目前可再生能源中,哪种能源利用效率最高?
地热发电平均利用效率达73%,约为太阳光伏发电的3.5倍,风力发电的2倍,在所有可再生能源中综合利用效率最高。
基本原理与火力发电类似,也是根据能量转换原理,首先把地热能转换为机械能,再把机械能转换为电能。地热发电实际上就是把地下的热能转变为机械能,然后再将机械能转变为电能的能量转变过程或称为地热发电。
地热能
地热能直接利用于烹饪、沐浴及暖房,已有悠久的历史。至今,天然温泉与人工开采的地下热水,仍被人类广泛使用。据联合国统计,世界地热水的直接利用远远超过地热发电。中国的地热水直接利用居世界首位,其次是日本。
地热水的直接用途非常广泛,主要有采暖空调、工业烘干、农业温室、水产养殖、旅温泉疗养保健等。
想不想在读博士期间少花一点钱?你可以选择在德国、法国、芬兰、瑞典或挪威的世界级学府以很低的成本来攻读博士学位。下面出国留学网小编就为大家介绍一下在这几个国家读博士的优势。
1.在德国读博士
德国以其高水平的学术水平、高生活水平和免学费而闻名。事实上,多达43所德国大学在2019年QS 世界大学排名中跻身全球前750名,其中包括慕尼黑理工大学(第61名)、路德维希-马克西米兰大学(第62名)和海德堡大学(第64名)。QS最佳学生城市排行榜上的德国城市包括柏林和慕尼黑,柏林是咖喱香肠博物馆的所在地,同时也是超酷算法初创企业的大本营。慕尼黑以每年举办的啤酒节而闻名。
2.在法国读博士
在QS世界大学排名中,有11所大学进入全球前300名,其中包括巴黎文理研究大学(世界排名第50位)和巴黎综合理工学院(世界排名第65位)。法国公立大学的博士学费较低。尽管高等院校的学费可能更高,但法国的公立大学每年将收取约380欧元的学费。法国最受欢迎的学生城市包括里昂、图卢兹,当然还有巴黎。由于学费低廉、国际知名大学高度集中,巴黎一直在QS最佳学生城市指数的前五名之列。
3.在芬兰读博士
芬兰所有的博士生,不论国籍,学费都是完全免费的。芬兰首都赫尔辛基在QS全球最佳学生城市中排名第75位,是全球前150所大学中的两所,赫尔辛基大学和阿尔托大学的所在地。同样值得注意的是芬兰广阔、开放的空间和令人难以置信的自然现象,比如怪异的午夜太阳和绚丽的北极光,每年约有10至20个夜晚,芬兰的夜空被北极光照亮。
4.在瑞典读博士
瑞典是欧盟国家中可再生能源比例最高的国家,拥有不少于29个华丽的国家公园和4000个自然保护区。其著名的进步政治也反映在其高等教育体系中。在瑞典,所有博士学位的学生都是免费的,而且有相当多的奖学金可以用来支付生活费,例如通过瑞典学院或个别大学。在QS世界大学排名中,有8所瑞典大学跻身全球前350名,其中隆德大学排名第92位,而皇家理工学院排名第104位。
5.在挪威读博士
挪威公立大学的学费对所有学生都是免费的,不分国籍。你将需要支付一个小学期的学生会费用,包括考试和体育设施,这通常不超过300-600挪威克朗。当然,和所有北欧国家一样,生活成本仍然很高,这意味着你可能想要找一份奖学金来帮助他们。在大学方面,QS世界大学排名中有四所挪威大学,其中奥斯陆大学排名第135位。
通过对能源回报率研究所获得的一些重要结论:
1)水力发电的能源回报率最高。水力发电的能源回报率在205到267之间,通过建造水库的试为利用水力发电,回报率是205,径流式水电站的能源回报率是267,这一结论是Hydro Qubec通过位于加拿大魁北克省的水电设施近百年来的相关数据进行评估后面获得的。我国小水电大多数为径流式电站,因而其能源回报率是最高的,是目前所有可利用能源中最优质的能源。
2)在可再生能源方面,风电的能源回报率为39, 也是令人满意的,由于考虑到风能的一些不稳定因素,我们人为地对风电的回报率进行了适当的修正,总的看来,风电的利用还没有得到大范围的推广,尽管现在已经有了很多利用风能发电的电站。
如果电力是来自一些林木废料的话,那么生物质能的能源回报率为27, 也很不错,但如果种植树木作为薪水炭林主要是为了发电的话,那么其能源的回报率就很低,大约为5左右,因为砍伐这些树木需要就必须减少从生物持能源到发电厂之间的环节。此外,利用太阳能发电的能源回报率只有9。 因此从整个能源系统工程考虑,对太阳能和生物质能的利用需要慎重考虑。
3)矿物质燃料发电的能源回报率是相当低的,一般为11到21之间,其中煤是为11,油电为21,天然气发电为14,核电为16,而且,这种能源利用方式在未来十多年里还会不断下降,主要原因是:矿物质资源储备基本耗尽,开采矿物质常常需要到十分边远的地区或海底,投资成本将不断上升,基考虑 到一些其他因素,人们会到较远的地我获得矿物质,如这已使得美国的煤炭运输在过去的十多年中有了较大的增加,这主要是人们对美国西部地区低硫煤的需求不断上升造成的。
远期来看,矿物能源对减少温室气体拜谢放是不利的。对煤炭的脱硫增加了电厂的成本,如果排放量交易开始全面实施的话,购买脱硫和降低成本煤炭产生二氧化碳等设备就要耗费大量资金天然气是唯一可以继续推广利用的矿物质能源。由于采用了高效率汽轮机,上述的不利因素部分被抵消的了。
太阳能和其他能源相比有很多优势。由于广袤的沙漠,阿拉伯世界最丰富的清洁能源是太阳能,该地区的非石油国家已经首先利用了这一优势。摩洛哥已经从可再生能源中获得了超过33%的能源(欧盟的平均水平是18%)。石油生产国也在迎头赶上,阿拉伯联合酋长国、阿曼、卡塔尔和其他国家正在建设大型清洁发电厂。在过去的十年里,中东地区的太阳能发电量已经从91兆瓦增加到9000兆瓦,而投资则增加了12倍。分析家们说,可再生能源正变得越来越有竞争力。与传统能源相比,太阳能发电厂在建造和维护方面更便宜、更快捷、更安全。在阿拉伯联合酋长国,新的太阳能发电厂的成本大约是天然气的三分之二,是石油的三分之一。
该地区的许多政府政策是不一致的。例如,沙特阿拉伯将可再生能源作为其经济改革的支柱,并宣布计划建造世界上最大的光伏发电站,但六个月后却看到该项目搁浅了。中东地区的动荡局势让投资者感到担忧。此外,廉价的石油最近抑制了中东地区对太阳能发电的热情--低原油价格使得用石油发电变得极其便宜,而油价下跌带来的收入减少则迫使各国搁置新的太阳能项目。
随着世界对更多能源的渴求,以及对能源造成的损害越来越警惕,太阳能可能是答案:一种廉价和无尽的清洁能源。通过对拥有最多太阳能容量的10个国家进行排名,你可以看到哪些国家目前做得最好,哪些可以做得更好。
来自国际能源署的光伏趋势报告的数据显示,虽然他们的调查只到2014年,但这是最新的数据。(这些数据告诉我们的是谁生产的原始太阳能最多,而不是谁生产的太阳能容量占其国家的比例最高)。而且它显示了哪些国家拥有最多的太阳能装机容量,而不是实际产生了多少太阳能)。名单中令人惊讶的部分是包括领土相对较小的国家。德国、日本、意大利 -- 他们都在美国之前,尽管我们有更多的土地。
除了核能、潮汐能、地热能之外,人类活动的基本能源主要来自太阳光。像生物能和煤炭石油天然气,主要透过植物的光合作用吸收太阳能储存起来。其它像风力,水力,海洋潮流等等,也都是由于太阳光加热地球上的空气和水的结果。
木材
柴是最早使用的典型的生物质能源,烧柴在煮食和提供热力很重要,它可让人们在寒冷的环境下仍可生存。
役用动物
传统的农家动物如牛、马和骡除了会运输货物之外,亦可以拉磨、推动一些机械以产生能源。
水能
磨坊就是采用水能的好例子。而水力发电更是现代的重要能源,尤其是中国、加拿大等满是河流的国家。
风能
人类已经使用了风力几百年了。如风车,帆船等。
太阳能
自古人类懂得以阳光晒干物件,并作为保存食物的方法,如制盐和晒咸鱼等。
地热能
人类很早以前就开始利用地热能,例如利用温泉沐浴、医疗,利用地下热水取暖、建造农作物温室、水产养殖及烘干谷物等。
海洋能
海洋能即是利用海洋运动过程来生产的能源,海洋能包括潮汐能、波浪能、海流能、海洋温差能和海水盐差能等,一些沿海国家的海岸线,就很适合用来作潮汐发电。
生物能
生物质能是指能够当做燃料或者工业原料,活着或刚死去的有机物。生物质能最常见于种植植物所制造的生质燃料,或者用来生产纤维、化学制品和热能的动物或植物。许多的植物都被用来生产生物质能,包括了芒草、柳枝稷、麻、玉米、杨属、柳树、甘蔗和沼气(甲烷)牛粪等。
开放分类: 能源
可再生能源泛指多种取之不竭的能源,严谨来说,是人类有生之年都不会耗尽的能源。可再生能源不包含现时有限的能源,如化石燃料和核能。
大部分的可再生能源其实都是太阳能的储存。可再生的意思并非提供十年的能源,而是百年甚至千年的。
随着能源危机的出现,人们开始发现可再生能源的重要性。
·太阳能
·地热能
·水能
·风能
·生物质能
·潮汐能
所有人类活动的基本能源都来自太阳,透过植物的光合作用而被吸收。
木材
柴是最早使用的能源,透过燃烧成为加热的能源。烧柴在煮食和提供热力很重要,它让人们在寒冷的环境下仍可生存。
动物牵动
传统的农家动物如牛、马和骡除了会运输货物之外,亦可以拉磨、推动一些机械以产生能源。
生物质燃料
此种燃料原为可再生能源,如能产出与消耗平衡则不会增加二氧化碳。但如消耗过量而毁林与耗竭可返还土壤的有机物,就会破坏产耗平衡。用生物质在沼气池中产生沼气供炊事照明用,残渣还是良好的有机肥。用生物质制造乙醇甲醇可用作汽车燃料。
水力
磨坊就是采用水力的好例子。而水力发电更是现代的重要能源,尤其是中国这样满是河流的国家。此外,中国有很长的海岸线,也很适合用来作潮汐发电。
风力
人类已经使用了风力几百年了。
太阳能
太阳直接提供了能源给人类已经很久了,但使用机械来将太阳能转成其他能量形式还是近代的事。
潮汐能
潮汐发电利用潮水涨落,世界已有电站容量16GW。
从地球蕴藏的能源数量来看,自然界存在有无限的能源资源。仅就太阳能而言,太阳每秒钟通过电磁波传至地球的能量达到相当于500多吨煤燃烧放出的热量。这相当于一年中仅太阳能就有130万亿吨煤的热量,大约为全世界目前一年耗能的一万多倍。不过,由于人类开发与利用地球能源尚受到社会生产力,科学技术、地理原因及世界经济、政治等多方面因素的影响与制约。包括太阳能、风能、水能在内的巨大数量的能源,可以利用的仅占微乎其微的比例,因而,继续发展的潜力巨大。人类能源消费的剧增、化石燃料的匮乏至枯竭以及生态环境的日趋恶化,逼迫使人们不得不思考人类社会的能源问题。国民经济的可持续发展,依仗能源的可持续供给,这就必须研究开发新能源和可再生能源。
太阳能是各种可再生能源中最重要的基本能源,也是人类可利用的最丰富的能源。太阳每年投射到地面上的辐射能高达1.05×1018千瓦时(3.78×1024J),相当于1.3×106亿吨标准煤。按目前太阳的质量消耗速率计,可维持6×1010年。所以可以说它是“取之不尽,用之不竭”的能源。但如何合理利用太阳能,降低开发和转化的成本,是新能源开发中面临的重要问题。
风能是利用风力机将风能转化为电能、热能、机械能等各种形式的能量,用于发电、提水、助航、制冷和致热等。风力发电是主要的风能开发利用方式。中国的风能总储量估计为1.6×109千瓦,列世界第三位,有广阔的开发前景。风能是一种自然能源,由于风的方向及大小都变幻不定,因此其经济性和实用性由风车的安装地点、方向、风速等多种因素综合决定。
对于核电站,人们有许多误解,其实核能发电是一种清洁、高效的能源获取方式。对于核裂变,核燃料是铀、钚等元素,核聚变的燃料则是氘、氚等物质。有些物质,例如钍,本身并非核燃料,但经过核反应可以转化为核燃料。我们把核燃料和可以转化为核燃料的物质总称为核资源。
近年来,许多发展中国家虽然都制订了一系列鼓励民企投资小水电的政策。由于小水电站投资小、风险低、效益稳、运营成本比较低,在国家各种优惠政策的鼓励下,全国掀起了一股投资建设小水电站的热潮,尤其是近年来,由于全国性缺电严重,民企投资小水电如雨后春笋,悄然兴起。国家鼓励合理开发和利用小水电资源的总方针是确定的,2003年开始,特大水电投资项目也开始向民资开放。2005年,根据国务院和水利部的“十一五”计划和2015年发展规划,中国将对民资投资小水电以及小水电发展给予更多优惠政策。
氢是一种二次能源,一种理想的新的含能体能源,在人类生存的地球上,虽然氢是最丰富的元素,但自然氢的存在极少。因此必需将含氢物质加工后方能得到氢气。最丰富的含氢物质是水,其次就是各种矿物燃料(煤、石油、天然气)及各种生物质等。氢不但是一种优质燃料,还是石油、化工、化肥和冶金工业中的重要原料和物料。石油和其他化石燃料的精炼需要氢,如烃的增氢、煤的气化、重油的精炼等;化工中制氨、制甲醇也需要氢。氢还用来还原铁矿石。用氢制成燃料电池可直接发电。采用燃料电池和氢气-蒸汽联合循环发电,其能量转换效率将远高于现有的火电厂。随着制氢技术的进步和贮氢手段的完善,氢能将在21世纪的能源舞台上大展风采。
地热是指来自地下的热能资源。我们生活的地球是一个巨大的地热库,仅地下10千米厚的一层,储热量就达1.05×1026焦耳,相当于9.95×1015标准煤所释放的热量。地热能在世界很多地区应用相当广泛。老的技术现在依然富有生命力,新技术业已成熟,并且在不断地完善。在能源的开发和技术转让方面,未来的发展潜力相当大。地热能是天生就储存在地下的,不受天气状况的影响,既可作为基本负荷能使用,也可根据需要提供使用。
海洋能通常指蕴藏于海洋中的可再生能源,主要包括潮汐能、波浪能、海流能、海水温差能、海水盐差能等。海洋能蕴藏丰富,分布广,清洁无污染,但能量密度低,地域性强,因而开发困难并有一定的局限。开发利用的方式主要是发电,其中潮汐发电和小型波浪发电技术已经实用化。波浪能发电利用的是海面波浪上下运动的动能。1910年,法国的普莱西克发明了利用海水波浪的垂直运动压缩空气,推动风力发动机组发电的装置,把1千瓦的电力送到岸上,开创了人类把海洋能转变为电能的先河。目前已开发出60-450千瓦的多种类型波浪发动装置。
此外,还有生物质能,是指植物叶绿素将太阳能转化为化学能贮存在生物质内部的能量,目前发展中的开发利用技术主要是,通过热化学转换技术将固体生物质转换成可燃气体、焦油等,通过生物化学转换技术将生物质在微生物的发酵作用下转换成沼气、酒精等,通过压块细蜜成型技术将生物质压缩成高密度固体燃料等。
再生能源包括太阳能、水力、风力、生物质能、波浪能、潮汐能、海洋温差能等等,它们在自然界可以循环再生。非再生能源在自然界中经过亿万年形成,短期内无法恢复且随着大规模开发利用,储量越来越少总有枯竭一天的能源称之为非再生能源。
非再生能源包括:煤、原油、天然气、油页岩、核能等,它们是不能再生的,用掉一点,便少一点。
一、可再生资源是什么
可再生资源是指消耗后可得到恢复补充,不产生或极少产生污染物。可以在自然界可以循环再生,是取之不尽,用之不竭的能源。如太阳能、风能,生物能、水能,地热能,氢能等。中国是国际清洁能源的巨头,是世界上最大的太阳能、风力与环境科技公司的发源地。
二、可再生能源的种类及作用
1、太阳能:直接来自于太阳辐射。主要是提供热量和电能。
2、生物能:由绿色植物通过光合作用,将太阳能转化为化学能,储存在体内,可沿食物链单向流动,最终转化为热能散失掉。通过燃烧和厌氧发酵获得沼气来取得能量。
3、风能:由太阳辐射提供能量,因冷热不均产生气压差异,导致空气水平运动——风的形成。主要是通过风力发电机来获得能量。
4、水能:由太阳辐射提供能量,产生水循环,来自海洋的暖湿空气,受热上升,太阳能转化为势能,当在高山上形成降水后,水往低处流,势能转化为动能,就是水能。主要是通过水力发电机来获得能量。
5、海洋能:包括潮汐、波浪、洋流等海水运动蕴藏的能量,也是取之不尽用之不竭的。潮汐能主要来自于月球、太阳等天体的引力,波浪、洋流的能量主要是受风的影响。主要是通过潮汐的动能来发电。
6、地热能:来自于地球内部放射性元素的衰变。可以用于地热发电和供暖。
7、氢能:通过燃烧或者是燃料电池来获得能量。
8、核能:通过核能发电站来取得能量。
上述能源都是可再生能源,而且是直接来自于自然界的一次能源。
三、不可再生资源是什么
非再生能源在自然界中经过亿万年形成,短期内无法恢复且随着大规模开发利用,储量越来越少总有枯竭一天的能源称之为非再生能源。非再生能源包括:煤、原油、天然气、油页岩、核能等,它们是不能再生的,用掉一点,便少一点。
四、非可再生能源的种类介绍
1、煤:煤是近代工业最重要燃料之一。煤是由有机物一生长在沼泽或河流三角洲之植物残骸分解而成现今世界各主要地区之煤炭蕴藏量,以非欧洲、亚洲及大洋洲、及北美洲等三个地区所占之比例最高,整体而言,现时煤炭之蕴藏量,估计可供我们使用二百年。
2、石油:石油一般认为是由地层中的有机物质“油母质”,经地温长时间的熬炼,一点一滴地生成而浮游于地层中。由于浮力的关系,石油在水中每年缓慢地沿着地层或断层向上移动,直到受不透油的封闭地层阻挡而停留下来。当此封闭内的石油越聚越多。
3、天然气:天然气是一种碳氢化合物,多是在矿区开采原油时伴随而出,过去因无法越洋运送,所以只能供当地使用,如果有剩馀只好燃烧报废,十分可惜。若以人工建筑设施存放天然气,在遭到外力破坏如地震、火灾等,极易产生危险。若以人工建筑设施存放天然气,在遭到外力破坏如地震、火灾等,极易产生危险。
4、化学能:化学反应所产生的能量称为化学能,除了燃烧煤、木材、石油及其制品产生的燃烧热外,还有电解化发电。电解化发电是将两种不同的金属板隔若干距离,一起浸入电解液中,金属板间会产生电压。两金属对于电解液的离子倾向力或溶解压不相同,发生化学变化,以电解方式放出能量。
电池就是利用这种原理制造成的。电池有两类,一种是用完就丢,不能再用的干电池,视为一次电池。另一种是可再充电,反复使用的蓄电池,即镍镉电池等,称为二次电池。
5、核燃料:核能也称原子能,是一种高效率持久的能源。核能发电是利用铀235的核分裂连锁反应释出大量热能,将水变成水蒸气,利用这些蒸气来推动发电机发电。
在此基础上,我们水电的专业人士却可以发现,能源研究机构对于我国水电的减排作用,挖掘的还不够充分。我们认为:水电在未来的我国发电总量中的比重,决不应该仅占12%,而是要远高于目前的18%,甚至可以达到20%以上。
如果我们能够证明:我国的水电在未来发电能源中的比重,可以达到20%,那么能源研究所已有的预测结论,是不是就可以修正为:到2050年我国的“风电占比50%,太阳能占到23%,水电占到20%,核电6%和火电0%。”了呢?
进而我们可以发现2050年我国实现100%非化石能源发电的问题,基本上不必担心。因为,能源研究所的减排路线图是“风电占比50%,太阳能占到23%”,再加上我国巨大的水电潜力,完全可以“用更多的水电,取代火电”。
由于世界第三级青藏高原的存在,我国水电资源非常丰富,绝对是世界第一。目前,我国水电的装机(3.56亿千瓦)和年发电量(1.3万亿千瓦时)基本都占到了全球的四分之一以上,我国水电与世界第二之间的差距,至少都在3倍以上。
然而,目前 社会 上很多人(甚至包括一些研究能源问题的专家)都认为我国水电可开发潜力已经所剩无几了。这是因为,直到世纪之交,我国正式公布的水电可开发资源量也不过只有1.7万亿度/年。2006年的水电资源普查之后,更正后公布的数字为2.47万亿。几年之后,2016年的十三五规划就上升到了3万亿。
水电资源勘测的这种复杂性、困难性,往往使得可开发的资源量上升的空间很大。即便我们以十三五规划正式颁布的比较保守的3万亿/年来计算,我国目前(截至到2019年底)所开发利用的水电资源还不到44%。
如果我们能达到目前发达国家水电开发的(大约70%到90%的)平均水平,那么未来我国的水电,至少还有一半以上的开发潜力。初步估算,届时我国水电至少每年可以提供2.6万亿度的电能。
这个电量对我国能源的作用有多大?假设我国的用电达到峰值的时候,按照14亿人口,每人每年8000度电的需求,大约也就是每年11.2万亿度电。(目前我国各种用电峰值的研究预测,最高的也不过就是12万亿度左右)。
也就是说我国的水电(2.6万亿度的年发电量)将可以在未来我国用电最高峰的电力构成中,至少应该能提供20%以上的电能,远高于目前的18%。总之,我国的资源禀赋显示:未来我国水电所能发挥的作用,不仅不会比目前少,而且还要有所上升。
除了丰富的资源量,中国领先世界的水电技术也成为资源开发的坚实基础。
2004年,我国水电总装机容量突破1亿kW,超越美国成为世界第一。虽然我国的水能资源极为丰富,但我国水电开发建设的任务极其艰巨、繁重,因此我国水电开发的过程中所遭遇到的困难,所需要解决的难题,也几乎是前所未有的。
可以说,从我国改革开放加速水电开发建设时候起,我国的水电就已经开始了向世界水电 科技 制高点的攀登。目前,世界上最大的水电站是我国的三峡;最高的碾压混凝土坝(203m)是我国的黄登水电站;世界上最高的混凝土面板堆石坝(233m)是我国的水布垭水电站;最高的双曲拱坝(305m)是我国的锦屏一级水电站。我国正在建设的双江口水电站的堆石坝,高度将达到312m,建成后将成为全世界第一的高坝,刷新所有的世界纪录。
建设这些世界之最的水电站大坝,需要一系列尖端的工程技术支撑。可以说在所有这些工程技术方面,我国都已经走在了世界前列。在水电机组制造方面,目前不仅世界上单机容量70万kW的水轮发电机组绝大部分都安装在中国,而且单机容量达到80万kW和100万kW的水轮发电机组,也只有中国才有。
这种结合了现代 科技 的水电开发技术,使得我国的水电开发能力不断增强,可开发的资源量也不断的在扩展。加上我国现有的远距离、超高压、特高压输电技术,理论上我们的水电开发已经没有制约性的技术障碍。
总之,今天我国的水电已经是当之无愧的世界第一。无论从规模、效益、成就,还是从规划、设计、施工建设、装备制造水平上,都已经是绝对的世界领先。一般人可能想象不到,中国水电领先世界的程度,其实远超经常宣传的高铁、核电等行业。我国的高铁、核电等技术虽然已经非常先进,但是在国际市场上还是有竞争对手的。但是在水利水电领域的国际招标中,目前几乎所有具备实力的竞争者都是中国的公司。我国这种全行业的绝对领先,在我国 历史 上是否能绝后我们不知道,但肯定是空前的。
发达国家的水电开发程度,为何普遍都在70%到90%多,平均也有80%以上呢?其实,发达国家他们当年在开发水电的时候,国际上还没有什么碳减排的要求。然而,他们的水电,之所以都要开发到较高的程度的根本原因,主要在于 社会 现代化文明的发展,特别需要通过水电的开发来解决调控水资源的问题。
例如,美国著名的胡佛大坝、田纳西流域梯级水电开发的主要原动力,其实都是 社会 发展需要有效的调控水资源。所以,这些国家在满足了水资源的调控需求之后,往往就不再去进一步开发其它水电资源了。
而一些想靠开发水电解决能源问题的国家的水电开发程度,则普遍会更高些。例如:法国、瑞士等国的水电开发利用程度都超过了95%。总之,无论是哪种情况,国际 社会 的普遍经验说明,如果一个国家水电开发程度低于70%的话,那么这个国家的水资源调控问题,很难解决好。
因为,一个国家的水电开发程度往往都与水资源的开发程度成正比。所以,水电开发如果不能达到一定的程度,这个国家的水资源问题肯定也解决不好。目前,由于我国水电开发程度还不足44%,因此,我国的水资源调控的矛盾也就十分突出。
我国的国土面积和水资源总量都与美国差不多,但是,我国目前的水库蓄水总量只有9千多亿立方米,而美国是13.5万亿。我们大约还需要增加50%的水库总库容,才能达到美国那样的水资源调控水平。
然而,美国的人口还只是我国的1/5左右。也就是说,如果我们不能超过美国的水电开发程度的话,我国的水资源调控矛盾,绝对是无法解决好的。
总之,我们也可以这样说,即使我国不再需要用水电提供能源,但为了调控水资源我们也必须要把我国的水电开发程度提高到80%以上才行。否则,水资源的调控矛盾解决不好,我们建成小康 社会 的目标将难以实现。更何况目前我们还面临着巨大的减排压力,实现能源革命电力转型,最终兑现巴黎协定的减排承诺,已经迫在眉睫。
根据我国发改委能源研究所和国家可再生能源中心所发布的《我国2050高比例可再生能源发展情景暨路经研究》报告的预测结论:到2050年我国风电和太阳能发电的装机分别可达到24亿和27亿千瓦。
按照可能的年运行小时(风电2200多,太阳能1400多)估算。届时我国的风电大约每年可提供5万多亿度电能,太阳能也能提供接近4万亿度。有了这9万多亿的电能,再加上水电的2.6万亿,就已经超过了我国用电最高峰时的峰值11.2万亿度。
更何况届时我们还要有2亿多千瓦的生物质能可以发挥作用。也就是说,即使我们完全不考虑核电的作用,我国未来也可以用100%可再生能源的发电,来满足我国全部的用电需求。
不仅如此,水电还能够肩负起非水可再生能源发电调峰的重任。
众所周知,水电的可调节性肯定要比火电、核电都要好得多。所以,如果能源研究所的减排路线图切实可行,不存在解决不了的调峰矛盾,那么我们用水电替代其中火电的方案当然就更不会有问题了。
此外,我们还应该注意到:目前,尽管化学储能的技术无论从技术上还是成本上,确实都还难以满足商业化的要求,但是国内外的研究机构,为什么都还敢断言说2050年全球就实现100%的由可再生能源供电,无论在技术上还是经济上都是可行的呢?
笔者认为,其最重要的原因之一就在于可再生能源家族中含有功能特殊的水电。水电是最优质的可再生能源,可以为风、光等可再生能源的大量入网,提供重要的保障作用。目前,世界上所有能够实现百分之百由可再生能源供电的国家,基本上都离不开水电的有效调节。
大家知道,挪威因为水能资源丰富,一直都依靠水电保障全国99%以上的用电需求。今年年初,葡萄牙也完成了一个多月完全由可再生能源供电的成功尝试。葡萄牙高达52%的水电比重就是重要的支撑。
就连宣布了退出巴黎协定的美国的总统特朗普,在考察挪威,发现了水电的重要作用之后,也曾经表示过,他有可能会通过开发美国水电的潜力,重新考虑加入巴黎协定。这其实就是水电在未来的高比例可再生能源体系中,具有特殊的重要作用的一种体现。
当然,我们也必须承认,世界上的水能资源本身(总量有限)确实不能满足人类的能源电力需求,但是,由于科学开发的水电有很好的调节型,可以为大量的风、光等可再生能源的入网提供保障。这样一来,水、风、光互补发电,情况就大不一样了。
在现实中,风、光发电的间歇性与水电的季节性之间,通常有很强的互补关系。例如,我国四川省的凉山州,通过水、风、光互补,2016年凉山州除了满足自己的用电需求之外,给我国东部地区的送电超过1300亿度(这大约相当于当年上海市用电量的70%)。如果,未来的送电通道建设能有保障,预计2020年凉山外送电量可达2000亿度。也就是说通过水、风、光的互补发电,凉山州一个州所产生的可再生能源,除了满足自己的需要之外,还可以满足一个像上海这样大城市的全部用电需求。
目前欧洲很多的国家之所以能达到较高比例的可再生能源,也是因为欧洲的水电开发程度经高。而我国目前之所以还不得不以煤炭发电为主的根本原因之一,也正是由于我国的水电开发程度还不够高,水电的调节性能难以得到充分的发挥。
此外,在化学储能技术没有出现重大突破之前,水电家族中抽水蓄能电站的重要作用也不能忽视。为了给电网调峰,日本的抽水蓄能装机规模早就超过常规水电。假设到2050年化学储能的技术,仍然不能出现重大的突破,我们大不了再多建一些抽水蓄能。事实上,我国大量梯级开发的水电站(以及一些散落在全国各地的小水电)很多只要稍加改造,加装上能抽水的泵,都可以改造成混合式的抽水蓄能电站。
总之,仅从发电量来分析,我国到2050年实现完全由可再生能源供电,应该是完全可行的。再加上水电这种资源和它所具有的某些优质特性,在2050年实现百分之百的由可再生能源供电,无论在技术上还是经济上都是可行的。
1. 水库移民
很长时期以来,移民问题一直都是水电开发的主要制约因素,但其实移民的难点并非是由水电开发造成的。现实中凡是需要大量移民的大型水库水电站,其实都是有着重要的水资源调控功能的多功能水电站。而这些电站的最主要作用,可能并不是发电,而是水资源的调控。
例如三峡工程的首要目标是防洪和供水,而不是发电。如果仅仅是为了发电,三峡可以分别建成一系列的径流式水电站,这样几乎可以不用移民而产生等量发电。
没有了任何防洪、供水等水资源调控功能的三峡工程无法解决我国长江灾害的心腹大患,当然不能考虑。然而上百万的移民成本,全都要靠一个水电站的发电效益来解决,几乎也是无解的开发难题。
我国通过建立三峡基金,先后投入了一千多亿元解决了我国三峡建设的投资难题。理论上相当于国家出资建设了三峡水库,企业投资建设了三峡大坝和发电站。
现在回过头来看,这是国家参与大型水电开发的最成功范例。三峡水电的上网电价只有0.26元/度,比火电的平均上网电价要低近0.1元。三峡的年发电量大约为1000亿,这样一算三峡除了每年给国家的上交的利税和效益之外,仅这种隐性的电价补偿,就接近100亿(相当于对三峡基金的一种回报)。也就是说,大约发电十几年之后,国家对于三峡水库的投资,就相当于完全收回了。
然而,三峡水库所创造的效益又有多大呢?
三峡防洪供水的巨大效益仅仅通过一次防止特大洪灾就足以让我们刮目相看。2012年三峡水库所拦蓄的洪水峰值,已经超过了1998年。1998年我国长江特大洪水所造成的经济损失大约是2000多亿,死亡1600余人。
由于我们有了三峡水库的拦蓄,面对更大的洪峰,我们不仅不再需要百万军民的严防死守,而且也不再有任何人员的伤亡。可以说三峡当年防洪错峰所避免的洪灾损失,就已经超过了国家对三峡水库投资的数倍。只不过水利工程的经济效益,往往都是公益性的,你可以计算出来,但却无法实际收取到。
大型水电站的水库移民困难,其实是一种公益性开发的矛盾。让某一个企业自己依靠发电效益去解决,往往是非常困难的事情。如果采用三峡这种的国家参与开发的模式,问题就变得非常简单,容易。
世界上各国的大型水电开发项目,基本上都是国家行为。例如美国的大型水电全部都要由联邦政府的所属机构投资开发,从不容许商业开发者参与。
电力市场化改革之后,我国很多优质的项目即使依靠开发企业的电费收益,也能解决好移民的投资。但大多数具有水资源调控功能的大型水库电站的建设,都应该是公益性的。尽管这些项目的移民投资收益,几乎可以说是一本万利的。如果交给企业进行商业化的开发,可能就难以运作。
例如我国目前还争议巨大的龙盘水电站建设需要移民10万余人。这个重要的大型调蓄水库电站所创造的水资源调蓄能力几乎可以达到200亿/年。虽然其防洪功能还比不上三峡,但其供水的能力甚至可以超过三峡。
如果因为某个企业没有能力依靠电费解决移民搬迁的费用,就耽误了龙盘水电站的开发建设。那么就相当于今后上千年,我国的长江中下游每年汛期要增加200亿立方米洪水的压力,同时枯期还要减少了200亿水资源的供应。
同样的问题还体现在龙滩水电站二期扩建上。如果因为移民的费用无法由电费担负,就停止了龙滩二期的开发。那么我国南方的珠江流域,每年将要增加上百亿洪水的压力,同时枯水期又将减少上百亿水资源的供应。
每年几百亿的水资源保障,才是我们水库移民问题的本质。我们需要跳出水电商业化开发中移民难的惯性思维,避免丧失了我国水资源开发的大好时机。
2. 生态环保
除了移民问题,生态环保也一直被认为是水电开发的巨大障碍。
对于水电破坏生态的偏见,曾有很多文章专门介绍过,这是当年美苏争霸政治斗争留下的后遗症。1996年在联合国的可持续发展峰会上,也曾经一度因为当时的水电生态问题的过度炒作,否定了大型水电的可再生能源地位。但随后在2002年的峰会上,大会又一致同意做出了更正,恢复了大型水电的可再生能源地位。为什么会这样?因为,水电尤其是大型水电是当前人类 社会 替代化石能源第一主力。
仔细分析不难发现:所有水电破坏生态的问题,几乎无一不是局部的、针对某一特定物种的某种炒作。而水电实实在在所解决的,却是人类 社会 最大的生态难题——过量的使用化石能源所造成的气候变化。
因此,只要站在人类 社会 可持续发展的高度,几乎没有人敢否认,开发水电才是当前最重要的生态建设。当年的联合国峰会就是因为考虑到了气候变化,而立即纠正了对水电的偏见和误导宣传。
受到国际 社会 对水电误解的影响,我国以往的环保部门和环保人士也一度对水电开发的生态环境问题耿耿于怀。但是,改组后的生态环保部,已经开始担负了防止气候变化的职责。
前不久美国马里兰大学和我国国家发改委能源研究共同颁布的中国煤电退役报告非常明确地指出:我国若要实现《巴黎气候协定》中2摄氏度的减排承诺(2100年达到净零排放),就必须在2050至2055年退役全部的传统煤电;如果要实现1.5摄氏度的减排承诺(本世纪下半叶实现净零排放),就必须在2040至2045年间退役所有的传统煤电。
解决火电的碳排放问题,几乎是世界各国公认的兑现《巴黎气候协定》的最大难点。目前,世界各国都普遍认为,要实现《巴黎气候协定》的零碳目标,火电尤其是煤电只有退役一条路。
在今后20年的时间内,退役我国全部的煤电,大量的风、光发电入网,没有一定量的水电调节保障,怎么可能支撑起电力系统的正常运行。
可以确信在不远的将来,只要我国真的要兑现巴黎协定,我们负责这项工作的生态环保部,肯定会和当年的联合国可持续发展峰会一样,从根本上转变对水电的态度。因为水电在能源革命中的地位和作用是无可替代的重要。
3. 开发成本
随着我国水电开发的深入和向西部转移,资源的开发难度以及输电的距离都在增加。因此导致大部分即将开发的水电项目,普遍存在着还贷期上网电价过高的难题。
西部水电开发成本高的问题,其实也不应该是真正的发展障碍。由于目前企业投资核算的周期,最长也不能超过30年,所以我国西部深山中待开发的水电项目,几乎都存在着初期上网电价难以接受的难题。然而,只要还贷期一过,水电站的发电成本马上又变得非常低。
当前所谓西部水电开发的高成本障碍,其实只是一个算账方法的规则问题。这对于具体开发企业,虽然是无法逾越的难题,但对于一个国家来说,从政策上解决这种矛盾,应该说是轻而易举的简单。
从全生命周期来看,水电几乎是最经济的能源。目前,不仅我国的水电上网电价平均比火电低很多,而且全世界各国的电价,几乎都是水电多的国家的电价都比较低。
除此之外,随着 社会 的进步,很多发达国家都已经进入低利率甚至负利率的时代。而我们目前水电投资,还都是要以高达6%左右的贷款利率计算成本。可见,西部水电开发的高成本,其实只是形式上的、暂时的。而实质上,水电才是我们人类 社会 最经济的电力来源之一。
在新一轮的西部大开发中,如果我们仅仅因为资本收益的计算,不利于投资者的短期回报,而丧失了为 社会 提供最优质、最经济的电力的大好机遇,那无疑将是我们的巨大失误。总之,我们的 社会 主义市场经济应该更有利于保障 社会 的整体和长远利益,因此,通过建立专项基金或者利用财税手段,解决这类矛盾并非难事。
如上文所述,我国水电在新时期高质量的发展,不仅切实可行,而且还可以说是我国经济和 社会 可持续发展的必由之路。然而,当前由于我国 社会 舆论对能源电力转型的认识不到位,煤电退出 历史 舞台的问题,至今还没有被摆上议事日程。因此,目前我国严重的电力产能过剩,所导致的水电弃水的难题,依然制约着当前水电的发展。
这种状况只能是暂时的。一旦我们整个 社会 意识到以煤电的退出和可再生能源的大发展为标志的能源革命电力转型,是我国实现小康 社会 并兑现巴黎协定承诺的基本前提,电力转型的情况随时都可能会发生大变。水电作为我国可再生能源大发展的基础和保障,时刻要为这一天做好准备。总之,水电的特性就决定了,我国水电的高质量发展一定要和我国 社会 的进步和可持续发展同呼吸、共命运。
今日读《2018世界能源统计年鉴》和《BP世界能源展望2018版》,整理成阅读笔记以便日后查阅。
2017年, 全球能源需求增长了2.2%, 高于16年的1.2%, 高于十年平均的1.7%。中国能源消费增长3.1%, 连续17年成为全球能源消费增量最大的国家。
石油
1、全球石油消费增长1.8%, 即170万桶/日, 连续第三年超过十年平均增速 (1.2%) 。 中国 (50万桶/日) 和美国 (19万桶/日) 贡献了最多的增量。
2、过去10年间,中南美洲探明了更多的石油。
天然气
1、天然气消费增长了960亿立方米, 上升3%, 是2010年以来的最快增速。消费增长主要来自中国 (310亿立方米) 、 中东 (280亿立方米) 、 欧洲 (260亿立方米) 。 美国的天然气消费下降了1.2% (110亿立方米) 。
2、中国天然气消费增速超过15%, 约占全球天然气消费增长的1/3。 如此快速的扩张归功于中国政府打出的一套力度空前的组合拳, 通过胡萝卜加大棒的策略鼓励工业和住宅用户进行 “煤改气” 或 “煤改电” , 而多数用户选择了 “煤改气” 。尽管受此政策影响的300万户家庭吸引了更多眼球, 但实际上 工业用户 “煤改气”的量更大。预计中国的天然气需求在今年继续强劲增长, 但在未来几年应该不会出现像去年那样大的增幅。
3、过去10年间,独联体国家及亚太地区探明了更多的天然气。
煤炭
1、煤炭消费增长了2500万吨油当量, 上升1%, 是2013年以来的首次增长。煤炭消费增长主要来自印度 (1800万吨油当量) , 中国的煤炭消费在连续三年(2014-2016年) 下降后出现小幅反弹 (400万吨油当量) 。 经合组织国家煤炭消费连续第四年下降 (-400万吨油当量)。
2、亚洲的煤多,所以许多发展中国家依然依赖煤炭作为主要能源。
可再生能源、 水电和核能
1、可再生能源发电增长了17%, 高于十年平均值, 也是有记录以来的最大年增长(6900万吨油当量) 。 可再生能源增量的一半以上来源于风电 , 太阳能虽然在可再生能源中占比仅21%, 却贡献了超过三分之一的增量。
2、中国的可再生能源发电增长了 2500万吨油当量 , 打破了此前的增长记录。如果把2017年所有国家不同一次能源消费的增量进行排序, 中国的天然气和可再生能源将分列第一和第二。
3、水电增长近0.9%, 相比之下十年平均值为2.9%。 中国水力发电的增量为自2011年以来最低, 欧洲则下降了10.5% (-1600万吨当量) 。
4、全球核电增长了1.1%。 中国 (800万吨油当量) 和日本 (300万吨油当量) 的增长一定程度上被韩国 (-300万吨油当量) 和中国台湾 (-200万吨油当量) 所抵消。
5、2017年太阳能发电装机容量增长约100吉瓦, 仅中国就贡献超过50吉瓦。去年 全球太阳能发电量增长超过三分之一 , 增长主要源于政策支持, 也得益于太阳能发电成本持续走低。 太阳能发电成本已经普遍低于5美分/千瓦时。
发电
1、2017年, 全球一次能源消费有40%用于发电, 使电力成为最大的用能行业。去年发电量增长了2.8%, 接近十年平均值。 94%的增长来自新兴经济体, 经合组织国家的发电量自2010年以来基本没有增长。 发电量增长的近一半来自可再生能源 (49%) , 剩下主要来自于煤炭 (44%) 。可再生能源在发电结构中的占比从7.4%提升至8.4%。
2、不同地区的能源结构差异比较大。
3、平均来看,世界发电的主要来源依然是煤炭。
关键材料-钴和锂
1、自2010年以来, 钴产量年均增速仅为0.9%, 而锂产量同期年均增长 6.8%。
2、2017年, 钴的价格几乎翻了一倍, 碳酸锂的价格上升37%。
3、钴产量及储量
3、锂产量及储量
小结
经济背景
1、在渐进转型的情景下,全球GDP预计年均增长3.25%,主要有发展中国家所驱动。超过80%的世界生产增长由新兴经济体驱动,中国和印度占此增长的一半以上。
2、人口增长也是世界经济增长的驱动因素之一,2040年的人口有望达到92亿,新增的17亿人口主要由非洲及除中国外的亚洲国家所贡献,中国进入老年化阶段,人口总量将逐步下降。到2040年,全球城市化的趋势依然会延续,因为新增的人口主要集中在城市的中心地带。 大部分的城市化增长发生在非洲,预计非洲的新增人口占世界的近一半,其中有近6亿新增人口属于城市人口,占全球总增长的三分之一。 可惜的是,由于非洲的生产率低下,人口的爆炸性增长却不能反映在GDP的增长上,其对世界增长的贡献度不足10%,因而难以有效拉动对能源的需求。
3、全球经济日益繁荣驱动能源需求的增长部分被迅速下降的能源强度所抵消,全球能源需求年均增速从过去20年的超过2%,下降至1.3%左右。 到2040年,尽管全球GDP增长超过一倍,但世界能源消费仅增长33%左右,显著低于过去25年的年均增速。
分行业需求-工业
1、总体来看,目前的能源结构中,工业(包括能源的非燃烧使用)占据一半份额,民用和商用建筑占了29%,交通领域占了20%。
2、在工业领域,由于中国的快速工业化接近尾声,未来的工业能源消费增长将明显放缓。中国工业能源需求的增长,在过去15年增长了三倍,未来中国经济将由能源密集型工业行业(如钢铁和水泥)转向较低能源密度的服务业和面向消费者的行业,并因此造成工业能源需求增长的停滞。而且,有一部分工业生产会转向低收入经济体, 包括印度在内的亚洲、非洲的新兴市场国家一起构成工业能源消费增长的约70%。
(注:工业不包括能源的非燃烧使用)
3、工业能源结构中, 天然气和电力满足了全部工业能源的增量需求 ,而伴随着煤改气的普及,尤其在中国,到2040年煤炭所提供的工业能源比例从目前的三分之一下降到不足四分之一。
4、能源的非燃料使用将具有更显著的重要性。非燃料使用是指作为石油化工产品的原料、润滑剂、沥青等用途。在未来,工业行业除非燃烧使用外的消耗增速将放缓至年均1.0%的水平,而非燃烧使用增速却能保持在年均1.9%的水平,使得2040年的能源非燃料使用,在总工业增长需求中的比重上升至近20%。其中,石油占能源非燃料使用增长的三分之二,天然气占所剩的大部分份额。
分行业需求-建筑
1、在建筑领域, 能源消费的增长主要由亚洲贡献,最大的能源种类为电力。
2、建筑能源需求增长的驱动力是 人口增加和经济发达程度增加 ,人们不断追求更加舒适的生活和工作。 亚洲、非洲和中东总计占建筑行业能源使用增长的90% 。
3、建筑行业几乎所有新增能源需求是使用电力给 空间降温和为电器功能 。
分行业需求-交通
1、到2040年,全球对公路、航空和海运的客运及货运服务需求将增加两倍以上,不过由于能源效率提高,对能源的需求仅会增长25%。在道路交通方面,机动车保有量和交通需求上升的影响被效率提升所抵消,但卡车的能源需求增长强劲。 由于卡车的效率提升相对缓慢,导致其在交通行业内消费的能源份额增加。同时,航空客运交通增长也很强劲。
(注:非公路包括航空、海运和铁路;汽车包括两轮和三轮车辆)
2、未来在交通领域,石油依然占主导地位,但可替代能源尤其是天然气和电力的使用逐渐增长。预期到2040年,石油需求占比从目前的94%下降至85%左右,天然气、电力和“其他”类能源各占交通能源需求的5%。
天然气的增长集中于液化天然气在长途货运和海上交通的使用。
电力的增长集中于乘用车和轻型客车的使用。
“其他”种类能源主要是生物燃料,而氢能仅在交通中能源中占很小一部分。 氢能的前景在2040年前后才有看头,能否进一步发展取决于氢能在长途道路货运供能上与液体燃料和电力的竞争力。
3、到2040年,乘用车总量大幅增长(增长至20亿辆),同时电动车数量增加(超过3亿辆),车辆效率显著提升。届时,PHEV和BEV的总量大致持平。展望期间,在监管和政府目标的驱动下,全球汽车总体效率将年均提高2-3%。
4、未来道路交通的能源需求受三大因素的影响: 电动汽车、共享出行和自动驾驶 。
到2040年,乘用车行车公里数有30%是使用电力,显著高于电动车全球汽车总量中的占比15%。更高的比例意味着共享出行中,电动汽车将占据重要地位。此外,届时电动卡车行车公里数的占比将达到15%,主要集中于短途轻型客车。
(注:汽车包括两轮和三轮车辆)
5、液体燃料的需求并不会出现明显的变化。为达到排放标准,汽车制造商的手段包括调整ICE汽车所占销售份额、销售更多的电动汽车;采取减重等方式提升车辆效率。
6、假设在世界范围内,能够实施自2040年起对内燃机汽车销售的禁令,则电动车的销售情况将会更加乐观。到2030年,约三分之一的新售汽车是纯电动车;到2035年,BEV的销售比例会达到三分之二,并在2040年达到100%。另一方面,到2030年,有20%的乘用车行车公里数由电力供能,2040年将达到约三分之二。
分行业需求-电力
1、全球持续电气化,从生产电力的结构上看,可再生能源的重要性持续增加, 在增量当中,可再生能源的比例约占一半 ;天然气与核能的比例保持稳定;煤炭依然是电力的最主要能源来源,到2040年占比依然有近30%。在新增部分中,煤炭的贡献仅为13%,而过去25年中,这一比例是40%。
地区需求
1、可再生能源的普及还看中国和经合组织,而在亚洲其他地区,煤炭发电依然是主流,并占新增发电量的绝大部分。
地区需求-中国
1、中国逐渐向低碳能源转型。至2040年, 可再生能源和核能、水电一起占能源需求增长的80%,可再生能源将接替石油成为中国第二大能源来源 。
地区需求-印度
1、印度将成为全球能源最大的增量市场。不过依然以煤炭作为主要能源,占能源新增需求的45%。为了使全部人口都可以使用电力,将有 超过70%的煤炭消费增量被用于电力行业 。
2、印度的可再生能源增长迅猛,尤其是 太阳能 的增长。
地区需求-美国
1、美国作为全球最大的石油和天然气生产国的地位有所加强。 美国在全球石油(石油和天然气凝析液)生产中的份额从现在的12%上升至2040年的18% ,届时沙特阿拉伯排在第二位,占比13%。 在天然气方面,美国2040年的产量占全球的24% ,届时俄罗斯排在第二位,占比14%。
2、由于美国的能源消耗量也大,因此其净出口在全球贸易份额中的比例不高。同时 美国将失去最大可再生能源生产国的地位 ,其生产比例将从目前的24%下降至2040年的15%。与之相比,届时 中国的可再生能源占比将上升至约30% 。
地区需求-欧盟
1、欧盟继续 引领低碳经济的转型 ,其2040年的碳排放比2016年下降超过35%,单位GDP碳排放是世界均值的一半。到2040年,非化石能源满足欧盟约40%的能源需求,与2016年的25%相比有所提升,远高于世界平均的25%。
能源的供需
1、 2040年的能源结构将呈现前所未有的多元化,届时 石油、天然气、煤炭和非化石能源预计将各提供世界能源的约四分之一 。
(注:非化石能源包括可再生、核能和水电)
能源的供需-石油
1、全球液体燃料(石油、生物燃料和其他液体燃料)的需求增长约1300万桶/日,到2040年达到 1亿9百万桶/日 ,而供应方面主要由美国和石油输出国组织的增产来保障。
2、细分看,交通行业持续主导全球石油需求,占全球需求增长的一半以上。 到2040年,液体燃料的总体增长进入停滞,但非燃烧使用的需求依然会增加。
能源的供需-天然气
1、天然气由于需求广泛(工业化程度和电力需求增加、持续的煤改气),加上低成本供给的增加(美国和中东)和液化天然气供给持续扩张,全球范围内的 可获得性将显著提升 。 在增量当中,美国和中东(卡塔尔和伊朗)占据一半以上的份额。
2、增长的驱动力主要源自 工业和电力行业 。
3、全球贸易进一步繁荣,随着流动性提高,全球价格将更加同步。
能源的供需-煤炭
1、中国和经合组织国家需求下降,印度和亚洲其他国家的需求继续增长,相互抵消后的总体需求平稳。
能源的供需-可再生能源
1、基于风能和太阳能的迅速发展,可再生能源是增长最快的能源来源(年均7.5%),占新增发电量的50%以上。其中,中国是最大的增长来源,新增的可再生能源总量已超过整个经合组织。到2030年,印度将成为第二大增长源。
2、太阳能成本的下降超出预期。在科技的发展与政策的支持下,太阳能的学习曲线以更高的速度下滑。预计累计发电装机每提升一倍,光伏组件成本可下降24%。
能源的供需-核能和水电
1、核能主要靠中国驱动。核能在中国能源需求中的占比从目前的2%将上升至2040年的8%。欧盟和美国的核电站到期且不再进行更换,欧盟年均下降11太瓦时,美国年均下降10太瓦时,导致总体核电增长受阻。
水电靠中国和其他发展中国家驱动。水电年均增长1.3%,合计61太瓦时每年,速度比过去放缓。中国在增长中占比最大,达到16太瓦时每年,其次是南美和中美地区(13太瓦时每年)以及非洲(11太瓦时每年)。
不同报告的观点对比
这两篇报告介绍了各类能源的基本情况,并描绘了世界能源结构变化的可能性。接下来可以在未来的各项增长点中,尝试挖掘一些投资机会。
刺猬偷腥
2018年8月2日