术理论,通过工程研究、过程设计、操作的优化与控制,实现生物过程的目标产物。因此它在生物技术中有着重要地位。本学科也是生物技术的一个重要组成部分,将为解决人类所面临的资源、能源、食品、健康和环境等重大问题起到积极的作用。
生物化工学科起始于第二次世界大战时期,以抗生素的深层发酵和大规模生产技术的研究为标志。20世纪60年代末至80年代中期,精基因技术、生物催化与转比技术、动植物细胞培养技术、新型生物反应器和新型生物分离技术等开发和研究的成功,使本学科进入了新的发展时期,学科体系逐步完善。20世纪后期,随着以基因工程为代表的高新技术的迅速崛起,为本学科的进一步发展开辟了新领域。
编辑本段二、培养目标
1.博士学位应具有坚实宽广的生物化工的理论基础、实验知识和广阔的学术视野,对本学科及化学、生物学和化学工程等相关学科的某些领域的现状、发展趋势和研究前沿具有系统深入的了解,能熟练掌握、运用本学科的理论分析方法、实验研究方法以及计算机技术,具有创造性地。独立地从事本学科领域的科学研究的能力。至少掌握一门外国语,能熟练地阅读本专业的外文资料,具有一定的写作能力和进行国际学术交流的能力。能胜任高等院校、科研院所、企业和其它单位的教学、科研或技术管理工作。
2.硕士学位应具有系统的生物化工的理论基础、实验知识。了解本学科及化学、生物学和化学工程等相关学科某些领域的现状和发展趋势。掌握本学科的现代实验技能、研究方法和计算机技术,具备生物化工方面的科学研究能力。较为熟练地掌握一门外国语,能阅读本专业的外文资料。能承担高等院校、科研院所、企业和其它单位的教学、科研和技术管理工作。
编辑本段三、业务范围
1.学科研究范围
生物化工学科的主要研究方向包括生物反应和反应器工程、生物分离工程、生物加工工艺、动植物细胞培养工程、生物过程检测与控制、生物制药工程等。
2.课程设置
(1)博士学位
基础理论课 高等应用数学。 专业课 生物化工前沿,其他相关学科课程。
(2)硕士学位
基础理论课
应用数学,计算机技术,细胞生理与遗传学,高等生物化学,传递现象。
专业课 生物反应及反应器理论,生物分离工程,生化过程技术经济;根据具体研究方向设置的课程。
编辑本段四、主要相关学科
除化学工程与技术一级学科中其它二级学科外,还有以下相关学科:生物学、化学、药学、环境科学与工程、植物保护和农业资源应用、控制科学和工程.以及食品科学、发酵工程学等。
编辑本段五、我国发展生物化工能源前景广阔
生物能源一直是人类赖以生存的重要能源,它是仅次于煤炭、石油和天然气而居于世界能源消费总量第四位的能源,在整个能源系统中占有重要地位。有关专家估计,生物质能极有可能成为未来可持续能源系统的组成部分,到下世纪中叶,采用新技术生产的各种生物质替代燃料将占全球总能耗的40%以上。
当前,能源紧张和环保问题日益成为制约我国经济可持续发展的主要瓶颈,迫切需要建构一个稳定、经济、清洁和安全的能源供应体系。因此,补充替代能源的选择势在必行。
全世界每年通过光合作用生成的生物质能约为50亿吨,其中仅1%用作能源,但它已为全球提供了14%的能源。生物质能利用主要包括生物质能发电和生物燃料。生物质能发电方面,主要是直接燃烧发电和利用先进的小型燃气轮机联合循环发电。生物燃料是指通过生物资源生产的石油替代能源,包括生物乙醇、生物柴油、ETBE(乙基叔丁基醚)、生物气体、生物甲醇与生物二甲醚。
目前,国外的生物质能技术和装置多已实现了规模化产业经营。美国、瑞典和奥地利生物质转化为高品位能源利用方面已具有相当可观的规模,分别占该国一次能源消耗量的4%、16%和10%。
目前,生物质能利用技术主要有直接燃烧、生物化学转化和热化学转化三大类。目前许多农村地区普遍采用炉灶燃烧,而锅炉燃烧热效率较高,热电联产时可达90%以上。生物化学转化主要指以厌氧发酵和生物酶技术为主,将工业有机废液和人畜粪便等非固体生物质分解为沼气;而生物酶技术是把生物质生化转化为乙醇。
生物质能与传统化石能源相比具有可再生性、低污染性、分布广泛性和储量丰富的特点。生物质属可再生资源,通过植物的光合作用可以再生,与风能、太阳能等同属可再生能源,资源丰富,可保证能源的永续利用。生物质的硫含量、氮含量低,燃烧过程中生成的 SOX、NOX较少,因而可有效地减轻温室效应。生物质能储量丰富,根据专家家估算,地球陆地每年生产1000-1250亿吨生物质;海洋年生产500亿吨生物质。生物质能源的年生产量远远超过全世界总能源需求量,相当于目前世界总能耗的10倍。
先贴个概念给你了解下吧:
高新技术企业是指在《国家重点支持的高新技术领域》内,持续进行研究开发与技术成果转化,形成企业核心自主知识产权,并以此为基础开展经营活动,在中国境内(不包括港、澳、台地区)注册一年以上的居民企业。它是知识密集、技术密集的经济实体。
要申请高新企业认定,是要企业按照科技管理部门的要求,具体来准备申请材料,批准后发证书给你,你就能享受税收及其他一些高新相关的优惠政策的。要申请高新认定,首先参考下《高新技术企业认定管理办法》
当代高新技术主要有哪些
(一)信息技术领域
信息技术是六大高技术的前导。主要指信息的获取、传递、处理等技术。信息技术以电子技术为基础,包括通信技术、自动化技术、微电子技术、光电子技术、光导技术、计算机技术和人工智能技术等。
当前信息技术主要表现在:
(1)集成电路。目前世界上1兆位和4兆位的动态随机存储器芯片已得到广泛应用,16兆位的芯片也已产生。此外,光子集成电路和生物集成电路的研制开发也已获得重大
进展。
(2)电子计算机。目前世界上计算机的装机台数超过一亿,超巨型计算机速度已超过100亿次。现在的计算机,类似人的左脑进行逻辑思维方面的工作。而形象思维方面的工作则要通过人的右脑完成。为解决形象思维问题,人们正在研制神经计算机和模糊计算机。神经计算机从微观上以自底到顶的方式接近人脑,而模糊计算机则是从宏观上,以从顶到底的方式接近人脑。
(3)软件技术。信息技术主要由两部分技术组成,即计算机硬件技术和计算机软件技术。知识和信息的收集、存储、整理、创新、传播和应用等环节的运行,将以计算机软件技术的开发与利用为前提。
软件技术是各类计算机应用程序设计或编辑技术的总称。目前软件技术主要有四大类:
①根据计算和自身的结构和功能,为计算机设计成编辑指令性语言程序的软件技术;
②为计算机操作、管理人员或编辑操作、编辑、检索、调试、诊断、维护等程序的软件技术;
③为满足用户的特殊需求而设计或编辑计算机应用、专项程控、系统管理等程序的软件技术;
④为各类用户计划或编辑知识信息资料,网上操作和电子读物程序的软件技术。
(4)通信技术。20世纪70年代以来,相继出现了光纤通信、卫星通信、程控数字交换机和综合业务数字网技术。
(5)激光技术。激光器是20世纪与原子能、半导体、计算机齐名的四项重大发明之一。以激光器为基础的激光技术得到了迅速发展,现在已广泛应用于工农业生产、能源动力、通信及信息处理、医疗卫生、军事、文化艺术以及科学技术研究等各个领域,激光技术是正在走向实用化的高技术。
(二)生物技术领域
生物技术是以生命科学为基础,利用生物体和工程原理等生产制品的综合性技术,包括基因工程、细胞工程、酶工程、微生物工程四个领域。生物技术是21世纪技术的核心。它有两个标志性技术,基因工程和蛋白质工程。
生物技术不仅在农业和医学领域得到广泛的应用,而且对环保、能源技术等都有很强的渗透力。
(三)新材料技术领域
新材料主要是指最近发展或正在发展之中的具有比传统材料更优异性能的一类材料。
新材料技术是高新技术的物质基础,包括对超导材料、高温材料、人工合成材料、陶瓷材料、非晶态材料、单晶材料等的开发和利用。它有两个标志:一个是材料设计或分子设计,即根据需要来设计新材料;另一个是超导技术。
20世纪90年代新材料技术研究的主要方向是:高功能化,超高性能化,复合化和智能化。
(四)新能源技术领域
能源是人类生存和发展的基本保障。现代的新能源技术按照其创新性和是否能够再生或连续使用的性质可划分为新能源技术和可再生能源技术。新能源与可再生能源技术主要包括核能、太阳能、水能、地热能等。
核能技术与太阳能技术是新能源技术的主要标志,通过对核能、太阳能的开发利用,打破了以石油、煤炭为主体的传统能源观念,开创了能源的新时代。
(五)空间技术领域
空间技术即新型高科技航天技术,是探索、开发和利用太空以及地球以外的天体的综合性工程技术,包括对大型运载火箭、巨型卫星、宇宙飞船等空间军事技术的研究与开发。空间技术是21世纪技术的外向延伸,其两个标志是航天飞机和永久太空站。它不仅把......>>
高新技术有哪些行业?
企业的产品(服务)应属于《国家重点支持的高新技术领域》规定的范围。
附:国家重点扶持的高科技领域
1.电子信息技术
2. 生物与新医药技术
3.航空航天技术
4.新材料技术
5.高技术服务业
6. 新能源及节能技术
7. 资源与环境技术
8. 高新技术改造传统产业
天津中企鸿瑞多年的高新技术企业认定经验
八大高新技术概念是什么
一系列新兴的尖端技术的泛称。“高技术”是随着20世纪50年代开始孕育、70年代加速发展的一场新的技术革命的来临而出现的一个术语。虽然不同的国家和不同的学者对高技术一词的理解不完全一致,但大体上都包括以下几方面内容:电子计算机技术和微电子技术光通信和传感技术机器人和人工智能技术生物工程(或称遗传工程,生物技术);航天技术;海洋工程;新能源技术;新材料开发等。
但是一般我们主要指以下八大高新技术领域:
一、电子信息技术
二、生物与新医药技术
三、航空航天技术
四、新材料技术
五、高技术服务业
六、新能源及节能技术
七、资源与环境技术
八、高新技术改造传统产业
什么是高新技术企业???
你好,什么是高新技术企业?
高新技术是由高新技术的概念延伸而来的,近年来在西方发达国家,由于科学技术突飞猛进的发展,形成了以微电子技术与信息技术、空间科学与航空航天技术、光电子科学与光电一体化技术、生命科学与生物医药技术、材料科学与新材料技术、生态科学与环境保护技术以及其他在传统学科和传统技术基础上产生的新工艺新技术等一批知识密集技术密集的高技术产业。目前国际上对于高新技术及其产品的认同主要有以下几个标准:
1、产品的销售额中RGD(研究与开发)支出所占的比重;
2、科学技术人员和研究人员占全部职工人数的比重;
3、产品的主导技术必须是所确定的高技术领域;
4、产品主要技术必须包括领域中处于技术前沿的工艺或技术突破。
高新技术与传统的技术和产业相比有着许多显著特点。主要体现在:它是智力密集型和知识密集型;需要高额投资、且伴随高风险和高收益;高新技术发展快、产品更新周期短且产业一般呈高速增长态势;学科带动性较强、多为交叉学科综合而成;具有高度的战略重要性、是国际军事竞争和经济竞争的焦点。
南京诺勤财务,咨、、询有,限公,司南京首家提供双软和高企税收优惠一站式财务解决方案,和后续 *** 财政补助对接,不但可为申请高新技术企业资质的企业提供专业的服务同时也可以在企业申请完相关资质后为企业直接申请 *** 财政补助,让企业可以轻松拿到相关的 *** 补助,愿我的回答可以帮上你。。
高新技术产业都有哪些?
1.电子与信息技术
2.生物工程和新医药技术
3.新材料及应用技术
4.先进制造技术
5.空间科弗及航空航天技术
6.海洋工程技术
7.核应用技术
8.新能源与高效节能技术
9.环境保护新技术
10.现代农业技术
11.其他在传统产业改造中应用的新工艺、新技术
12. 微电子技术
世界十大高新技术是什么?
未来“十大”热门专业 1 信息产业仍将以高于经济增速两倍左右的速度快速发展,产业前景十分广阔。 未来的发展重点是电子信息产品制造业、软件产业和集成电路等产业;新兴通信业务如数据通信、多媒体、互联网、电话信息服务、手机短信等业务也将迅速扩展;值得关注的。 还有文化科技产业,如网络游戏等。目前,信息技术支持人才需求中排除技术故障、设备和顾客服务、硬件和软件安装以及配置更新和系统操作、监视与维修等四类人才最为短缺。此外,电子商务和互动媒体、数据库开发和软件工程方面的需求量也非常大。 相关专业: 电子信息工程、通信工程、信息对抗技术、信息工程、信息与计算科学等。 2.生物技术类 21世纪是生物的世纪,生物科技经济发展起来是必然趋势。据了解,目前在全国年产值过亿元的生物技术企业已蓬勃发展起来,各地把生物技术作为经济发展的突破口。但生物技术的开发需要具有独立工作能力和良好科学素质,特别是具有创造能力和付诸实现能力的新型人才。生物科研人才近年来一直是国际人才竞争的焦点之一。我国目前无论是生物技术的研究人员,还是生物技术产品开发的人才,都存在严重不足的问题,未来一段时期我国对生物技术人才有极大需求。有关专家预计,随着基因技术、生物工程等领域的发展和产业升级,这类高技术专业人才的缺口会越来越大。 相关专业: 生物技术、生物工程、生物资源科学等。 3.现代医药类 全球现代医药技术产业继续呈高速增长态势,现代生物技术产业已经成为医药产业新的国际竞争焦点。有关专家指出,面对日趋直接而激烈的国际化市场竞争,我国发展现代中药及生物医药技术产业已是势在必行。特别是现代中药产业不仅在世界发展较快,而且在我国也是增长较快的产业之一,目前已成为我国一项具有较强发展优势和广阔市场前景的潜在的战略性产业。科技部已将“创新药物与中药现代化”列为“十五”期间国家12个重大科技专项之一。 相关专业: 药物制剂、制药工程、生物医学工程、中药学等。 4.汽车类 随着汽车逐渐成为我们生活中的必需品,汽车专业也成为了社会上十分走俏的专业。汽车类专业人才成为了炙手可热的“抢手货”,汽车行业中的复合型人才将成为竞争焦点,比如精通外语的汽车设计人才、具备汽车技术背景的营销人才、具备汽车销售背景的IT类专业人才,以及汽车信贷、保险等金融人才年将继续走俏。此外,热能与动力工程、工业设计等相关专业人才需求也将持续看涨。 相关专业: 车辆工程专业、汽车服务工程、热能与动力工程、工业设计等。 5.物流类 加入WTO后,随着我国在公路货运、仓储、海上搬运运输、船舶代理等方面进一步开放市场,我国的相关行业和企业与国外物流企业将开展全面合作,这意味着,我国的现代物流将进入快速增长、全面发展的新时期。专家预计,今后10年乃至更长一段时间,我国物流业将接近或赶上发达国家的物流发展水平。目前,国内需要600多万中高级物流专业人才,物流专业人才已被列为我国12类紧缺人才之一。到2010年我国大专以上物流人才的需求量约为30万至40万,而目前各类大专院校物流专业年培养规模在5000人左右,物流规划咨询、物流外向型国际、物流科研这三种人才在业内最为缺乏。 相关专业: 物流管理、现代物流等。 6.新材料类 新材料的应用范围非常广泛,发展前景十分广阔,其研发水平及产业化规模已成为衡量一个国家经济发展、科技进步和国防实力的重要标志。“十五”计划开始以来,国家产业政策导向明显向以新材料产业为代表的高新技术产业倾斜,这对新材料产业发展无疑将产生重要的推动作用。同时,国内支柱产业及高技术产业发展对新材料的需求不断扩大,机械......>>
高新技术行业包括哪些?
中 国 高 新 技 术 产 品 目 录
编号 技术领域
页码
一、电 子 信 息----------------------------------------- 1
0101 (一)计算机及外部设备
0102 (二)微电子元器件
0103 (三)光电子元器件
0104 (四)广播电视技术产品
0105 (五)通讯设备及产品
0106 (六)专用工艺生产设备及测试仪表
二、软 件--------------------------------------------------- 3
0201 (一)系统软件
0202 (二)支撑软件
0203 (三)应用软件
三、航 空 航 天------------------------------------------- 3
0301 (一)航空器及配套产品
0302 (二)航空地面设备
0303 (三)运功火箭
0304 (四)航 天 器
0305 (五)其他特种火箭、探测火箭及其配套设备
四、光 机 电 一 体 化--------------------------------- 6
0401 (一)自动化机械及设备
0402 (二)高性能、智能化仪器仪表
五、生物、医药和医疗器械----------------------------- 10
0501 (一)生物技术药品
0502 (二)中药
0503 (三)化学药
0504 (四)轻工、食品生物技术及产品
0505 (五)新型医疗器械
六、新材料-------------------------------------------------- 14
0601 (一)金属材料
0602 (二)无机非金属材料
0603 (三)有机高分子材料及制品
0604 (四)复合材料
七、新能源与高效节能----------------------------------- 21
0701 (一)新型能源及装备
0702 (二)高效节能产品
八、环境保护----------------------------------------------- 23
0801 (一)大气污染防治设备
0802 (二)水污染防治设备
0803 (三)固体废弃物处理设备
0804 (四)环境监测仪器
0805 (五)噪声振动电磁辐射和放射性污染防治设备
九、地球、空间与海洋----------------------------------- 24
0901 (一)能源、矿产资源的勘探开发设备
0902 (二)基础及工程测量和地球物理观测设备
0903 (三)空间环境要素监测设备
0904 (四)大型工程基础稳定性勘探及检测设备
0905 (五)海洋监测仪器
十、核应用技术-------------------------------------------- 26
1001 (一)核辐射产品
1002 (二)同位素及应用产品
1003 (三)核 材 料
1004 (四)核物理、核化学实验仪器
1005 (五)核电子产品
1006 (六)核试验反应堆及其配套产品
1007 (七)核能及配套产品
1008 (八)核设施退役和核三废处理、处置技术设备
十一、农 业------------------------------------------------- 26
1101 (一)优良动植物新品种
1102 (二)家......>>
什么是高新技术产业?它包括哪些具体的行业?
高新技术产业以高新技术为基础,从事一种或多种高新技术及其产品的研究、开发、生产和技术服务的企业 *** ,这种产业所拥有的关键技术往往开发难度很大,但一旦开发成功,却具有高于一般的经济效益和社会效益。高新技术产业是知识密集、技术密集的产业。产品的主导技术必须属于所确定的高技术领域,而且必须包括高技术领域中处于技术前沿的工艺或技术突破。根据这一标准,目前高新技术产业主要包括信息技术、生物技术、新材料技术三大领域。
高新技术产业的八大行业是哪些
可申请高新技术企业认证的八大领域:
电子信息,生物与激医药,航空航天,新材料,高技术服务业,新能源节能,资源与环境,高新技术改造传统产业技术
详情可登陆“高新技术企业认定管理工作网”查询
酶工程是指在一定的生物反应器中,利用酶的生物催化作用,生产出人类所需产品的一门科学技术。作为生物技术重要支柱之一的酶工程真可以说是造福人类,成果喜人。
蔗糖几乎全部是通过加工甘蔗或甜莱得到的。但是,甘蔗和甜菜的种植范围都比较有限,因此,蔗糖的产量也就受到了影响。能不能利用淀粉来生产类似蔗糖的物质呢?科学家通过 -淀粉酶、糖化酶和固定化葡萄糖异构化酶,将淀粉转化成和蔗糖具有同样甜度的甜味剂——高果糖浆。现在,一些发达国家高果糖浆的年产量已达到几百万吨,高果糖浆在许多饮料的制造中已经逐渐替代了蔗糖。
胰岛素是胰脏中胰岛细胞分泌的一种激素,是由两条肽链组成的一种蛋白质:一条由21个氨基酸组成,称为A链;另一条由30个氨基酸组成,称为B链。胰岛素是治疗糖尿病的一种常用药物。由于糖尿病患者很多,胰岛素的需要量很大,所以许多糖尿病患者使用的曾是猪的胰岛素。但是,猪胰岛素与人胰岛素在化学结构上有一处差别:猪胰岛素B链上最后一个氨基酸是丙氨酸,人胰岛素B链上最后一个氨基酸是苏氨酸。因此,用猪胰岛素治疗人的糖尿病,容易使一些患者产生免疫反应。近些年来,科学家们采用酶工程的方法,利用一种专一性极高的酶,切下并移去猪胰岛素B链上的那个丙氨酸,然后接上一个苏氨酸。这样猪的胰岛素就魔术般地变成人的胰岛素了。
现在,科学家正在研究如何修饰酶的化学结构,以便改善酶的性能;用DNA重组技术大量地生产酶,甚至设计酶的基因,以便人工合成出自然界中没有的酶来。
酶工程的应用
酶作为一种生物催化剂,已广泛地应用于轻工业的各个生产领域。近几十年来,随着酶工程不断的技术性突破,在工业、农业、医药卫生、能源开发及环境工程等方面的应用越来越广泛。
—、食品加工中的应用
酶在食品工业中最大的用途是淀粉加工,其次是乳品加工、果汁加工、烘烤食品及啤酒发酵。与之有关的各种酶如淀粉酶、葡萄糖异构酶、乳糖酶、凝乳酶、蛋白酶等占酶制剂市场的一半以上。
目前,帮助和促进食物消化的酶成为食品市场发展的主要方向,包括促进蛋白质消化的酶(菠萝蛋白酶、胃蛋白酶、胰蛋白酶等),促进纤维素消化的酶(纤维素酶、聚糖酶等),促进乳糖消化的酶(乳糖酶)和促进脂肪消化的酶(脂肪酶、酯酶)等。
二、轻化工业中的应用
酶工程在轻化工业中的用途主要包括:洗涤剂制造(增强去垢能力)、毛皮工业、明胶制造、胶原纤维制造(粘接剂)牙膏和化妆品的生产、造纸、感光材料生产、废水废物处理和饲料加工等。
三、医药上的应用
重组DNA技术促进了各种有医疗价值的酶的大规模生产。用于临床的各类酶品种逐渐增加。酶除了用作常规治疗外,还可作为医学工程的某些组成部分而发挥医疗作用。如在体外循环装置中,利用酶清除血液废物,防止血栓形成和体内酶控药物释放系统等。另外,酶作为临床体外检测试剂,可以快速、灵敏、准确地测定体内某些代谢产物,也将是酶在医疗上一个重要的应用。
四、能源开发上趵应用
在全世界开发新型能源的大趋势下,利用微生物或酶工程技术从生物体中生产燃料也是人们正在探寻的一条新路。例如,利用植物、农作物、林业产物废物中的纤维素、半纤维素、木质素、淀粉等原料,制造氢、甲烷等气体燃料以及乙醇和甲醇等液体燃料。另外,在石油资源的开发中,利用微生物作为石油勘探、二次采油、石油精炼等手段也是近年来国内外普遍关注的课题。
五、环境工程上的应用
在科学技术高度发展的同时,环境净化尤其是工业废水和生活污水的净化,作为保护自然的一项措施,具有十分重要的意义。
在现有的废水净化方法中,生物净化常常是成本最低而最可行的。微生物的新陈代谢过程,可以利用废水中的某些有机物质作为所需的营养来源。因此利用微生物体中酶的作用,可以将废水中的有机物质转变成可利用的小分子物质,同时达到净化废水的目的。人们利用基因工程技术创造高效菌种,并利用固定化活微生物细胞等方法,在废水处理及环境保护工作中取得了显著的成效。
另外,生物传感器的出现为环境监测的连续化和自动化提供了可能,降低了环境监测的成本,加强了环境监督的力度。
分子酶工程学与分析生物技术
分子酶工程学在分析生物技术领域有广阔的技术发展空间。酶法分析是分析生物技术中的主要内容之一,包括酶试剂盒、酶联免疫(ELISA)、酶标基因探针、酶传感器等等,已经在临床诊断、生物工艺过程分析与监控、环境监测、检疫、生命科学研究等方面逐渐取代传统的化学分析法。
分析用酶之所以被青睐,归功于酶分子高度特异性和高催化效率,使微观生物学反应过程得以放大。然而,天然酶蛋白分子并非完美无缺,它们或太“娇嫩”,热稳定性差,容易受抑制,受蛋白酶水解而失活,或催化性能不理想,固定化回收活力低下等等,导致许多分析用酶还未能实际发挥作用。特别具有很多优点的固定化酶分析法和各类酶传感器,并没有获得广泛应用。
如何能够对酶蛋白实施分子改造,使它们的性能得到改善,是具有挑战性的课题。化学修饰法曾经是主要的手段,但盲目性比较大,效果常常不理想。分子酶工程学是近年发展起来的新的学科领域,其基础是结构生物学和生物信息学,尤其是利用蛋白质超分子结构知识,采用基因工程和蛋白质工程手段,对天然酶实施定向改造和体外分子进化,在开发新型、高质量分析酶试剂方面意义重大。
近期在作者实验室的研究进展,包括:(1)大肠杆菌碱性磷酸酶的定向改造与分子体外进行;(2)固定化酶空间取向控制的“锚链”(anchor―chain)模型;(3)顺序酶反应融合蛋白分子系统的构建;(4)免疫酶光开关;(5)增强电子传递速率的融合酶分子系统等等。这些研究成果不仅在生物传感、蛋白质芯片和酶标等分析生物技术中有重要应用价值,而且为发展其它的分析酶系统提供了一些新的技术思路和模式方法。
分子酶工程学的研究进展得益于蛋白质结构知识的增长。如今,越来越多的酶的三维结构被解析出来,成为重塑蛋白质分子的依据。然而,在现阶段,我们还不具有“设计”蛋白质的能力,这需要更加完备的结构生物学知识。
相对于其它各种功能蛋白质,酶的结构与功能研究还处于幼年期,在分析生物技术中的应用更是较晚,但已经展示出广阔的发展前景。另外两个值得关注的方向是抗体工程和抗体酶或催化抗体,它们在分析生物技术中具有潜在的贡献
工程领域的展望与热点
随着人们对酶生物合成、结构与催化分子机理的深入了解和物理化学技术的长足进展,促进了分子酶学与酶工程学的迅猛崛起,使酶工程已成为生物工程的重要角色。事实上是人类认识酶,改造构建新酶和广泛利用酶的划时代飞跃,科学技术的发展已不存在纯粹的酶工程学概念,此学科在研究内容、手段和目的上与基因工程、蛋白质工程、细胞工程、发酵工程等孪生学科是相互交融的整体生物工程部分,对21世纪酶工程发展的正确导向,进行哲理性的正确科学分析和判断,探讨此领域的研究方向和策划是很有必要的。
一、微生物酶源是酶工程研究的主源流生物多样性与人类生存密切相关已为人们所共识,由于微生物的多样性、传代生长速度快、培养可控性、生产成本低、易进行基因突变、克隆重组及高效表达等优点,使人类能很快获得优良的基因工程菌,微生物酶源无疑将会发挥更大的作用和潜力,对动、植物中特殊用途酶转入微生物和地球各大物种间基因的有效相互转化、改良物种性能、整合小基因及基因异源性等问题是有待开发、探讨的课题。
二、以基因工程和蛋白质工程改造和设计酶是革命性导向
酶结构与功能关系的研究仍然是酶工程研究的基础和依托核心:改造或设计新酶的成败基础在于对天然酶静态、动态结构与催化机理关系的精确认识,也有赖于对基因模版分子结构与蛋白质合成机制的大量情报,但这两个问题并未深化,使酶的设计仍存在很大的盲目性、片面性和偶然性,只有对天然酶的功能基因组,酶催化的超分子和构象变化的关系,结构与立体专一性、稳定性、变态性的关系以及多酶体系的定位及高效催化机制有彻底的认识,才能自觉改造和设计出新酶。
基因工程与蛋白质工程构建酶是十分诱人的领域:在30亿年生物进化中,只发现了1055种功能蛋白和酶,经计算300个氨基酸可组成不同序列的蛋白质有约10390种,因而在自然界,绝大多数新蛋白或酶仍未产生,有待人类去进行人工定向进化,创造开发新酶类,其中对大量天然蛋白质的DNA测序,建立大量蛋白质功能基因库,为杂交提供重要信息,通过计算机模拟,从头设计及合成全新的非天然有用酶已成为可能。此外,利用天然酶的多样性,通过靶子基因的定点突变噬菌体展示技术,结合化学修饰技术,赋予酶的新结构,新特性,改进酶的催化功能,可使酶制剂工业进入一个崭新的时代。
三、酶工程热点———酶法转化、折分合成手性药物及精细化合物
酶法合成引入到有机合成领域中带来了新的机遇和革命,酶法合成的专一性及选择性较化工合成有明显的优势,利用微生物和酶区域、位点、立体的选择性,如羟化、环氧化、异构化、水解、对映体折分,药物中间体合成,其中一些反应是化学法难以实现的。进行酶催化的定向调控,可使生物转化合成效率成倍增加,可改变反应平衡方向。酶法合成生物功能分子,非天然有用物质和功能性高分子材料,应用于化工材料生产,电子工业已成为可能。酶在有机合成中扮演的重要角色是不对称合成或折分醇、醛、酮、酸、胺、酰胺、氨基酸、抗生素、糖苷酶抑制剂及抗病毒药物等手性药物。如:农药、药物、香料、杀虫剂、除虫剂、昆虫激素、信息素等。只有特定的手性才具有生物活性,直接关系到药理作用,毒副作用,药效时间及疗效等,在有机材料中,如液晶,“靶”性化合物,半导体及导电性功能高分子材料,手性组分决定其物理性能。
水解酶类、氧化还原酶类、裂解酶类、连接合成酶类、异构酶类及转移酶类均可用于有机合成及手性化合物合成。如脂肪酶可广泛用于合成各种氨基酸、羧酸、手性醇等。利用酶在非水相中酯化或转酯化可折分得到光学纯的外消旋羧酸及醇手性药物中间体。蛋白酶用于不可逆的大肽链合成。糖基化转移酶可合成有医用价值的糖基化蛋白质。大多数醇脱氢酶及羟类固醇脱氢酶催化羟—酮的氧化还原制备药物、信息素、甾类、三羧酸铬复合物及合成纤维等。酵母醇脱氢酶主要催化脂肪醇或醛酮氧化还原,马肝醇脱氢酶对肪肪环烷醇或醛酮专一氧化还原,而甾醇脱氢酶主要催化稠环脂肪醇或醛酮的氧化还原,氧酶合成链烯化合物,环化酶合成甾体和萜烯类化合物。
在酶合成具有特色的功能性高分子材料方面,如过氧化物酶催化酚及芳香胺类的聚合反应,这类分子材料刚性增强且有明显导电性,与金属离子络合性,场致发光性及制备为纳米材料。酪氨酸酶聚合多巴胺合成有导电性能的聚吡咯薄膜材料用于生物传感器。脂肪酶和碱性蛋白酶在非水介质中催化羟基羧酸酯自身缩合得到高分子聚酯或聚糖醇。大环内酯常用于合成抗生素中间体,香料添加剂,昆虫性外激素及植物生长调节因子及液晶类化合物中间体,聚酯可被生物降解,用于控制药物释放,包装材料,消除白色污染。
酶法聚合物在结构、性质和功能上与化学法相比较存在明显差异,具有化学法无法聚合一些物质的优势。手性生物合成仍处于探索阶段,改进酶催化的选择性及优化合成工艺路线,相信在近期会取得重大进展。
四、构建新酶———抗体酶、核酶及人工合成酶是一个前沿生长点
构建有别于天然功能酶的新酶类,是酶工程研究的又一前沿领地。
催化抗体(Catalyticantibody)并称抗体酶(Abzyme)是人们赋予其催化功能的免疫球蛋白,抗体是目前最大的多样性家族,与抗原有结合部位与酶相似,但无催化活性。酶促催化在于与底物结合产生过渡态,降低能障。人们设想以过渡态类似物作为半抗原用诱导法、拷贝法、插入法、化学修饰法和基因工程法,制备有催化功能的抗体酶,在哺乳动物中已制备了五十多种抗体酶,以及催化羧酸酯水解的分枝酸变位酶,有胆碱酯酶及过氧化物酶活性的抗体酶,抗体酶的研究可为酶作用机理及过渡态理论提供依据,可以用来设计出专一性强的多肽水解酶去破坏病毒蛋白或清除血管凝血块的抗体酶或用于吸毒、癌症药物治疗减轻化疗副作用,以及制药工业的对映体折分,但大多数抗体酶催化效率与天然酶仍相差很远,急需建立抗体基因文库,用基因克隆突变技术,催化辅因子引入技术,正确选择过渡态类似物,探讨酶结构与功能的分子关系,才能真正获得有特殊用途的抗体酶。
分子剪接——核酶(Ribozyme)近年来发现RNA也是一种多功能催化剂,称为核酶,可催化四种类型的RNA自我切割及断裂反应,RNA还具有催化自身复制功能,这发现打破了只有蛋白质才有催化功能的概念,也提供了先有核酸,后有蛋白质的自然进化证据,是生命进化过程中有信使及催化自身复制功能的最简单、经济的RNA原始世界。
我们可设计各种用途的核酶,治疗植物及人畜病毒病、遗传病或癌症。最终目标是构建出一套核酶能在细胞质中高效表达的系统。
人工合成酶(Synzyme)是合成具有催化功能的高聚物分子,目前使用分子印迹和生物印迹技术制备人工酶,原理与抗体酶过渡态理论大致相同,已经初步制备了具有蛋白酶功能,氧化还原酶催化功能的人工酶,人工酶亦可用于手性药物及化合物的分离纯化及生物传感器的分子识别,目前人工酶的催化转换数仍很低,需要多学科配合,对酶催化分子机理的深入了解,才会有可能在特殊反应中优于天然酶。
酶学与酶工程的研究领域还有固定化生物催化剂及酶反应器的工业应用,以及作为生物功能信息分子参与生命过程调控的糖药物酶促合成的糖工程等,相信在电子信息技术,高物理、化学技术、生物高技术密切合作的时代,酶工程必然会走向深化境界,无论在理论上或在应用上将有更大的创新性成就。
01.信息技术:指研制计算机硬件、软件、外部设备、通信网络设备的活动,以及利用计算机硬件、软件及数字传递网对信息进行文字、图形、特征识别、信息采集、信息处理和传递的活动。
02.生物技术:包括基因工程、细胞工程、酶工程和发酵工程,指为了生物技术本身的发展,就有关原理、技术、特种工艺、测试、仪器而进行的活动,以及利用生物技术为农、林、牧、渔、医药卫生、化学、食品、轻工等部门提供生物技术新产品而开展的活动。无特定目标或虽有特定目标但不是为促进生物技术发展而开展的有关生命科学的研究不包括在此分类内。
03.新材料:指新近发展或正在研制的具有优异性能或特定功能的材料,如新型无机非金属材料、新型有机合成材料、新型金属和合金材料。包括为发展新材料就有关原理、技术、新产品、特种工艺、测试而进行的活动。
04.能源技术:包括能源问题一般理论,地区性能源综合开发与利用,石油、天然气、煤炭、可再生能源的开发与利用,新能源(太阳能、生物能、核能、海洋能等)的研制开发与利用,节能新技术、能源转换和储存新技术等活动。
05.激光技术:激光器和激光调制技术的研制,及为了激光在工业、农业、医学、国防等领域内的应用而进行的活动。
06.自动化技术:指在控制系统、自动化技术应用、自动化元件、仪表与装置、人工智能自动化、机器人等领域中的活动。
07.航天技术:有关运载火箭及人造卫星本体的研究及有关为了跟踪、通讯而使用的地面设备的研究而进行的活动。不包括天文学及气象观察。
08.海洋技术:包括有关维护海洋权益和公益服务技术研究、海洋生物资源的开发利用及产业化、海洋油气勘探开发技术、海洋环境要素监测技术等活动。
09.其它技术领域:属于技术领域,但不能归入上述八类领域的其它技术活动。
扩展资料:
社会上习惯于把科学和技术连在一起,统称为科学技术简称科技。实际二者既有密切联系,又有重要区别。科学解决理论问题,技术解决实际问题。科学要解决的问题,是发现自然界中确凿的事实与现象之间的关系,并建立理论把事实与现象联系起来;技术的任务则是把科学的成果应用到实际问题中去。
科学主要是和未知的领域打交道,其进展,尤其是重大的突破,是难以预料的;技术是在相对成熟的领域内工作,可以做比较准确的规划。
本质
科技的本质:发现或发明事物之间的联系,各种物质通过这种联系组成特定的系统来实现特定的功能。
实现功能的方式
尽量安全,尽量容易实现,尽量低消耗且高产出,尽量高效,尽量稳定,尽量可监测,尽量可调控。
事物的联系
事物的联系分为系统联系和事件联系,系统联系分为上下级别的联系(归属关系)和同级别的联系,事件联系分为原因与结果、前提条件与触发条件、目的。
物质是事件的基础,事件是物质的变化。物质是系统的结构,事件是系统的变化。
1.系统的上下级别和同级别:
例如,原子核包含质子和中子,原子核是上级别,质子和中子是下级别,上级别包含下级别,而质子和中子之间是同级别。
例如:消化系统和胃之间是上下级事物的联系,而胃和小肠则是同级事物之间的联系。
2.同级别的联系:
(1)同级别的事物的联系按作用分为:累加、互补、开启或增强、关闭或减弱。
累加:起相同作用的物质,产生的作用累加在一起。
例如:相同的小灯泡组成一个强光的手电筒。
互补:例如,起不同作用的物质,相互补充、相互依存,共同实现功能。
例如:一条流水线上,不同加工步骤所需的工人。
累加和互补的区别:有些情况下,累加是同种物质的共同作用,只有一个也能产生作用,但是效果低,而互补是相互补充、相互依存的不同物质共同产生作用,只有一个可能无法产生作用。
调控:
开启或增强:例如,一种物质启动或增强另一种物质的功能。
关闭或减弱:例如,一种物质关闭或减弱另一种物质的功能。
例如:风扇的三个叶片之间的作用是累加,叶片和电机之间的作用是互补,风扇开关可以开启风扇、关闭风扇、增强转速、减弱转速。
(2)同级别的事物的联系按结构分为:顺序(线状)、并列(平行)、循环(环状)、树状、星状、网状。
顺序:例如,先经过A,后经过B。
并列:例如,同时经过A和B。
循环:例如,由A到B,又由B到A,依次循环。
树状:例如,A到B和C,B到D和E。而C到F和G。
星状:例如,A为中心,A发出到B、C、D。(星状好比星射线,星状是特殊的树状)
网状:例如,A到B、C、D,B到A、C、D。
3.层次对应:
例如,X分为A、B、C,Y分为D、E、F,那么X和Y的关系具体就是A、B、C和D、E、F之间的关系。
4.系统的基本特征:
整体性特征:系统作为一个整体具有超越于系统内个体之上的整体性特征。
个体性特征:系统内的个体是构成系统的元素,没有个体就没有系统。
关联性特征:系统内的个体是相互关联的。
结构性特征:系统内相互关联的个体是按一定的结构框架存在的。
层次性特征:系统与系统内的个体之关联信息的传递路径是分层次的。
模块性特征:系统母体内部是可以分成若干子块的。
独立性特征:系统作为一个整体是相对独立的。
开放性特征:系统作为一个整体又会与其它系统相互关联相互影响。
发展性特征:系统是随时可能演变的。
5.事件联系:
因果是发生变化的本质原理,前提条件是发生变化需要具备的条件,但是具备前提条件不一定就会发生变化,还需要触发条件。
例如事件:火把纸烧成灰,原因结果关系:因为氧化燃烧反应,所以纸变成灰,前提条件:纸、火、空气,触发条件:火点燃纸。原因是变化的本质原理,如果把原因说成表面现象“因为火点燃纸,所以纸烧成灰。”那么原因就和触发条件一样了,为了区分原因和触发条件,把原因说成本质原理,而把触发条件说成表面现象。
例如事件:要合成特定的生物分子,正负基团之间的相互吸引是化学反应发生的原因,适当的温度和pH值以及所需的酶是化学反应发生的前提条件,把各种反应物放在一起是化学反应发生的触发条件,合成特定的生物分子是化学反应的目的。
6.因果关系
简单是说,因果关系的逻辑就是:因为A,所以B,或者说如果出现现象A,必然就会出现现象B(充分关系)。这是一种引起和被引起的关系,而且是原因A在前,结果B在后。
(1)一切先后关系不一定就是因果关系,例如:起床先穿衣服,然后穿裤子,或者说先涮牙后洗脸,这都不是因果关系。
(2)并不是一切必然联系都是引起和被引起的关系,只有有了引起和被引起关系的必然联系,才是属于因果联系。
因果对应关系:
(1)一因一果:既一个原因产生一个结果。
(2)多因一果:既多个原因一起产生一个结果。
(3)一因多果:既一个原因产生多个结果。
(4)多因多果:既多个原因一起产生多个结果。
推理分为正向推理和逆向推理,正向推理是由原因推理结果,而逆向推理是由结果推理原因,在推理时,不仅要考虑原因和结果,还要考虑前提条件和触发条件,有时还要考虑目的。
参考资料:百度百科-科学技术
项目介绍:
由于酶作用的特异性强、反应条件温和、安全性大、污染环境小,因此随着人们对健康、环保要求的增高,微生物生产的酶制剂将更需发展,酶制剂工业大有可为。其主要使用领域约:食品占45%、洗涤剂34%、纺织10%、造纸3%、诊断药用等6%。本种酶制剂生产技术使用筛选所得枯草芽孢杆菌,利用淀粉质原料发酵生产淀粉酶、蛋白酶和半纤维素酶,菌种性能稳定,发酵活力高。发酵液通过不同路径的后提取工艺可得到不同使用级别的酶制剂产品。可提供菌种及工厂设计和工艺技术。
项目类别:新工艺
技术成熟程度:已产业化
知识产权状况:属实用新型专利
服务方式:合作开发、技术转让、合作办厂、技术服务、交钥匙工程、其它
投入产出效益分析:投资费用可根据生产规模定。
生 产 技 术
酶制剂是由微生物产生的生物产品,其生产过程是大规模生产技术应用过程,由三大工序组成:发酵、提取、造粒。
发 酵
微生物经过DNA技术的重组,变成高效的特定酶制剂的生产菌,生产菌在丹麦批量生产并冷藏,使用前,首先要经过实验室的扩大培养,然后接入发酵车间内的种子罐进行再次扩大培养,最后扩大培养后的生产菌进入发酵罐开始酶制剂的人工化生产。生产菌在大型的不锈钢发酵罐内得到充分的养分和空气,在最适合的环境中迅速成长,同时产出大量的生物酶。整个发酵过程都是由计算机自动控制完成的,发酵所用的原料主要是农产品,发酵的整个过程完全符合GMP的要求。
提 取
提取过程的主要任务是从发酵液中提取酶。这是由许多过滤和浓缩步骤完成的。首先发酵液经初步过滤后,变成澄清的含有酶的滤液,此时的滤液经进一步过滤,去除大量的水份和小分子物质后变成酶的浓缩液。如果需要,酶的浓缩液可被进一步浓缩。对于以液体出售的酶产品,提取的最后步骤是标准化和稳定化。整个提取的生产过程完全符合GMP的要求。
造 粒
固体酶(颗粒酶)广泛应用于洗涤行业和纺织行业中。目前诺维信中国采用了全自动控制的先进特体流化床工艺来生产固体颗粒产品。在流化床中,来自提取工艺的浓缩液被以雾状形式喷到载体表面,并得到热空气的干燥。酶层以外,另有两层包膜被以同样的工艺过程包裹在含酶颗粒的外层,从而最终得到了自由流动,无粉尘,使用安全方便的固体颗粒产品。
众所周知,21世纪最具发展潜力的两大产业是信息技术(IT)和生物技术。信息技术发展迅猛,并已渗透到社会生活的各个角落。有关信息技术的报道——多媒体、互联网、信息全球化等,不但频频亮相于媒体,而且与我们的日常生活息息相关。而与IT的轰轰烈烈相比,生物技术看起来却平平淡淡,虽然基因、克隆、人类基因组计划、生物多样性等字眼经常见诸报端,但离我们的生活似乎还很遥远。所以,也有专家这样评论:20世纪不是生物技术的世纪,而是生物工程蓄势待发的世纪,21世纪才是生物工程的世纪。克隆羊多利的诞生,人类基因组90%测序工作的完成,欧美、日本等发达国家对生物技术产业投资的逐年加大,世界各大公司生命科学产业的合并浪潮一浪高过一浪,所有这一切,都使我们相信,21世纪的的确确是生物技术的时代。
生物化学工程(又叫生化工程或生物化工)是化学工程与生物技术相结合的产物。生物化工是生物技术的重要分支。与传统化学工业相比,生物化工有某些突出特点:①主要以可再生资源作原料;②反应条件温和,多为常温、常压、能耗低、选择性好、效率高的生产过程;③环境污染较少;④投资较小;⑤能生产目前不能生产的或用化学法生产较困难的性能优异的产品。由于这些特点,生物化工已成为化工领域重点发展的行业。
1.世界生物化工行业的现状
生物化工发展至今已经历了半个多世纪,最早主要是生产抗生素;随后,是为氨基酸发酵、舀体激素的生物转化、维生素的生物法生产、单细胞蛋白生产及淀粉糖生产等工业化服务。自20世纪80年代起,随着现代生物技术的兴起,生物化工又利用重组微生物、动植物细胞大规模培养等手段生产药用多肽、蛋白、疫苗、干扰素等。而且,生物化工的应用已涉及到人民生活的方方面面,包括农业生产、化轻原料生产、医药卫生、食品、环境保护、资源和能源的开发等各领域。随着生物化工上游技术——生物工程技术的进步以及化学工程、信息技术(IT)和生物信息学(bioinformatics)等学科技术的发展,生物化工将迎来又一个崭新的发展时期。
生物化工行业经过50多年的发展,已形成了一个完整的工业体系,整个行业也出现了一些新的发展态势。下面简要描述生物化工行业的现状。
1.1工业结构
由于生物化工涉及面广,涉及的行业多,所以从事生物化工的企业较多。据报道,90年代中期,美国生物化工企业有:000多家,西欧有580多家,日本有300多家。近年来,虽然由于行业竞争日趋激烈,生物化工企业有较大幅度减少,但与生命科学(主要指医药和农业生化技术)诸侯割据的局面相比,生物化工行业依然是百花齐放,百家争鸣。既有象诺华、捷利康等从事生命科学的世界性大公司,也有象DSM、诺和诺德等大型的精细化工公司,当然也有在某一方面有专长的小公司如Altus等。而且,由于世界大公司正把注意力向生命科学部分转移,生物化工行业百花齐放的局面在很长一段时间内不会有什么改变。
1.2产品结构
传统的生物化工行业主要是指抗生素(如青霉素等)、食品(如酒精、味精等)等行业,而在目前,它已几乎渗透到人民生活的各方面如医药、保健、农业、环境、能源、材料等。同时,生物化工产品也得到了极大的拓展:医药方面有各种新型抗生素、干扰素、胰岛素、生长激素、各种生长因子、疫苗等;氨基酸和多肽方面有赖氨酸、天冬氨酸、丙氨酸、苏氨酸、脯氨酸等以及各种多肽;酶制剂有160多种,主要有糖化酶、淀粉酶、蛋白酶、脂肪酶、纤维素酶、青霉素酶、过氧化氢酶等;生物农药有Bt、春日霉素、多氧霉素、井岗霉素等;有机酸有柠檬酸、乳酸、苹果酸、衣康酸、延胡索酸、已二酸、脂肪酸、卜酮戊二酸、l亚麻酸、透明质酸等。还有微生物法1,3.丙二醇、丙烯酞胺等。
目前,全球生物化工年销售额在400亿美元左右,每年约以7%~8%的速率增长。从产品结构来看,生物化工领域生产规模范围极广,市场年需求量仅为千克级的干扰素、促红细胞生长素等昂贵产品(价格可达数万美元/g)与年需求量逾万吨的抗生素、酶、食品与饲料添加剂、日用与农业生化制品等低价位产品(部分价格不到:美元/g)几乎平分秋色。高价位的产品市场份额在50%~60%,低价位的产品市场份额在40%~50%。而且,根据近年来生物化工的发展趋势及人们对医药卫生的重视来看,高价位产品的发展速率高于低价位产品。
1.3技术水平
生物化工经过80年代以后的蓬勃发展,不仅整个行业技术水平有大幅度提高,而且许多新技术也得到广泛应用。
1.3.1发酵工程技术已见成效
据估计,全球发酵产品的市场有120~130亿美元,其中抗生素占46%,氨基酸占16.3%,有机酸占13.2%,酶占10%,其它占14.5%。发酵产品市场的增大与发酵技术的进步分不开。现代生物技术的进展推动了发酵工业的发展,发酵工业的收率和纯度都比过去有了极大的提高。目前世界最大的串联发酵装置已达75m\许多公司对发酵工艺进行了调整,从而降低了生产成本。如ADM(ArcherDanie1sMid1and)和Cargill公司在20世纪90年代初对其发酵装置进行改造,将以碳水化合物为原料的生产工艺改为以玉米粉为原料,从而降低了生产成本,ADM公司生产的赖氨酸成本比原先降低了一半。
1.3.2酶工程技术有了长足的进步
酶工程技术包括酶源开发、酶制剂生产、酶分离提纯和固定化技术、酶反应器与酶的应用。目前世界酶制剂从酶源开发到酶的应用都已进入了良性发展阶段,各阶段生产企业和用户关系密切,合作广泛。据报道,1998年全球工业酶制剂的销售额为13亿美元,预计到2010年将增长到30亿美元,每年以6.5%的速率增长。其中食用酶占40%,洗涤用酶占33%,其它(主要是纺织、造纸和饲料等用酶)占27%。
1.3.3分离与纯化技术也有很大进步
影响生化产品价格的因素,首当其冲的是分离与纯化过程,其费用通常占生产成本的50%~70%,有的甚至高达90%。分离步骤多、耗时长,往往成为制约生产的“瓶颈”。寻求经济适用的分离纯化技术,已成为生物化工领域的热点。已大规模应用的分离纯化技术有:双水相革取、新型电泳分离、大规模制备色谱、膜分离等。
1.3.4上游技术广泛应用于下游生产
利用基因工程技术,不但成倍地提高了酶的活力,而且还可以将生物酶基因克隆到微生物中,构建基因菌产生酶。利用基因工程,使多种淀粉酶、蛋白酶、纤维素酶、氨基酸合成途径的关键酶得到改造、克隆,使酶的催化活性、稳定性得到提高,氨基酸合成的代谢流得以拓宽,产量提高。随着基因重组技术的发展,被称为第二代基因工程的蛋白质工程发展迅速,显示出巨大潜力和光辉前景。利用蛋白质工程,将可以生产具有特定氨基酸顺序、高级结构、理化性质和生理功能的新型蛋白质,可以定向改造酶的性能,从而生产出新型生化产品。
1.3.5新技术在生物化工中也得到了极大的应用
比如,在超临界液体状态下进行酶反应,从而大大降低酶反应过程的传质阻力,提高酶反应速率。超临界C02无毒、不可燃、化学情性、易与反应底物分离。利用超临界CO2取代有机溶剂进行酶反应,具有极大的发展潜力。又比如,微胶羹技术已被广泛用于动物细胞的大规模培养、细胞和酶的固定化以及蛋白质等物质的分离方面。
2.世界生物化工行业的发展趋势
2.1工业结构
行业与行业间的划分将日趋模糊,企业间的合作将加大。目前,许多从事医药、农业、环境、能源等方面生产的企业,正在从事生物化工生产。特别是某些从事传统化工行业的生产厂家,也纷纷涉足生物化工领域。如杜邦公司,长期以来主要从事有机化工和聚合材料的生产,现在正加大生物化工的开发力度,已开发成功了生物法生产1,3-丙二醇工艺,并正在开发用改性大肠杆菌生产己二酸工艺。DSM公司以前主要从事抗菌素方面的生产,现也加大了生物化工的投资力度。
由于生物化工涉及面广,许多生化公司都有自己的专长,它们之间为了商业利益的合作也非常活跃。此外,随着从事传统行业的生产厂家的加入,由于技术与生产方面的原因,它们与从事生物化工开发与生产的企业合作也很频繁。所有这一切,都使生物化工行业的合作越来越广泛。如杜邦公司与杰宁科乐公司合作开发用生物法生产1,)丙二醇,进一步生产PTT树脂。荷兰的Purac公司与美国Cagill公司合资建设年产3.4万tL。乳酸装置,并计划进一步发展到6.8万V入DSM公司与美国Maxygen公司签定了三年的研究合同,以利用Maxygen的
DNA重排和分子培养技术,开发在7一ADCA和其它青霉素生产中使用的酶和菌种。
2.2产品结构
生物化工产品正向专业化、高科技含量、高附加值方向发展。传统的低价位产品受到冷落,而高价位产品如生化药物、保健品、生化催化剂等则备受青睐。许多公司为了追求较高利润,都将低附加值的产品剥离。如日本武田药品工业公司不再生产味精,转而生产其它高附加值的调味品如肌甘酸二钠(IMP)和鸟甘酸二钠(GwtP)。另外,生物化工将涉足它以前很少涉足的领域如高分子材料和表面活性剂等。
生化药物由于附加值高而成为今后生物化工领域发展的重点。1997年生化药物市场销售额达130亿美元,其中细胞分裂素80亿美元,激素30亿美元,其它20亿美元;就具体药物而论,促红细胞生长素35亿美元,人胰岛素18亿美元,粒性白细胞克隆刺激因子16亿美元,人生长激素15亿美元,小干扰素11亿美元。预计今后其市场销售额还将以8%的速率增长。
在氨基酸方面,虽然用于药物合成氨基酸的量相对较小,但其发展潜力很大。据报道,500种主要药物中,有18%含有氨基酸或其衍生物的合成。在药物合成中,使用最广泛的是L。脯氨酸、r苯甘氨酸和r对羟基苯甘氨酸。L。脯氨酸用于血管紧张素转化酶(ACE)的合成,匹苯甘氨酸和r对羟基苯甘氨酸用于抗生素的合成。另外,多肽也是今后的发展重点之一。多肽是指有2以上氨基酸用肽键组成的化合物,在临床上使用非常广泛,主要用于治疗癌症、HIV病毒和兔疫系统功能减退、对传统抗生素产生抗体的感染以及疫苗等。全球合成多肽原药的产量在100kg左右,但销售额达2.5亿~3亿美元,而做成制剂的销售额则达25亿~30亿美元。多肽原药需求量的年增长率在10%以上。
碳水化合物方面,用于临床的碳水化合物受到人们越来越多的关注。但是,用于临床的碳水化合物结构复杂,如一对单糖,其不同的化学键就多达22种。因此,用化学法合成复杂的碳水化合物比较困难,难以实现工业化,而用酶法合成则是一条切实可行的途径。
作为生化催化剂的酶,也将是今后发展的重点。1997年,生化用催化剂销售额约1.3亿美元,在过去的3~5年间,每年增长速率在8%~9%,预计在未来的3~5年间,将以同样速度增长。生化催化剂主要用于手性药物的合成。当前,手性药物已成为国际新药研究与开发的新方向之一。
1997年手性药物制剂世界市场的销售额为879亿美元,占药品市场的28.3%,到2000年将达到900亿美元。在未来的25年内,约有一半的手性药物要通过生化催化合成,因此,生化催化剂无论从需求量和需求种类来看,都具有很大的发展潜力。
生化表面活性剂由于具有无毒、生物降解性好等优点,今后可能成为表面活性剂的升级换代产品,但目前还处于探索阶段。
生物化工在高分子材料、特殊化学品、生物晶片、环保等方面也将有极大的发展潜力。
2.3技术水平
不断提高菌株活力、发酵水平、生化反应过程、分离纯化水平,依然是生物化工面临的课题。
在菌种开发方面,由于从20世纪70年代以来从自然界中筛选菌种以获得新的代谢产物的机会明显减少,人们便考虑利用已知菌种经适当改变其代谢特性后生产新的产品。如日本协和发酵公司已成功地把生产谷氨酸的菌种改为生产色氨酸。
在生化反应器方面,反应器放大一直是一个老大难的问题。因此,利用计算机技术对整个生化反应过程进行数字化处理,从而优化反应过程,是今后的发展方向之一。
在分离纯化方面,亲和层析受到广泛重视,并有人研制了一种综合专家系统软件包,可在几分钟内告知对方被分离物系的分离方法和顺序,以便根据产品所需进行取舍。
另外,在生化过程的在线检测和控制方面,利用生物传感器和计算机监控,依然是今后的发展方向。
在酶催化反应中将发展有机溶剂中的催化反应。
生物上游技术的发展,将对生物化工产生深远影响。人们对从病毒、细菌、植物、动物到人类基因组顺序测定工作十分重视,并在此基础上形成了基因许多产品一哄而上,盲目上马,遍地开花,最终形成恶性竞争,许多企业破产倒闭。在竞争中生存下来的企业,也是元气大伤,难以进一步组织技术改造。如仅江苏省停产的发酵生产线就多达上百条。另外,行业内企业间的生产水平相差悬殊,企业技术装备水平达到20世纪80年代以后国际先进水平的仅占20%~30%,多数处于20世纪60~70年代水平。
二是产品结构不合理,品种单一,低档次产品重复生产,不能适应需求。在我国高档的医药生化产品如激素、生长因子、干扰素、药用多肽等,有的产量很小,有的没有生产,因此每年都需进口。
三是在生产技术上,工艺、设备不配套,上下游技术不配套,产物的收得率低。我国虽然某些产品如柠檬酸、乳酸等发酵水平较高,但大多数产品的收率都低于国外,酶制剂的活力也明显低于国外,生化反应器和分离纯化技术更是落后国外15~20年。每年都要花费大量资金从国外进口生物反应器、细胞破碎机、分离纯化设备及分离介质、生物传感器和计算机监控设备。
四是有些产品投入产出比达15/=以上,造成严重的资源浪费和环境污染。
五是基础研究薄弱,技术创新能力不强,企业的技术开发、技术吸收能力差,生产发展多数依靠传统的夕蜒型、粗放型扩大投资的增长模式,效益低、市场竞争力低。
3.2建议针对我国生物化工行业存在的问题,笔者有以下建议:
3.2.1扩大经济规模,提高竞争力要鼓励建设大型的生物化工企业集团公司,使之集科研、开发、生产、销售干一体。尤其要培育一批科技创新型企业。同时,也要鼓励在某些方面有一定特色的小型技术创新型生化公司的发展,并淘汰一批生产规模小、生产技术落后、没有市场竞争力的企业,从整体上优化我国生物化工的产业结构。
3.2.2调整产品结构要发展高档产品,如高档医药生化产品、功能性食品及添加剂(主要有低热值、低胆固醇、低脂肪、提高免疫功能、抗炎、抗癌等产品)、生化催化剂等。另外,也应发展众多精细化工产品及用化学法无法生产或很难生产的产品,如微生物多糖、生物色素、工业酶制剂、甜味剂、表面活性剂、高分子材料等。
3.2.3节约有限资源,强化环境保护在生化生产组学(genomics)。近年来又在信息学(informatics)的基础上建立了生物信息学(bioinformatics)。信息学的内容包括信息科学十生物技术十生物工程十生物动力学等的综合信息系统。可以预见,基因组学和生物信息学在生物化工中应用的商业前景极为可观。
另外,其它行业的新技术如分子蒸馏技术、组合化学(combinatoricalchemistry)等,也将在生物化工中得到应用。
3.我国生物化工的发层现状及建议
3.1发展现状
我国生物化工行业经过长期发展,已有一定基础。特别是改革开放以后,生物化工的发展进入了一个崭新的阶段。目前生物化工产品也涉及医药、保健、农药、食品与饲料、有机酸等各个方面。
在医药方面,抗生素得到迅猛发展61998年我国抗生素的产量达到33486h青霉素的产量居世界首位。其它生化药物中,初步形成产业化规模的有干扰素、白细胞介素。2、乙型肝炎工程疫苗。
在农药方面,生物农药品种达12种,主要有苏云金杆菌、井岗霉素、赤霉素等。其中,井岗霉素的产量居世界第一位。
在食品与饲料方面,作为三大发酵制品的味精、柠檬酸、酶制剂的产量也有很大的增加/1998年味精产量从1990年的22.3万、增加到56.4万一柠檬酸产量从1990年的6.13万、增加到56.4万一酶制剂从1990年的8.5万t增加到24万t。酵母及淀粉糖的产量也有明显增加。我国的味精生产和消费居世界第一,柠檬酸的生产和出口也居世界第一。另外,1998年乳酸的产量在1.5万t左右,赖氨酸的产量在2万t左右,卜苹果酸的产量在6000t。
在有机酸方面,衣康酸的产量达5000乙我国开发的生物法长链二元酸工艺居世界领先地位,目前生产能力达500Va以上,并有数家企业有建设长链二元酸生产装置的意向。
在保健品方面,我国已能用生物法生产多种氨基酸、维生素和核酸等。另外,我国生物法丙烯酞胺的生产能力达到2万V山与日本同处于世界领先地位。
但是与发达国家相比,我国生物化工行业存在着许多问题:
一是我国的生物化工产业主要以医药、轻工、食品业为主。部分企业对生物化工产品大都是精细化工产品这一点了解不够,加之行业规范也不够,导致过程中,应选择合适的原料,以降低成本与消耗,并加强废物处理,减少环境污染。
3.2.4提高生产技术水平,特别是下游技术水平因为我国生物技术上游技术水平与国外相差仅3~5年,而下游技术水平则比国外相差15年以上,改造传统发酵产品生产技术,不断提高发酵法产品的生产技术水平,开发生物反应器,提高我国生物化工产品分离和提纯技术,大规模开发生物化工装备等应首先提上议事日程。另外,还应积极采用微生物法代替化学法,开发基础化工新产品的工业化生产技术。
3.2.5加强产学研结合,注重上下游结合国内生物化工技术力量分散,为了做到优势互补,应加强产学研结合。另外在生物化工生产过程中遇到的很多问题,都是由于上、下游结合不够紧密而影响技术经济指标。因此,在人力和财力的投入上,应考虑上下游结合,以加快生物化工产业的发展。
3.2.6提高从业人员素质生物化工属高科技产业,从业人员素质尤其重要。我国目前从事生物化工生产的大都是传统化工行业的从业人员,操作水平还比较低,加强人材培养,以提高生物化工行业人员素质是十分必要的。
3.2.7加强知识产权保护长期以来,我国对生化领域的知识产权保护不够,挫伤了科研开发人员的积极性,造成大量人才外流。加强知识产权保护,不仅能够激励国内科研开发人员,而且能够吸收一大批在国外发展的科研人员回国发展,从而加快我国生物化工产业的发展。