可再生能源供热概念股有哪些?可再生能源供热相关股票名单
摘要:可再生能源供热概念股 国家能源局正在制订《可再生能源供热实施方案》,方案重点落在供热应用上,以太阳能、地热和生物质能/生物质能等供热方式为主,预计年内出台。另据协会人士透露,一份《太阳能供热制造意见》也在起草中。业内人士分析,方案的出台将改... 可再生能源供热概念股 国家能源局正在制订《可再生能源供热实施方案》,方案重点落在供热应用上,以太阳能、地热和生物质能/">生物质能等供热方式为主,预计年内出台。另据协会人士透露,一份《太阳能供热制造意见》也在起草中。业内人士分析,方案的出台将改变当前我国重电轻热的能源利用现状,把光热产业提到新高度。 可再生能源供热概念股一览: 盾安环境(002011) 阳光电源 超日太阳 荣信股份(002123) 中利科技 浙富股份 国电南瑞(600406) 凯迪电力(000939) 天顺风能(002531) 华光股份(600475) 泰胜风能(300129) 粤电力A(000539) 长征电气(600112) 湖北能源(000883)让更多人知道事件的真相,把本文分享给好友:更多
1项目概况
山东滕州市位于山东省南部,地处温暖带半湿润地区,阳光充沛,年均日照2383小时,历年平均气温13.6℃,最热月为7月,平均气温26.9℃;非常适合太阳能热泵供热采暖工程的建设条件。
座落在滕州经济开发区山东光普是专业从事太阳能光热利用产品的研制开发、生产制造和市场推广的高科技民营企业。公司综合考虑滕州当地的气候条件、环保要求、燃料结构、能源效益和经济承受能力等因素,在公司办公楼的楼顶建设了太阳能热泵供热采暖工程,该采暖以“节能、高效、稳定、可靠”为技术特点。将太阳能与空气源热泵结合起来进行供热采暖,进一步提高了能源利用率,降低了热泵热水系统地域的限制条件,最大程度地改善了系统整体运行。
系统控制器是采用台达的可编程控制器作为核心控制器,PLC通过温度、压力、流量、液位等参数来控制系统的运行、检测系统的故障、驱动系统各部件的运行等功能,系统借助于计算机软件,可以实现远程监控功能。该工程实例中以低碳节能高效多能互补的供热系统为公司职工提供安全舒适的生活热水,并为公司办公楼提供采暖用热。
2太阳能与空气源热泵工作原理及设计特点
太阳能热泵是将空气能热泵与太阳能集热系统相结合的一种装置,在有太阳辐射时,系统转化为太阳能热泵原理制热;在阴雨天或夜晚没有太阳辐射时,系统转化为空气能热泵原理制热。系统装置既能保证供热的稳定,又具有相对空气能热泵和太阳能集热系统较高的制热效率,通过对办公楼顶的太阳能与热泵供热采暖工程的测试和应用,节能效果显著。
该太阳能与热泵供热采暖工程工作原理:利用卡诺循环的原理,将太阳能集热器制成太阳能和空气能集热蒸发器,集热蒸发器中的制冷剂工质直接吸收太阳能辐射能(有太阳辐射时的工况)和空气能(夜晚或阴雨天的工况)低温蒸发,经压缩机压缩排出高温高压的制冷剂蒸汽进入高温冷凝器冷凝放热,冷凝液在高低压差的作用下通过热力膨胀阀降压降温进入蒸发器中吸热蒸发,从而形成一个热泵工作循环。系统实现了花少量的电能,将大量的热能从低温热源向高温热源的输送,输送的热量除以所花电能称为热泵的能效比(COP)。
本采暖供热工程的系统特点:
1. 现场监控技术:该工程以太阳能集热器吸收太阳能作为主要供热源,以空气源热泵作为辅助热源,大大降低了普通热泵热水系统的地域光照等限制,并采用PLC作为控制器,通过计算机与系统控制器以及其他设备的通讯,使其具有现场实时模拟、故障监测与诊断以及远程通讯、远程控制及故障处理的功能。
2. 智能控制技术:系统采用智能微电脑自动控制技术,可自动快速达到设定水温、自动补水,保证输出水压恒定。供水温度在450℃~600℃范围内可调。
3. 民用商用皆可:系统出水速度快,开机10S后即有高温热水。出水量大,特别适合用于学校、酒店、医院等民用洗浴中心,也可为纺织、化工、轻工等行业提供商用大热水量热水。
4. 不受气候影响、阴晴两可:晴天利用太阳能进行加热,雨天及日照强度差时利用双热泵加热系统,系统平均热效率最高可达COP=4.5。
5. 设备安装灵活:集热系统与热泵机组可在屋顶安装,也可地面放置。
6. 高效经济、绿色环保:机组20小时产水量为12吨,投资报价约12万元,热水系统投资平均为1万元/ 吨,回收期18个月。绿色、环境友好型热水系统。
3太阳能热泵供热采暖系统相关设计
太阳能热泵是指把太阳能集热技术和热泵技术有机结合起来,利用太阳能作为蒸发器的主要热源,其他低品质能源作为辅助能源,经过热泵技术提升品质之后与太阳能热源协同作用的供热系统,太阳能热泵可同时提高太阳能集热器效率和热泵系统性能。
图1山东光普太阳能工程
3.1办公楼楼顶太阳能热泵供热采暖工程对工程中的系统控制进行了以下相关设计。
3.1.1通过检测系统的各种参数,为太阳能热水工程(系统)运行状态检测与控制,分析热泵热水系统能效匹配,确定系统的COP系数(能耗比)提供实时数据,与同类技术产品比较,具有明显的技术优势;
3.1.2通过对系统参数监控(远距离网络传输),及时、正确分析系统故障原因,并将故障分析结果反馈给用户,从而对系统进行及时维修,保证系统稳定和可靠的运行;
3.1.3对系统进行能源效率分析和经济性分析,效验太阳能空气源热泵系统与普通热泵系统相比其更加节能可靠。因此,研究太阳能空气源热泵热参数,对于提高系统的效率,改善系统运行性能,提高系统稳定性,构建节能、环保、经济、可靠的热泵系统有着深远的意义。
太阳能热泵热水系统相较于其他供热供暖供热水等系统具有明显的优势,相对于普通的电加热、煤气加热等热水器,它能在很大程度上节约能源,降低整体能耗和经济成本,也更加适应当今社会的能源发展。因此,研究该系统既能对可再生能源利用进行推广,节约社会资源,同时对新能源利用技术发展的促进和创新。
3.2水箱设计
3.2.1水箱类型
组合式不锈钢水箱:1000mm×1000mm 不锈钢板冲压,氩弧保护焊接拼装而成。
3.2.2水箱尺寸
内径:3000mm×5000mm×1500mm
外径:3100mm×5100mm×1600mm
3.2.3水箱材质及各部分板材厚度
采用1000mm×1000mm冲压模板,水箱内、外胆材质均为304-2B不锈钢,底部板材厚度2.0mm、侧下板材厚度2.0mm、侧上厚度1.5mm、顶部厚度1.2mm,水箱外胆厚度均为0.5mm。
3.2.4保温层厚度50mm~80mm(按要求)。
3.2.5底部基座钢制结构,材质为60mm槽钢焊接成型(防腐处理)填充承压、隔热、保温材料。
3.2.6水箱供水管径50mm、出水孔80mm、溢流孔50mm、泄水孔80mm。
3.2.7水箱内部图
4结束语
该公司500m2办公楼顶的太阳能与热泵供热采暖工程中太阳能与空气能热泵相结合互为辅助,保证了全年全气候供热,在实际运行过程中节能效果显著,环保和减排效果也很好,为全厂职工提供了生活热水并为办公楼提供了供暖热源。
太阳能和空气能热泵集成供热系统方案是近年来中央热水系统热源设备发展的新动向,且太阳能与热泵的集成有两种考虑模式:一是以太阳能加热为主,以空气能热泵加热为辅,但是前提是建筑允许放置太阳能集热板,有足够的的面积;二是以空气能热泵加热为主,太阳能加热为辅,该公司办公楼正好符合安装条件。
该采暖工程的运行模式是为了使空气源热泵在低温环境下还能高效、稳定、可靠运行,用太阳能作为其辅助热源或直接加热热水箱内的水或提供预热。
随着世界能源的日趋紧张和环保的压力增大,节能热水设备成了热水设备行业发展的焦点。
空气源无处不在,它是一种清洁的可再生能源。因此,该太阳能与热泵供热采暖工程是一种可持续发展的“绿色”的节能系统工程,可以解决燃油、燃气热水炉在城市发展的困境。(北京大学工学院包头研究院/付加庭
望采纳谢谢
摘自 http://137990967.qzone.qq.com
随着国民经济的发展,能源需求量日益增加,能源利用情况紧张,而常规能源的大量使用必将对环境造成不利影响。太阳能作为可再生能源的一种,取之不尽,用之不竭,同时又不会增加环境负荷,将成为未来能源结构中的重要组成部分。我国属太阳能资源丰富的国家之一,年辐射总量大约在3300-8300MJ/(m2.a),全国2/3以上面积地区年日照小时数大于2000h,每年陆地接收的太阳辐射能相当于2.4万亿吨标准煤,具有太阳能利用的良好条件。在建筑能耗中,生活热水、供暖能耗占了相当的比例,利用太阳能来满足生活热水、供暖这些低品位能耗的要求具有巨大的节能效益,因此,太阳能采暖技术越来越受到人们的重视。
二太阳能采暖系统概况
2.1太阳能采暖系统原理
太阳能采暖系统是指以太阳能作为采暖系统的热源,利用太阳能集热器将太阳能转换成热能,供给建筑物冬季采暖和全年其他用热的系统。太阳能采暖可分为主动式和被动式两种方式。被动式太阳能采暖通过建筑的朝向和周围环境的合理布置,内部空间和外部形体的巧妙处理,以及建筑材料和结构构造的恰当选择,使建筑物在冬季能充分收集、存储和分配太阳辐射热。主动式太阳能采暖系统主要由太阳能集热系统、蓄热系统、末端供热采暖系统、自动控制系统和其他能源辅助加热、换热设备集合构成,相比于被动式太阳能采暖,其供热工况更加稳定,但同时,投资费用也增大,系统更加复杂。随着经济和社会的发展,主动式太阳能采暖开始大规模应用。
近年的太阳能采暖建设项目中,比较集中和有代表性的是北京周边郊区县新民居的太阳能采暖工程。由于农村住宅相对分散,密度低,不宜采用投资大,维护水平高的集中供暖模式,而传统的燃煤取暖方式又存在效率低、污染环境、费用较高等问题,在农村推广安全环保、运行费用低的太阳能采暖系统符合新农村建设的客观要求。太阳能采暖所需的集热面积远大于太阳能热水系统,安装位置要求较大,对于高层建筑或居住密度较大的城区存在安装建设条件不足的问题,限制了应用,而农村住宅一般建筑容积率较低,没有明显遮挡,具备建设太阳能采暖项目的良好条件。北京平谷区新民居太阳能采暖工程项目进展较早,有很多成功应用的经验【5】【6】。
三太阳能采暖系统设备
3.1集热器
常见的太阳能集热器有平板型和真空管型两种,其中,真空管型又可分为全玻璃真空管型、U型管真空管和热管真空管集热器。目前在我国太阳能热水器市场,平板太阳能热水器约占10%左右的市场份额,其余均为真空管太阳能热水器,而国外平板太阳能热水器则占90%以上的市场份额【7】,中国与世界太阳能市场主流存在巨大差异。由于太阳能采暖系统与建筑结合紧密,因而对集热产品与建筑的结合、故障率、使用寿命等性能要求较高,平板集热器结构简单,抗压,抗外力冲击,适合承压运行,从整体外观、结构强度、安装运行等方面都非常适合与建筑相结合。在热性能方面,尽管平板集热器的保温性能不如真空管集热器,但由于其有效采光面大于真空管集热器,因此其热效率高于真空管集热器。早期平板集热器不能防冻过冬的缺点随着技术进步早已得到解决。太阳能采暖工程中,非采暖季能源过剩,真空管集热器易发生爆管、真空度降低等问题,而平板集热器则能较容易地解决这一问题,因此,目前北京地区太阳能采暖工程中,很多工程项目采用了平板型集热器。
3.2 辅助热源
为住宅提供采暖用热水的太阳能采暖系统,与为住宅提供生活热水的太阳能热水系统在供水特点上是不同的,生活热水不需要连续供应而采暖用热水必须连续供应,而且要稳定可靠。太阳辐射受昼夜、季节、纬度和海拔高度等自然条件的限制和阴雨天气等随机因素的影响,存在较大的间歇性和不稳定性,因此在太阳能采暖系统中,必须设置辅助热源。辅助热源要根据当地太阳能资源条件,常规能源的供应状况,建筑物热负荷和周围环境条件等因素,做综合经济性分析,以确定适宜的辅助热源及合理的太阳能供暖比例。太阳能采暖中可以选择的辅助热源主要有小型燃油(气)锅炉,城市热网或区域锅炉房、工业废热、电锅炉、电热管、地源热泵及生物质燃料等。在农村建设的太阳能采暖项目,由于城市热网及燃气管线不易到达,油、电价格又较高,因此,辅助能源的应用类型多为生物质燃料。如北京平谷区挂甲峪村,辅助热源用生物质锅炉提供,采用生物质压块成型设备,把当地的果木修剪枝条粉碎后压缩成燃料棒或燃料块,作为生物质锅炉燃料,同时还用作炊事燃料,这种生物质压缩成型燃料比传统的生物质燃烧密度高,燃烧效率高,储藏也较容易,使用时劳动强度小,是一种较好的辅助热源方式【5】。
3.3采暖末端
太阳能由于热密度较低,集热温度很难达到较高水平。普通散热器热媒温度要求较高(70℃以上),而太阳能系统不易达到该出水温度要求。因此,在太阳能采暖系统中,通常采用地板辐射采暖的末端供热方式。地板采暖所需要的低温热水在35-55℃之间,正好是太阳能集热器所能提供的适合温度。地板采暖系统以整个地面作为散热面,热量主要以辐射方式传播,与以对流散热为主的散热器系统相比,舒适性更好,脚暖头凉的热感觉更符合人体的生理学调节特点,且可以在比末端采用散热器的系统低2-3℃的情况下获得同样的舒适感,节省供热能耗。夜间采暖负荷一般大于白天,但夜间却无太阳辐射,具有蓄热功能的地板采暖方式是非常适合的。因此,目前太阳能采暖系统普遍采用地板辐射散热系统作为末端。
四太阳能采暖系统设计中存在的一些问题
4.1太阳能与建筑一体化
太阳能采暖系统是为建筑服务的,应该作为一个子系统融入建筑之中,实现太阳能与建筑一体化。但以我国太阳能热水器发展来看:长期以来,太阳能热水器一直是房屋建成后才由用户购买安装的,这种做法带来很多问题,主要是对建筑外观和房屋相关使用功能的破坏,导致了一些城市出台不允许安装太阳能热水器的规定,严重制约了太阳能热水器的进一步发展。由于太阳能采暖工程集热器的面积远大于太阳能热水系统,因此,太阳能采暖系统与建筑的有机结合尤为重要。各建筑设计院过去很少设计太阳能采暖系统,这就要求设计人员在实践中不断将太阳能采暖技术融于建筑设计中,积累设计经验以取得太阳能与建筑功能、建筑美学的协调。
4.2 冬夏热量平衡问题
目前安装的太阳能采暖系统,每6-8平米建筑面积约配置1平方米太阳能集热器,此种配比条件下太阳能的冬季供暖保证率相对较低,但同时夏季太阳能系统产生的生活热水远大于实际消耗量,这使得太阳能集热系统不得不采取闷晒、遮挡等方法来减少太阳得热,造成非采暖季太阳能利用率过低和因系统过热而产生安全隐患等问题,因此,解决冬夏热量平衡问题成为太阳能采暖系统发展的重要技术问题。
4.3相关设计资料不完善
太阳能采暖系统设计主要由暖通工程师和建筑工程师来完成,由于过去很少进行此类设计,设计师希望有相关的标准、规范和设计手册可供使用,目前已出版了国家标准GB50364《民用建筑太阳能热水系统应用技术规范》和《民用建筑太阳能热水系统工程技术手册》,但太阳能采暖系统的设计资料还不够完善,各厂家的产品性能参数还需经权威检测部门检测后作为进行系统设计的重要依据。
五发展太阳能采暖系统的措施
5.1加强建筑节能
建筑节能是实现太阳能采暖的先决条件,由于太阳能在单位面积上的能量密度较低,如果不通过加强围护结构保温等措施来有效降低建筑物的采暖负荷的话,太阳能采暖系统的集热面积将会很大,增加系统的初投资,使太阳能采暖系统完全不能发挥应有的节能效益。我国已陆续颁布实施了针对不同建筑气候区的建筑节能设计国家标准,这些标准的强制实施将大大降低建筑物的耗热量指标,减轻太阳能采暖系统所承担的负荷,形成太阳能供热采暖工程应用的有利条件。
5.2提高太阳能集热系统的效率
目前建设的太阳能采暖工程中,集热器、水箱等关键产品还有较大的改进空间,如进一步提高平板集热器的密封性以增加集热效率等,企业应加强研发力量,提高产品质量和工艺水平,开发安全可靠,高效稳定的新产品以不断提高太阳能集热系统的效率。房屋设计之初就同步进行太阳能采暖系统的设计,使设计更适合于太阳能设备或部件的应用。在不影响建筑物的条件下,达到太阳能集热性能的最佳。
5.3 提高太阳能利用率
太阳能采暖系统一定要提高太阳能利用率以缩短投资回收期。冬夏热量不平衡的问题可由太阳能制冷技术、跨季节蓄热技术和全年的综合利用来解决。目前,跨季节蓄热的理论和实验研究还很少,研究的较多的是利用太阳能产生的热水驱动吸收式制冷机的太阳能制冷,由于吸收式制冷机需要高温水(85℃以上)做热源,所以,应积极开发适用于太阳能空调系统的中高温太阳能集热器。在目前国内太阳能制冷技术和跨季节蓄热技术还没有市场化的条件下,可强调全年的综合利用,考虑适当降低系统的太阳能保证率,合理匹配供暖和供热水的建筑面积,如使系统供热水的建筑面积大于供暖的建筑面积。
5.4政府制定鼓励支持政策
太阳能采暖系统具有较高社会效益,但存在投资相对较高,投资回收期较长的缺点,对房地产开发商而言,如果开发成本的增加不能带动房屋销售的话,则开发商的积极性不高。因此,政府应积极建设试点工程,针对生产厂商、房地产开发商、终端用户制定更完善、合理的鼓励和支持政策,积极推广试点工程经验,提高系统整体技术水平,促进太阳能采暖行业及市场的良性发展。
寒冷的冬季,地暖是现代家庭常备的取暖设备之一。在选择时很多朋友都在为壁挂炉什么牌子好而焦虑,要了解地暖什么牌子好。那么接下来,小编为大家带来地暖品牌排名第一的菲斯曼地暖的相关介绍,希望对大家有帮助。
一、菲斯曼地暖怎么样
地暖十大进口品牌排名第一:菲斯曼壁挂炉
菲斯曼可以为用户提供适用于各种能源载体和所有应用领域的高效个性化系统解决方案。我们的产品涵盖燃气壁挂炉、燃油、燃气工业、商业锅炉,太阳能系统、利用可再生能源的供热设备以及热泵等。菲斯曼研发生产的供热系统不仅温暖了全球的千家万户,而且应用于数以万计的全球大型工程项目,为能源的持续有效利用做出了重要的贡献。在中国,从上海世博会中国馆到北京奥运村,从香港迪士尼乐园到上海浦东机场,从澳门威尼斯人酒店到上海国金中心,从宝洁到西门子,都采用菲斯曼环保高效的供热系统。
地暖的优点:
安装地暖的优点一:地暖健康舒适,适合中医所说的头凉脚暖的理论。
安装地暖的优点二:地暖热分布均匀,舒适度高,室内可以恒温。目前空调采暖、暖气片采暖的舒适度都无法跟地暖相比。
安装地暖的优点三:地暖安装后安内美,不占用室内的空间。
安装地暖的优点四:地暖节能,与空调、暖气片相比,长时间开时地暖的使用费用比它们都低。
地暖的缺点:
安装地暖的缺点一:地暖会占用一定的层高,如果室内屋高不高,考虑安装中央空调,又安装地暖时。还是建议安装暖气片或安装新型薄型地暖。
安装地暖的缺点二:地暖第一次升温很慢,地暖打开后一般是不建议关的,保持室内的恒温。对于温度变化较快的地区可以考虑地暖,暖气片混装。
安装地暖的缺点三:地暖的管道都是安装在地板下面的,地暖管坡坏了以后很难修复。(注:地暖公司都会承诺质保50年,安装好以后一般只要不是人为的破坏,地暖管不会出什么问题)。
二、菲斯曼地暖报价
德国菲斯曼地暖70平米顶级豪华型套餐WH1D参考价:24351.40元/套
德国菲斯曼地暖120平米经济型套餐WH1C参考价: 28013.00元/套
菲斯曼地暖150平米经济型套餐WH1C参考价:29931.00元/套
菲斯曼WH1C-20kw(K)55-80㎡水地暖(适用于两室一厅)参考价:¥16320.00元/套
菲斯曼WH1C-30kw(K)145-170㎡水地暖(适用于五室两厅)参考价:¥28060.00元/套
三、菲斯曼地暖如何使用
攻略一:地暖系统要选好
首先,我们要从地暖系统的核心设备壁挂炉着手。壁挂炉的节能性强,能大大降低后期的使用费用。壁挂炉主要有冷凝炉和普通燃气炉两种,冷凝炉使用先进的冷凝技术,能够回收燃烧时烟气带走的热量,理论最大热效率为110%,比普通燃气壁挂炉节能很多。
攻略二:地暖地板很重要
除了冷凝炉,地暖保温板、地暖地板的选择也很重要。保温板要选用导热系数低、防潮抗水性好、防腐稳定的保温板,比如挤塑板(XPS板)。地板要选择导热性能好、稳定、环保的板材,其中瓷砖导热性能是最好的,但脚感较差,若不注意则容易滑倒木地板中复合木地板和强化木地板导热性都不错,适合作地暖地板,但要注意,纯实木地板是不能用作地暖地板的。
攻略三: 房屋保温要做好
房屋的保温好坏直接影响着地暖的使用情况,如果保温差的话,散热快,地暖热源也就会不停的工作来供热,运行费用自然很高。一套房子的保温包含墙体、门窗、楼板的整体保温性。一般来说,房屋的门窗不能有明显空隙,窗户最好使用双层中空的,再做好墙体保温,就能尽量减少热量损失了。
攻略四: 正确使用一省再省
如果系统设备、辅材、地板、房屋保温等硬件条件满足了,下面就要从使用方法上来进行节能了,具体使用技巧如下:
1.地暖不要即开即用
如果是上班族,白天上班时可将地暖温度调低,保持低温运行,下班回家后再将温度调至舒适室温。个别不经常使用的房间可将温度调低,只有家中长期无人时才能关闭地暖系统。
2.温度不要设置过高
初次使用地暖的人会认为温度调的越高越好,其实不然,设定温度越高,地暖所要消耗的能源就越多,工作的时间也就越长。调到地暖不能实现的温度值时,地暖会一直处于工作状态,明明超过了需求的温度范围,还在不断的消耗能源。所以温度不是越高越好。
3.开窗换气不要太过频繁
温暖封闭的空间容易滋生细菌,地暖运行时开窗换气是必要的,但不要太过频繁,且最好选在阳光晴好的中午换气。
除了上面介绍的四项攻略外,注意地暖日常的清洗和保养也很重要。地暖一般的使用寿命在50年左右,但如果常年不清洗,使用寿命将大打折扣,过了采暖期以后,还需要对地暖进行维护、检测,才能确保地暖系统稳定高效,从而达到节能、使用寿命长久的功效。
9月,全国各地拉闸限电的消息开始在互联网上不断发酵。随着东北地区在用电高峰期对居民实施突然的拉闸限电,让这场电力行业热门话题一下子发展成为全民热点,进而也引发了对能源利用更为深入的思考。显然,随着我国经济的快速发展,能源危机和环境污染加重的背景下,要实现碳达峰、碳中和目标,大规模、高比例发展能源综合应用是必然趋势。
清洁能源综合服务作为一种满足终端客户多元化能源消费的新型能源服务方式,正成为各能源企业打造发展新动能的重要增长极。对此,四季沐歌与建筑环境与能源研究院达成战略合作,在北京成立了“双碳”技术研究中心;太阳雨与中国建筑科学研究院环能院更是成立清洁热能产业首个碳中和研究中心,就“双碳”背景下,打造多能互补的综合能源应用体系;哈思更是在产品研发上,推出光伏热泵产品,集光伏和热泵两大可再生能源的应用产品,不仅为用户节省了可观的电费,还大幅减少了建筑能耗 ......
多能融合
目前,可再生能源与传统能源的“较量”迎来拐点。在中国传统能源“减煤”“脱碳”的过程中,太阳能、地热能和空气能等清洁能源正强势突起。在清洁能源的发展日益受大众关注、“清洁能源替代”逐渐成为发展主线的今天,采用单一的可再生能源供热,难以解决需求侧遇到的诸多问题,若采用多能互补的形式,使各种能源取长补短,便可弥补单一能源供热方式的不足。从用户侧来看,如何推陈出新、更好地为客户服务、挖掘清洁能源的发展潜力、有效促进清洁能源占比的进一步提升,促进绿色低碳发展进程,成为行业发展的重点。
随着经济发展和社会进步,清洁供暖主要有这些变化:供暖面积将不断扩大,建筑用能最终将大于工业用能;供暖质量将不断提高,要求用能少、更舒适、更智能、更经济;供暖环境友好水平将不断提升,最终要求污染物和温室气体零排放。近几年通过清洁供暖,可以实现高能效性、高生态性、高便捷性、高舒适性的取暖方式。
不过,多种分布式能源大量接入,同样会给电力系统稳定带来挑战。打个比方,过去电网像一艘巨轮,以后分布式电源多了,可能就是无数艘小吨位货船、小船和巨轮共同组成船队,彼此之间的协调配合就显得特别重要。
基于此,以四季沐歌为例,围绕“太阳能 +”、“热泵 +” 的双核技术路线形成的“双核低碳智耦技术”打造一系列解决方案,通过其清洁能源耦合智能操作系统 (CAS+),可实现不同能源组合在不同场景下实现最佳拼配,最大程度减少能源损耗。多能融合将进一步撬动清洁能源行业长期稳定的需求,突破拓展传统能源业务的限制,打造更加全面的系统化解决方案。
跨界融合
需要注意的是,现代能源的发展路径一定不是单一的。通往低碳未来的道路需要多种能源的力量,实现多能互补、跨界融合,才能产生“1+1>2”的效应。
能源企业的边界正在逐步趋同。过去传统能源企业(包括化工、电力、石油等)均属于垂直式发展,做好自己的事情就可以。但在双碳背景下,各个行业未来将横向协同,实现系统创新整合。而连接各个行业、企业的桥梁就是碳捕集等低碳化路径的发展。
基于此,以四季沐歌为代表的专注于清洁采暖与热水领域的能源企业,积极与电力、燃气等央企国企等传统能源企业以及国投城投平台合作,充分发挥各自技术、资源和机制等优势,在智慧新能源解决方案和综合智慧能源服务等方面广泛开展科学研究、产品研发等战略合作,同时不断拓展双方合作领域和途径,构建长期合作新格局,形成科技协作新合力,为新能源建设发展做出积极贡献。
对此,国家电力投资集团公司负责人也曾公开表示,将以融合为思路,源网荷储协同互动,通过多品种能源互补的综合智慧能源,实现电力系统的平衡和稳定。目前,国家电投已经开展了 420 个综合智慧能源项目,总投资超过 1310 亿元。
推进融合
当然,在布局全国清洁能源综合服务体系中需要多方努力。在供应链方面,需进一步拓展横向合作伙伴的数量,同时也需要加深纵向合作深度,实现持续共赢;在综合服务体系上需要进一步加快服务范围的扩大速度,提升项目规模,深度制定应用于各行各业的定制化服务,同时开发具有互联网服务性质的清洁能源综合服务平台,打破封闭式发展的路径依赖,助力实现用能结构低碳化。
在具体的服务模式中,以点带面,以树立起标准化的项目工程为手段,逐步推广清洁能源综合服务商理念,积极参与业主的用能结构设计,寻求多元、跨界、低碳、高效、智能、互联,在满足多元化用能需求的同时,有效提升业主能源利用效率,促进可再生能源的协同发展。
从客户需求出发,整合集发电、充电、储能、节能、智能交通等多种功能耦合,提供灵活的用能解决方案,因地制宜地打造电、热、冷、气、水与风、光、地热能等零碳资源多能互补用能结构,智能、协同、安全和高效地满足业主需求,助力业主实现清洁能源替代。
融合,只有坚持高起点、高标准、高定位,着眼长远、系统谋划、整体设计,才能更好打破旧格局、开创新局面。“打捆”送出,成功实现平稳并网、综合效益多赢;构建新型电力系统的融合之路。“清洁能源 +”融合实践探索出了新思路,也带动了新技术新产业发展;实现碳达峰、碳中和,面临诸多挑战,靠各自为战、单枪匹马不可能成功,需要更多方面相互借力、齐心协力,共同下好一盘棋。
多吉1郑克棪2
(1.西藏地质矿产勘查开发局;2.中国能源研究会地热专业委员会)
摘要:西藏自治区首府拉萨市的冬季供暖水平很低,有供暖设施的建筑不到10%。西藏缺乏常规的化石燃料煤炭、石油、天然气资源,传统以自然采光集热勉强过冬,普通居民以烧牛粪、柴薪取暖。利用浅层地热的地源热泵或水源热泵技术,完全有能力解决拉萨市全部建筑物的冬季供暖。
1 前言
拉萨是西藏自治区的首府,虽然年最低气温-16℃,但冬季供暖水平很低,具供暖设施的建筑不到10%。西藏缺乏常规的化石燃料煤炭、石油、天然气能源资源,生活水平较高的家庭现用电采暖,传统则以自然采光集热勉强过冬,普通居民多靠燃烧牛粪、柴薪取暖。曾考虑过利用羊八井地热发电的尾水输送至拉萨可用作建筑物的冬季采暖,但当前更简捷的方法是利用浅层地热,靠地源热泵或水源热泵技术完全有能力解决拉萨市全部建筑物的冬季供暖。
2 拉萨市冬季供暖现状
拉萨市总面积2.95万km2,人口约50万人;拉萨市区建成面积逾50km2,人口超过20万人。拉萨位于西藏高原中部,受喜马拉雅山脉北侧下沉气流影响,全年多晴朗天气,降雨稀少,冬无严寒,夏无酷暑,属高原季风半干旱气候。年最高气温 29℃,最低-16℃,年平均气温7.4℃,采暖设计室外温度-6℃,供暖期室外平均温度0.7℃,全年低于5℃者149天。这是设计标准的供暖天数。
拉萨是国务院首批公布的24个历史文化名城之一,布达拉宫已列入联合国教科文组织的《世界文化遗产名录》,虽作为祖国西南边陲的重要城市,但拉萨的经济还不够发达。拉萨市现有住宅面积279万m2,人均居住面积约10m2,另有公共建筑面积94万m2,原有建筑大多为单层和二层,少数为三层,新建的机关和企事业单位公共建筑以及商品房为多层建筑,很少有高层建筑。拉萨的城市供暖长期没有统一规划,过去基本没有冬季供暖设施,多数建筑以自然采光取暖为主,即传统的集热墙、集热窗、暖廊等形式,在白天靠采集阳光积聚一定热量,可维持室温10℃左右,勉强过冬;近年来拉萨一些新的公建开始配建供暖设施,有小型锅炉、空气热泵(空调机)和水源热泵,这部分建筑不到总建筑面积的10%;当地新建民居在生活水平较高的家庭采用多种形式的电采暖;大部分普通居民家庭在旧式房屋燃烧牛粪和柴薪取暖,不但人居质量低下,而且污染环境,影响景观,不利于城市的可持续发展。
3 热泵系统利用浅层地热能供暖
按国际能源利用分类,地源热泵属于可再生能源的地热能利用,也称为地热热泵。国内将利用抽水井和回灌井从水源提取热量的“开系统”地源热泵称之为水源热泵;将利用循环管线从土壤中提取热量的“闭系统”称之为(狭义的)地源热泵。拉萨市位于拉萨河北岸呈东西向长条形延伸,地貌上属于拉萨河冲积和洪积形成的阶地,这样的水文地质条件对于水源热泵或地源热泵都是适宜的,是对解决拉萨供暖的最佳选择。
3.1 热泵系统节能高效环保
近10余年来世界上地(水)源热泵的技术和应用都得到飞速的发展,1995~2000年世界地(水)源热泵应用每年累进增长9.6%,2000~2005年世界地(水)源热泵应用更每年累进增长30%。近几年来热泵系统在国内的发展也相当迅速。其原因有三。
(1)地(水)源热泵技术是可再生能源利用的一种新技术。地球上的石油、天然气、煤炭都属于化石燃料能源,终有一天它会耗尽,人类需要发现和应用新能源,特别是价格便宜的可再生能源。
(2)地(水)源热泵系统消耗1kW电能可以产生3~4kW的(热)能量,是任何其它能源利用技术都无法达到的高效率,因而其运行成本低廉。
(3)地(水)源热泵技术减少了原供暖锅炉的空气污染和废渣排放,也减轻了操作人员的劳动负担。
对于拉萨来说,这些优点全都成立,西藏缺乏常规能源,又打算建造可再生能源利用的示范,并保持良好的天然生态环境,因此利用少量电力发展地源热泵或水源热泵是完全可行的。从另一方面来说,是开发地(水)源热泵的利用具有资源保障。
3.2 浅层地热能资源保障
如果拉萨全市都用地(水)源热泵来解决供暖,对于391.1万m2现有建筑面积和60W/m2的供热指标,总计需要热负荷234.66MW。
按西藏水源热泵利用5℃温差考虑,对于水源热泵需要水井提供40354m3/h的总出水量。这不是难题,拉萨河阶地上单井出水量可达80m3/h,所以共计需要504 眼开采井,加上同样数量的回灌井,总计需要1008眼井。按拉萨市区现建成面积51km2摊算,井密度不足20井/km2;即使按市中心区14.15km2折算,则71 井/km2,相当于井距120m,对于在拉萨河阶地上松散层中取水,这样的密度是许可的,井与井之间不会产生明显干扰。
对于狭义的地源热泵,通常用5m×5m的网格状布置地温热交换孔,相当于25m2钻一个孔,钻孔深度200m。我们采集地温5℃温差,按土壤和岩石的热导率通常是2.1W/m·℃考虑,则一个钻孔中的U形管道可采集4kW的热量,按60W/m2的供热指标,它可以解决67m2的房屋供暖,相当于说每1m2的土地面积,安装地源热泵后可解决2.7m2的建筑供暖。按此计算,即使拉萨391.1万m2建筑全部采用闭系统地源热泵,也只需要实际占地1.5km2布置5m×5m的地温热交换孔,拉萨市中心区有14.15km2,完全能满足需要。
我们在这里采用的供暖热指标60W/m2是比较保守、可靠的,取采集5℃温差也是很容易做到的,总之,在这样的保险系数下,在拉萨市利用水源热泵或地源热泵的浅层地温资源都是有保障的。
4 热泵系统利用浅层地热能的经济分析
依靠热泵系统利用浅层地热能供暖的一次性投资略偏高,但其运行成本较低,因此在供暖方案选择中仍然是有竞争力的。
4.1 初投资估算
水源热泵的建设费用在北京、天津地区,供暖和制冷面积在1万m2以上者,可以摊低总费用至300元/m2;若面积太小则单位成本会增高。在西藏拉萨已经做了个别地源热泵工程,面积在1万m2左右,其单位成本为440元/m2。
按此计算,利用水源热泵解决拉萨全部391万m2的供暖,需要投资17.2亿元。一般来说,利用浅层地下水的水源热泵系统的造价相对较低,埋管利用土壤温度的地源热泵系统造价要相对高些。
4.2 运行成本对比
参照内地目前运行状况,热泵系统估算的年运行成本肯定比传统燃油、燃气锅炉便宜得多,甚至可以低于燃煤锅炉,因为燃煤锅炉所烧的全部煤燃料全部要长途运输进藏。西藏多种方式供暖运行成本的具体比较见表1。
表1 西藏多种方式供暖成本比较 单位:元/m2
5 建设西藏可再生能源示范样板
拉萨的冬季供暖可以利用拉萨城区就地的常温地下水或土壤、岩石中的低温热量,用水源热泵或地源热泵装置就能采集到足够的热量作为供暖所需。这种地热供暖的一次性投资成本与传统燃油燃气锅炉基本相当,但运行费用很低。
利用水源热泵或地源热泵解决拉萨供暖的重大意义还在于这是在西藏进行的可再生能源利用。可再生能源利用可以解决122万km2西藏(除交通车辆外)的能源需要,这将是世界上最大的可再生能源利用示范基地。拉萨有太阳城之称,但太阳能的优势主要在太阳灶和热水器等小型利用,虽已有试验利用储水罐将太阳能加热的水循环用于供暖,然而效率较低,成本较高。西藏的风能资源以藏西为佳,拉萨风能的品位和潜力在解决供暖问题上尚有欠缺。拉萨所在的藏中电网以水电为主,西藏水电的主要缺陷就是冬季河水流量骤减,不能满负荷发电,因此冬季电采暖依赖水电是勉为其难。由此综合比较,依靠水源热泵或地源热泵的浅层地热能利用可以说是解决拉萨冬季供暖的最佳选择。
参考文献
中国国际工程咨询公司,2005,拉萨城市供热研究。
中国能源研究会地热专业委员会,2006,西藏地热能开发利用咨询报告。