LNG运输船遭疯抢,中韩谁能制霸造船市场?
我认为中国能够制霸造船市场。
在看到多国因为抢购天然气船,而向中韩两国发出造船订单之后,很多人都在关注中韩两国在造船市场上的发展,因为随着中韩两国在造船市场的发展,中韩两国在未来必然会面临着激烈的竞争。
一、我认为中国能够制霸造船市场。要知道造船业的种类非常多,如果不能够实现全面发展,那么就算在单一领域有不错的表现,也不可能让自身实现制霸造船市场的目的。而中国在造船领域实现了全方位的发展,所以在不久的将来,中国肯定能够抢占所有的造船市场订单,从而实现制霸造船市场的目的。
二、中国能够制霸造船市场,是因为中国的造船业质美价廉。对于用户来说,如果不能够有效控制造船成本,那么这样的船只必然会缺少足够的吸引力。而韩国的造船业虽然很发达,质量也很优秀,但是韩国的造船成本却非常高,如果不能够拉低制造成本,那么韩国在未来必然会失去足够的优势,而中国必然能够凭借着质美价廉的优势制霸造船市场。
三、中国能够制霸造船市场,是因为中国的品质已经得到了认可。由于中国在造船行业掌握着许多自己发明的专利,这使得中国在造船行业并不存在着受制于人的情况,并且中国在造船领域不会出现延期拖后的情况。正是由于中国的品质已经得到了足够的认可,所以我相信中国一定会在未来制霸造船市场。
当然我们也不应该小看韩国这样一个竞争对手,因为韩国在造船方面确实有自己的独到之处,如果不能够吸取自身的优势来对抗韩国造船业,那么必然会导致我们丧失大量的市场份额。
液化天然气船。
是指专门运输液化天然气的船舶,最早的LNG船是1958年美国用普通旧油船改建成的5100平方米的甲烷光铎号,按液货舱的结构形式可分为独立储罐式和膜式。
前者是将柱形,罐形,球形等形状的储罐置于船内,后者采用双壳结构,体内壳就是液货舱的承载壳体,与独立式比较,膜式的优点是容积利用率高,结构重量轻,因此新建的液化天然气船,尤其是大型的,多采用膜式结构,液化天然气船设备复杂,技术要求高,造价大。
液化天然气船的发展
20世纪80年代以后,随着日本,韩国相继成为世界第一,第二大LNG进口国,日本和韩国船厂先后从欧洲船厂和LNG船舶专利公司引进了独立液货舱型和薄膜型船舶的建造技术及建造专利,并分别于80年代初期和90年代初期开始建造LNG船舶。
随着日韩船厂LNG船舶建造数量的增加,欧美船厂LNG船舶建造数量在LNG船舶市场所占份额逐步减少。2001年至2006年10月底,韩国船厂建造了这期间所有建成的89条LNG船舶中的55条,而日本船厂建造了28条,余下的6条由欧洲船厂建造,事实证明,LNG船舶建造中心已由欧美转向亚洲。
生物质能的新利用,脂肪燃料快艇
(说明:本词条顶部图片即为脂肪燃料快艇)
新西兰业余航海家和环境保护家皮特·贝修恩宣布,他将驾驶以脂肪为动力的快艇“地球竞赛”号,进行一次环球航行。据悉,贝休恩将于2008年3月1日从西班牙的瓦伦西亚出发,开始全长约4.5万公里的环球航行。贝休恩表示,他打算挑战英国船只“有线和无线冒险”号于1998年创造的75天环球航行的世界纪录。
脂肪当燃料“地球竞赛”号被称为世界上最快的生态船,造价240万美元,融合多项高科技。“地球竞赛”号长约23.8米,形似一只展翅欲飞的天鹅。船身有三层外壳保护,内有两个功能先进的发动机,最高时速可达每小时40节(约74公里),即使航行在巨浪中,速度也不会减慢。
虽然动物脂肪种类丰富,但贝修恩计划只利用人类脂肪转化成的生物燃料作为“地球竞赛号”的动力来源,百分之百采用生物燃料完成一次环游世界的环保之旅。
为了能募集到足够的脂肪生物燃料,贝修恩身先士卒,主动躺到了手术台上。然而整形医生尽管做了很大努力,从他体内抽出的脂肪也只够制造100毫升的生物燃料。他的两名助手抽出的10升脂肪能够制成7升生物燃料,可供“地球竞赛”号航行15公里。
而皮特进行“绿色”环游世界之旅,以打破英国“有线和无线冒险者”号于1998年创造的75天环游世界的纪录,总共需要7万升的生物燃料,也就是说,皮特需要胖子志愿者们捐赠出大约7万公斤的脂肪。
http://baike.baidu.com/view/40476.htm
所谓新能源,就是各种形式都是直接或者间接地来自于太阳或地球内部深处所产生的热能。相对于传统能源,新能源具有污染少、储量大的特点,对于解决当今世界严重的环境污染问题和资源枯竭问题具有重要意义。而船舶所消耗的燃油占燃油消耗的百分百正逐年上升,导致燃油占船舶运输成本越来越大的情况下,如何进一步做好船舶的节能工作,从而有效降低运输成本已迫在眉睫。
为了适应这一新形势的需要,绿色船舶成为其中最重要的解决渠道和未来船舶发展的方向,其中新型能源在船舶上的应用是最具有革新性和代表性的技术。下面,我讲借此机会,对我所了解的新能源在船舶上的应用进行浅谈。
随着科学技术的不断进步,以风能、太阳能、核能、生物质能和潮汐能等为典型代表的新能源在节能减排方面所具有的独特优势和所能产生的效益已经越来越显著,其在船舶交通运输行业的应用和推广已呈潮涌之势。
源于地球表面大量空气流动所产生的动能——风能,是一种无污染且无限可再生资源。人类对风能的利用历史可以追述到公元前,随着科学技术水平的不断进步,工业社会对于风能的利用有着丰富的经验,配套产业和基础设施也较为成熟。但是,风能利用存在着间歇性、噪音大、受地形影响和干扰雷达信号等难以彻底消除的缺点。当前,风能利用主要以风能作动力(风帆助航)和风力发电两种形式为主,在船舶上的应用形式偏重于作为航行的主动力或辅助动力,只在少数船舶上应用风力发电技术。
其实早在20世纪80、90年代,日本在风帆助航的研究和利用方面有了新的突破。1980年日本建造了第一艘装有普通翼帆的新爱德丸油轮,新爱德丸号装有两个高12.15m、宽8m的风帆。之后又建造了扇蓉丸、日产丸等机动风帆货船,1984年又设计和建造了2600t的臼杵先锋丸和另一艘31000t的现代风帆助航远洋货轮。而在2007年12月15日全球第一艘用风筝拉动的货轮白鲸天帆号由德国汉堡市起航。
太阳能的利用主要有两个方面的技术,即光热技术和光伏技术。光热技术是利用太阳光的热辐射,其应用最为成功的领域是太阳能热水器。该项技术的进一步延伸是太阳能热发电,即利用集热器把太阳辐射热能集中起来给水加热产生蒸汽,再通过汽轮机、发电机来发电。考虑到船舶运行过程中对于热水的需求量不高,进行热电转换在有限的船舶空间内难以实施,故而光热利用的可行性不是很高。但是应用光热技术代替常用的蒸汽盘管和电加热盘管对船舶所使用的重油进行预加热,是一个值得关注的方向。光伏技术是对太阳光中的短波辐射能照射于硅质半导体上所产生的电能进行调制后加以利用,亦称为光生伏打效应。随着太阳能光伏技术的不断深入发展,其效率、可靠性和稳定性均有了很大的提升,因而从最初的单纯技术研究逐渐转向实际应用领域。太阳能光伏发电应用于船舶是目前绿色船舶发展的一个重要方向。从最开始1997年,瑞士在日内瓦湖上从洛桑到圣叙尔皮斯区投入使用了两艘太阳能驱动客运船可有效承载60名乘客。到2010年2月25日,世界最大的全太阳能动力船“星球太阳”号,在德国基尔下水。太阳能在船舶上的运用已经日臻完善。
生物质能的利用主要有直接燃烧、热化学转换和生物化学转换等3种途径。其分为生物燃料、生物柴油、生物质油三种。生物燃料是指利用大自然的动、植物资源而得到的高效、污染少的能源,其典型代表就是生物柴油和生物质油。生物柴油是以动、植物油脂及餐饮废弃油脂为原料制成的液体燃料,是优质的石化柴油代用品。生物质油是指生物质通过热解技术裂解而得到的液化产物。但是船舶属于一个相对独立且空间区域较为有限的结构体。机舱内电、气、热设备和系统高度集成,考虑在船舶内附加安装生物质能转换装置有着不可避免的局限性,故而可行性不高。就船舶现有设备条件出发,直接或间接使用由生物质能转换而成的替代燃料(例如生物柴油等)是主要的应用模式。面前,最成功的生物燃料船,为2008年6月27日完成环球航程,使用生物质能的新西兰地球竞赛号高速环保机动船。
核能作为一种能源,特别是一种动力能源,其优越性相当明显它具有体积小,能量巨大、运输与储存较方便,安全性高、较低的污染性、强大的放射性和杀伤性、技术和管理要求高等特点。用核反应堆中核裂变所释放出的热能进行发电的方式。它与火力发电极其相似。过程:核能→水和水蒸气的内能→发电机转子的机械能→电能。核动力反应堆可以用来发电、供热和推动船舰。在作为船舶动力源方面,核动力装置首先是被应用于潜艇和航空母舰等军用舰艇,而后建造核动力舰艇的一些国家也将船用核动力堆用于推动民用水面船舶,如核动力客船、散货船和破冰船,等。纵观世界船舶发展历史,发展民用核动力船舶,已经有若干国家在此方面迈出了第一步。比如美国的核动力船“萨娃娜号”于1962年建成。与德国矿石运输船“奥托汉号”于1968年月12月建成。还有俄罗斯共建成了9艘核动力破冰船,目前正在服役的有8艘,计划建造的破冰船有2艘。
上述都是现在较为成熟,也较为有技术基础的一些新能源利用,随着人类不断的追求进取与探索发现,