煤炭燃烧时的温度是多少
煤的燃点取决于挥发份的含量,挥发份越多燃点越低。几种煤炭的着火温度大致如下:无烟煤-550~700℃;烟煤--400~550℃;褐煤--300~400℃。
煤,一种可燃的黑色或棕黑色沉积岩,这样的沉积岩通常是发生在被称为煤床或煤层的岩石地层中或矿脉中。
因为后来暴露于升高的温度和压力下,较硬的形式的煤可以被认为是变质岩,例如无烟煤。煤主要是由碳构成,连同由不同数量的其它元素构成,主要是氢,硫,氧和氮。
扩展资料
煤中的有机质在一定温度和条件下,受热分解后产生的可燃性气体,它是由各种碳氢化合物、氢气、一氧化碳等化合物组成的混合气体。挥发分也是主要的煤质指标,在确定煤炭的加工利用途径和工艺条件时,挥发分有重要的参考作用。
煤化程度低的煤,挥发分较多。如果燃烧条件不适当,挥发分高的煤燃烧时易产生未燃尽的碳粒,俗称“黑烟”;并产生更多的一氧化碳、多环芳烃类、醛类等污染物,热效率降低。因此,要根据煤的挥发分选择适当的燃烧条件和设备。
参考资料来源:百度百科-煤炭
煤炭自燃过程大体分为3个阶段:①潜伏期②自热期②燃烧期
自燃潜伏期煤体温度的变化不明显,煤的氧化进程十分平稳缓慢,然而它确实在发生变化,不仅煤的重量略有增加,着火点温度降低,而且氧化性被活化。它的长短取决于煤的自燃倾向性的强弱和外部条件。
经过这个潜伏期之后,煤的氧化速度增加,不稳定的氧化物分解成水(H20)、二氧化碳(CO2)、一氧化碳(CO)。氧化产生的热量使煤温继续升高,超过自热的临界温度(60~80℃),煤温上升急剧加速,氧化进程加快,开始出现煤的干馏,产生芳香族的碳氢化合物(CxHy)、氢(H2)、更多的一氧化碳(CO)等可燃气体,这个阶段为自热期。
临界温度也称自热温度,是能使煤自发燃烧的最低温度。一旦达到了该温度点,煤氧化的产热与煤所在环境的散热就失去了平衡,即产热量将高于散热量,就会导致煤与环境温度的上升,从而又加速了煤的氧化速度并又产生更多的热量,直至煤自燃起来,即进入燃烧阶段。
温度/℃ 变化
100以上自由水被蒸发
200 以上释放出化合水和二氧化碳
350 以上 开始分解,煤变软并释放出煤气和煤焦油
400~450 大多数煤焦油被释放
450~550 继续分解
550以上固体已成焦炭,尚有气体释放
900以上只剩下焦炭
在开放的火堆里,中层的木炭可以达到熔化铝的温度,大概在700度左右;在打铁匠的相对密闭的风箱炉子里边,环境温度可以达到900度甚至1000度。
中国古代就用木炭炼钢,生铁熔化的温度也在1000度以上。
1、无烟煤:550~700℃;
2、烟煤:400~550℃;
3、褐煤:300~400℃。
扩展资料
煤成分
煤其主要成分为碳、氢、氧和少量的氮、硫或其它元素。硫是煤最主要杂质之一,其通常以硫化物之形式出现于煤的燃烧生成物中。于某些国家,例如美国已设立规范管制硫化物之排放量,因除去此类有害杂质花费不低,故政府均奖励生产低硫煤以减少污染。
煤被认为是远古植物遗骸埋在地层下经过泥炭→褐煤→烟煤→无烟煤的转变所形成的,无烟煤还可以进一步转化为石墨。
参考资料来源:百度百科-木炭
参考资料来源:百度百科-煤
关于煤的自燃问题,长期以来,一般都认为煤中黄铁矿的存在是自燃的原因,由于黄铁矿氧化成为三氧化二铁及三氧化硫时能放出热量,在有水分参加的情况下,可以形成硫酸,它是很强的氧化剂,更加速煤的氧化,促进煤的自燃。
需要指出,有的含有黄铁矿的煤,虽然经过长斯放置,并不一定发生燃,而不含或少含黄铁矿的煤也有自燃现象。因此,煤的自燃并非完全因含有黄铁矿而引起。其主要原因是由于吸收了空气中的氧气,使煤的组成物质氧化产生热量,再被水湿润,就放出更多的湿润热,也会加速煤的自燃。此外,煤的自燃还与煤本身的性质有关。如煤的品级;煤的显微组分、水分、矿物质、节理和裂隙;煤层埋藏深度和煤层厚度;开采方法和通风方式等。煤的自燃从本质上来说是煤的氧化过程。
1.2 煤自燃的不同阶段
(1)水吸附阶段。与其他阶段不同,这个阶段只是个物理过程,煤与氧不会发生反应,煤吸附水虽不是煤自燃的根本原因,但他对煤自热,特别是低品级的煤自热有重要影响。当水被煤吸附时会放出大量热,即润湿热。所以,多数情况下该阶段对煤的自燃都起着关键作用。 {TodayHot}
(2)化学吸附阶段。煤自燃过程首先在这个阶段发生化学反应。该阶段的反应温度为环境温度至70℃。这伸过程中煤吸附氧气会产生过氧化物,因而叫做化学吸附阶段。化学吸附阶段煤重略有增加,并产生气体,其中的CO可作为标准气体,通过监测CO浓度可对煤的自燃进行早期预报,化学吸附阶段需要少量水参加反应。根据煤的品级和类型不同,化学吸附的放热量在5.04~6.72J/g之间变化。若煤温达到70℃时会分解,煤重随之在幅度下降,甚至比原始煤重还要轻。煤中水汾的蒸发可带走一些热量,该过程产热量晨16.8~75.6J/g间变化。若煤氧化进行到这个阶段,想使其不自燃是非常困难的。
(3)煤氧复合物生成阶段。该阶段生成一种稳定的化合物,即煤氧复合物。其反应温度范围为150~230℃。产生的热量25.2~003.4J/g。这个阶段煤重又有所增加,煤氧化进行到这个阶段必然发生自燃。
(4)燃烧初始阶段。这是煤氧复合物生成阶段到煤快速燃烧阶段的过渡时期,煤温达230℃时,煤氧化可进行到个阶段。此时煤的反应热为42~243.6J/g。这些热量使煤迅速上升促进了煤的快速燃烧。
(5)快速燃烧阶段。这是煤自热的最后阶段,它描述了煤的实际燃烧过程。依氧气供应充足与否,这个阶段可能发生干馏、不完全燃烧或安全燃烧。如果燃烧充分,其反应热等于煤的发热值。 {HotTag}
2 煤的自热影响因素
2.1 煤质
煤质本身对煤自热敏感性有显著的影响。
(1)煤的品级。煤的品级表明了煤的变质程度,常用挥发分含量和含煤量表示。品级低的纯煤自热热敏感性高,而且,随着煤的品能升高其自热敏感性下降。因而,干燥褐煤最易自热而无烟煤几乎不自热。但含有大最水分的褐煤较纯褐煤不易自燃。
(2)煤的水分含量。煤中水分的含量对煤的自燃性有很大影响。水分含量达饱和的煤,特别是在水分含量高的褐煤和次烟煤被开采和干燥前,煤体不再吸附水分,因而不能放出润湿热。煤氧化放出的热量通常使内在水分温度升高。另一方面,自热时的化学反应需要有少量的水分参加。低口级煤水分含量远远大于化学反应的需要量。因而,对低品级煤来说,水分实际上是煤自热的阻化剂。
(3)矿物质。煤中的矿物成分也叫灰分。它可与氧反应放热增加煤温,而且使煤分解以增加煤与空气接触的表面积,如黄铁矿,它可以吸收氧化反应放出的部分热量降低煤的氧化反应进程;煤的高灰分使单位质量的氧化热降低。
2.2 开采和贮运的环境因素
环境因素对煤自热的影响为:可使煤的水分含量发生变化;改变煤氧接触条件:使生产成的热量扩散。可分为:
(1)地质因素。断层和裂隙有利于空气和水分与煤接触。因而散热没有明显增加,却增加了煤发生氧化的机会和水的吸附。也就是说断层和裂隙增加了煤自燃的危险性。埋藏深的煤层地面漏风较少。采空区遗煤(特别对于厚煤层)因不能完全回采而增中了煤的自燃危险性。
(2)开采因素。开采因素对煤自燃的影响主要有2个方面,即通风和煤破碎,没有通风或通风充分的地方,煤自燃的可能性较低。而通风不充分地方煤自燃的可能性较大。裂隙漏风是不充分漏分,它创造了煤进一步氧化的条件,而散热条件并未被改善。所以,任何漏风对煤炭自燃来说都是很危险的。
(3)贮运因素。在贮存和运输过程中,影响煤自燃的因素要为通风不充分和干燥的低品级煤因雨淋和喷洒水产生润湿热。
3 煤炭自燃的综合防治措施
3.1煤层自燃的预测预报
(1)鉴于煤在低温氧化阶段产生CO,因此,CO是早期揭露火灾的敏感指标。在矿井的采煤工作面回风道、综掘煤巷等有自然发火的地点设置CO传感器,若发现CO浓度超限,便可采用便携式CO检测仪追踪监测确定高温点。
(2)采用红外探测法判断高温点的位置,红外探测法其基本原理是,根据红外辐射场的理论,建立火源与火源温度场的对应关系,从而推断出火源点的位置。
(3)用钻孔测温辅助监测。对顶煤破碎或有自燃危险的地点,埋设测温探头,定期监测温度变化情况。
(4)加强漏风检测。定期采用示踪气体法,检查顺槽漏风量。对漏风集中的区域加强观测。
3.2 预防措施
(1)均压通风控制漏风供氧。均压通风是控制煤层开采中采空区等漏风的有效措施。首先,要在保证冲淡CH4,风速,气温和人均风量的要求下,全面施行区域性均压通风,其调压措施包括单项调压和多项措施联合调压,具体实施中的形成的工作面均压逐步扩大到邻近工作面采空区的区域性均压。
(2)喷浆堵漏钻孔灌浆。对煤层开采中的可疑地点或已出现隐患地点进行全封闭喷浆和打浅密集钻孔注浆,是防止自然发火的2个有效措施。
(3)注凝胶防灭火。采用注凝胶技术处理高温点或自然发火是煤层开采中防灭火的重点措施,其方法是将凝胶注入高温点或火点的周围煤体中,其作用是既可以封堵漏风通道,又可以吸热降温。
挥发份 → CMHN C → CO 不完全燃烧反应N → NH3
煤的燃烧过程必须具备3个条件:(1)供应燃烧所需的空气量。,为使煤中的可燃成分完全燃烧,全部转化成CO2、SO2、H2O气体产物,所需的最低空气量称为理论空气量。由于煤和空气不可能达到理论的完善混合,实际上供应的空气量大于理论空气量。实际空气量与理论空气量之比称为空气过乘系数。
(2)保持高温环境, 提高煤炭燃烧温度有利于加速燃烧反应和着火的稳定性,还可减少化学和机械不完全燃烧损失。预热鼓风锅炉可改善热力条作,有利于燃烧高水分、高灰分的劣质燃烧;液态除渣旋风炉温度高达1760~1800℃,大大强化燃烧过程;固态排渣炉炉温受煤灰熔融性的制约,通常不超过1200~1350℃。
(3)燃料和空气充分混合与良好接触, 为保证燃料和空气充分混合与良好接触主要措施有减少煤的粒度以增加煤的反应表面积、加压燃烧、调整气流运动等。
煤炭燃烧方式可分层状燃烧、悬浮燃烧、旋风燃烧和流化床燃烧4种,燃烧设备分别为层燃炉、煤粉炉、旋风炉和流化床燃烧炉
煤和木柴燃烧后煤的温度高。
无烟煤加鼓风机吹风的情况下燃烧,温度大概能在1700度左右,最高也就是1900度左右。
木柴在氧气充足的情况下,燃烧温度在700-1000摄氏度左右。
煤的热值比木柴的热值大,说明完全燃烧相同质量的煤和木柴,煤放出的热量多,或使它们放出相同的热量,烧煤用的质量较少。
扩展资料:
一、煤和木柴燃烧后的污染物
SO₂具有刺激性气味,而且S在植物体内含量较高,所以刺激性气味部分是SO₂。在氧气不是很多的状况下加上较高温度,这时有机物发生氧化分解,因为大多数杂质要比C活泼,因此先和O发生反应形成固体微粒或气体跑掉。
木材充分燃烧产生二氧化碳会让人窒息,二氧化碳也是温室效应的罪魁祸首;木材不充分燃烧,产生一氧化碳,会让人中毒。
二、木柴燃烧时的火苗是红色,而煤气燃烧的火苗是蓝色的原因:
通常,火的颜色与温度有关。温度不同,火的颜色也不同。 火焰可以分为两种外焰和内焰,火焰外的那层是指外焰,这一层可以接触到大量的氧气,可以完全燃烧。
所以外部火焰的温度高于内部火焰。燃烧的木头比燃烧气体的温度要低,它发出的光接近红色,而煤气外焰的温度很高,光更接近蓝色。
参考资料来源:百度百科-燃烧污染物产生机理
物体燃烧的温度各不相同,开始燃烧的温度叫做“燃点”。
纸的燃点是45度,木头的燃点是4~47度左右,火柴中使用的红磷,燃点很低,只有26度左右。
燃点是指在规定的试验条件下,应用外部热源使物质表面起火并持续燃烧一定时间所需的最低温度。
煤炭被人们誉为黑色的金子,工业的食粮,它是十八世纪以来人类世界使用的主要能源之一,进入二十一世纪以来,虽然煤炭的价值大不如从前,但毕竟目前和未来很长的一段时间之内煤炭还是我们人类的生产生活必不可缺的能量来源之一,煤炭的供应也关系到我国的工业乃至整个社会方方面面的发展的稳定,煤炭的供应安全问题也是我国能源安全中最重要的一环。