利用新能源发电的原理是什么啊?
1燃料电池
燃料电池是一种将储存在燃料和氧化剂中的化学能,直接转化为电能的装置。当源源不断地从外部向燃料电池供给燃料和氧化剂时,它可以连续发电。依据电解质的不同,燃料电池分为碱性燃料电池(AFC)、磷酸型燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)、固体氧化物燃料电池(SOFC)及质子交换膜燃料电池(PEMFC)等。按燃料电池所用原始燃料的类型,大致分为氢燃料电池、甲烷燃料电池、甲醇燃料电池和汽油燃料电池。燃料电池不受卡诺循环限制,能量转换效率高,洁净、无污染、噪声低,模块结构、积木性强、比功率高,既可以集中供电,也适合分散供电。
使用燃料电池发电,是将燃料的化学能直接转换为电能,不需要进行燃烧,没有转动部件,理论上能量转换率为100%,装置无论大小实际发电效率可达40%~60%,可以实现热电联产联用,没有输电输热损失,综合能源效率可达80%,装置为集木式结构,容量可小到只为手机供电、大到和目前的火力发电厂相比,非常灵活。
燃料电池其原理与一般电池相同。其单体电池是由正负两个电极(负极即燃料电极和正极即氧化剂电极)以及电解质组成。不同的是一般电池的活性物质贮存在电池内部,因此,限制了电池容量。而燃料电池的正、负极本身不包含活性物质,只是个催化转换元件。因此燃料电池是名副其实的把化学能转化为电能的能量转换机器。电池工作时,燃料和氧化剂由外部供给,进行反应。原则上只要反应物不断输入,反应产物不断排除,燃料电池就能连续地发电。
燃料电池具有高效率、无污染、建设周期短、易维护以及成本低的特点,它不仅是汽车最有前途的替代清洁能源,还能广泛用于航天飞机、潜艇、水下机器人、通讯系统、中小规模电站、家用电源,又非常适合提供移动、分散电源和接近终端用户的电力供给,还能解决电网调峰问题。随着燃料电池的商业化推广,市场前景十分广阔。人们预测,燃料电池将成为继火电、水电、核电后的第四代发电方式,它将引发21世纪新能源与环保的绿色革命。
2005年,从事燃料电池开发的公司总投资额已超过10亿美元。据统计,2005年全球拥有50万个固定的(静止式)燃料电池装置,到2010年,将有250万户家庭使用燃料电池,同时全球拥有60万台燃料电池汽车,占世界汽车生产量的1%。
新能源汽车的结构组成是:电力驱动系统、电源系统和辅助系统。新能源汽车的工作原理是:利用氢气和空气中的氧在催化剂的作用下,在燃料电池中经电化学反应产生的电能作为主要动力源驱动的汽车。新能源汽车车型有:比亚迪汉、欧拉黑猫、特斯拉model3、长安奔奔ev、蔚来es6等。以2021款特斯拉model3为例,其车身尺寸是:长4694mm、宽1850mm、高1443mm,轴距为2875mm,行李箱容积为425l。
新能源汽车工作原理是蓄电池,电流,电力调节器,电动机,动力传动系统,驱动汽车行驶。电动汽车,相对燃油汽车而言,主要差别在于四大部件,驱动电机,调速控制器、动力电池、车载充电器。
新能源汽车的优势
新能源汽车采用的主要是非燃油动力装置,不需要燃烧汽油、柴油等,而是采用清洁能源,比如电力、太阳能、氢气等。这样,就减少了二氧化碳等气体的排放,从而达到保护环境的目的。
燃油车每公里油费大概0.6-0.8元,但是使用电只需要0.2元。另外,电机结构非常简单不易坏,不需要频繁保养。因为环境污染严重,为了减轻环境压力,很多城市都采用汽车限号的方式,限制私家车的出行。但是,新能源汽车几乎是零污染、零排放,所以也就不在限号范围内,更方便出行。
1 前言
地热能是地球内部贮存的热能,它包括地球深层由地球本身放射性元素衰变产生的热能及地球浅层由接收太阳能而产生的热能。前者以地下热水和水蒸气的形式出现,温度较高,主要用于发电、供暖等生产生活目的,其技术已基本成熟,欧美国家有很多用于发电,我国则多用来直接供热,这种地热能品位较高,但受地理环境及开采技术与成本的影响因而受限较大后者由太阳能转换而来,蕴藏在地球表面浅层的土壤中,温度较低,但开采成本和技术相对也低,且不受地理环境的影响, 特别适合于建筑物的供暖与制冷,因而受到了暖通空调及节能行业越来越多的关注。
地球表面是一座巨大的天然太阳能集热器和储热库。到达地球表面的太阳能相当于全世界能源消耗量的2000倍,只是由于太阳能能流密度低,地球表面的温度变化大,使得对这部分热能的直接利用困难较多。但实际上,温度受天气变化影响较大的部分主要集中在地表面至地下10m之间的区域内,从10m深度再往下, 大地温度就稳定在当地全年的平均气温上了。我国大部分地区这个温度都在15℃左右,如果把这样的温度搬运到地面上来稍做处理,就可成为很好的空调系统,这就是目前浅层地热能利用的主要方式。
浅层地热能利用通常需借助于热泵,它是一项新兴绿色节能技术。在冬天它以大地为低温位热源,从大地中提取热量,经过地面上热泵的转换,提高温位向房屋供暖在夏天则以大地为高温位热源,将房屋内的热量输送到大地土壤中。由于地下温度十分稳定且很接近房屋居住所需的温度,因此,相对于以大气环境为热源的热泵和燃煤、燃油的供暖供冷系统,以大地为提取热量或排放热量的热源的热泵效率大大提高,同时还减少了燃烧产物的排放和制冷剂的用量,对环保十分有利。
从大地土壤中提取热量用于房屋的供暖早在20世纪30年代就已提出,只是由于长期以来石化燃料价格低廉,供应充足,它才没有得到重视,导致其进展缓慢。到 20世纪80年代以后,由于全球性能源紧张和环境污染日趋严峻,这项技术才逐渐受到青睐,目前已趋于成熟,正在欧洲、北美和日本得到推广应用。在我国则还处于实验研究阶段,目前国内几家科研院所和高校正在开展这方面的研究,要进入商业化的实际工程应用尚需进行长期不懈的努力。
2 浅层地热能利用系统及其特点
浅层地热能属于低品位热能,直接使用达不到一般要求的温度,通常需设置一套热泵,组成地热能热泵利用系统,将地下热能的温度进行一定的提高或降低。因此,地热能利用系统主要由热泵、地热换热器及用户端组成,而其中地热换热器是关键。
2.1 地热能热泵
地热能热泵的工作原理与通常的热泵相同,都是由压缩机、蒸发器、冷凝器、节流装置组成。通过消耗一部分高品质能源即电能,吸收低温物体的热能排放给高温物体,实现供热和制冷的目的,其热泵示意图如图1所示。只不过,通常的热泵以大气环境为其吸热或放热的热源,大气温度的剧烈变化导致常规的热泵效率低下, 不仅消耗大量高质能源,而且恶化了周围的环境温度,使得夏天更热,冬天更冷。
与常规热泵不同,浅层地热能热泵以近地表层土壤为其吸收热量或排放热量的热源。在冬天,地热能热泵从土壤中吸取热量,供给热泵的蒸发器,经压缩机提高温度后,传到热泵的冷凝器,向房屋供热在夏天,地热能热泵通过其蒸发器从房屋内吸收热量,经压缩机、冷凝器而排放到土壤中。因为土壤温度全年基本维持不变, 热泵系统的操作可以设计得十分精确,使得工作稳定而高效。
地热能热泵可以很小,单个住户只需一套热泵也可以很大,商业上可采用多套或多级热泵,唯一的要求是需要足够的土地,使热交换能够充分进行,最节约的方式是在建筑施工的起始阶段就安装地热能热泵,这样,房屋结构就不会阻碍热泵与地下热源的联系。 地热能热泵以大地为吸收或排放热量的热源,在有地下水源的地方,不需要专门的地下换热器,可以直接抽取地下水,经过去除杂质的处理后,根据供暖或制冷的目的,送给热泵的蒸发器或冷凝器,完成热量交换后回灌到地下或排放到别的地方。在没有水源的地方,热泵要与土壤交换热量,就需要设置专门的地下换热器。所以,在结构上它与常规热泵最大的不同就是需要一套地热换热器。
2.2 地热换热器
地热换热器的性能与当地土壤的性能密切相关,它设计得合理与否直接影响地热利用效率和投资成本,是地热泵成功应用的前提,也是当前浅层地热利用技术推广的难点。 浅层地热能热泵所用地热换热器就是在地面下埋设的封闭管道回路,这些管路通常由高密度聚氯乙烯或聚丁烯塑料管组成,用泵将换热介质送入这些地下管道与地下土壤进行热量交换,然后回到地面与热泵进行换热,换热介质通常为水的盐溶液,封闭在管路系统,在地面上的热泵与地下换热器之间循环流动,完成换热任务.
地下管道埋设方式有水平式和垂直式两种形式。水平埋管式通常浅层埋设,工程量大而开挖技术要求不高,初投资低于竖直埋管式缺点是占地面积大,温度稳定性也较差,现在已很少采用。竖直埋管式工程量小,占地面积少,恒温效果好,维护费用少,适合于用地紧张的城市缺点是技术要求较高,初投资较大。 竖直埋管式地热换热器目前应用较多,发展较快。它是在地面下竖直钻孔,在孔内埋入换热管,换热管的形式又有两种:U型管式(见图2)和套管式,目前以U型管应用较多。地下钻孔的孔径一般为100~150mm,孔间距和深度取决于土壤的热性质和气象条件并随地理位置而变。孔深一般为100~300m,孔间距为 4~10m,钻孔总长度由建筑面积的大小而定,一般是每平米建筑面积钻孔长度1m左右。
每一竖直钻孔内可放入一组或两组U型塑料管,管径25~35mm,塑料管下端用U型接头接好,形成一个U型封闭管路。然后将钻孔与管道之间的空间填埋夯实,填埋材料可以采用当地土壤,也可以选用与当地土壤性质接近的混凝土。各钻孔内,管道之间的连接方式有串联和并联两种形式。 串联形式就是换热介质依次流过每个钻孔内的U型换热管路之后再回到地面与热泵的制冷剂进行热量交换。并联形式就是换热介质同时分配到地下各个钻孔内的换热管路,与土壤交换热量后,同时流回地面进入地面上的热泵与制冷剂交换热量,这两种方式各有利弊。 串联系统的优点是:单一流程和管径管道的线性长度有较高的热性能系统的空气和废渣易于排除。缺点是:需要较大的流体体积和较多的抗冻剂管道费用和安装费用较高长度压降特性限制了系统的能力。 并联系统的优点是:管径较小因而管道费用较少抗冻剂用量较少安装费用较低。缺点是:一定要保证系统的空气和废渣的排除在保证等长度环路下,每个并联线路之间流量要保持平衡。
2.3 经济性及环保性
地热能热泵的能源利用效率比通常的热泵提高45%~70%,通常每消耗1kW的功率可得到4kW的热量或冷量。地热能热泵的投资回收期依赖于热泵系统的大小、运行时间的长短和当地的能源价格,因设置地热能热泵而多投资的费用的回收期通常为5年左右,总的投资回收期为10~14年。 由于以大地土壤中的低品位热能为低温热源,所以,在为住宅供暖制冷时,仅需驱动热泵运行的电力供应,而不需要别的热能,不需要锅炉来燃烧燃料供应热能。同时,由于土壤温度基本恒定,因此热泵的运行效率较通常热泵的效率高,而且无论是CO2的排放还是制冷剂的使用都比常规的热泵为少,对环境的破坏和污染就相应减少。
新能源汽车的原理是采用非常规的车用燃料作为动力来源(或使用常规的车用燃料、采用新型车载动力装置),综合车辆的动力控制和驱动方面的先进技术,形成的技术原理先进、具有新技术、新结构的汽车。以秦新能源2021款出行版为例:这款车的生产厂商为比亚迪,级别为紧凑型车,变速箱为电动车单速变速箱,车身类型为4门5座三厢车,最高车速每小时为150千米,驱动方式为前置前驱,转向助力类型为电动助力。
电动机驱动与发动机相比有两大技术优势:电动机可以在相当宽广的速度范围内高效地产生转矩,这意味着电动车甚至只需要单级减速齿轮就可以驱动车辆。其次,由于高度电气化的控制系统引入,电动机实现动力输出的快速响应能力远高于发动机,这意味着电动机的响应比发动机更加灵敏。
电力驱动控制系统是电动车的神经中枢,它将电动机,电池和其他辅助系统互为连接并且加以控制。电力驱动控制系统按工作原理可划分为车载电源模块、电力驱动主模块和辅助模块三大部分。
电力驱动主模块主要由中央控制单元、驱动控制器、电动机、机械传动装置等组成。
中央控制单元根据加速踏板与制动踏板的输入信号,向驱动控制器发出相应的控制指令,对电动机进行起动、加速、降速、制动控制。驱动控制器的功能是按中央控制单元的指令和电动机的速度、电流反馈信号号,对电动机的速度、驱动转矩和旋转方向进行控制。
车载电源模块主要由电池电源、能源管理系统和充电控制器三部分组成。