建材秒知道
登录
建材号 > 能源科技 > 正文

地热热泵——适合于任何地方的地热能源:当前世界发展状况

虚心的板栗
小巧的白羊
2023-02-01 13:13:33

地热热泵——适合于任何地方的地热能源:当前世界发展状况

最佳答案
感动的乌冬面
玩命的刺猬
2025-06-22 15:21:23

R.Curtis(英)、J.Lund(美)、B.Sanner(德)、L.Rybach(瑞士)、G.Hellström(瑞典)

徐巍(译)郑克棪(校)

摘要:1995年在意大利佛罗伦萨举行的世界地热大会上,一篇论文引起了世界地热界对地热热泵增长状况的广泛关注。随着降低建筑能耗压力的增加,以及减少建筑物二氧化碳排放指标的提高,安装地热热泵的趋势正在逐渐兴起。应用地热热泵的国家数量也不断上升,其中一些国家并没有传统意义上的地热资源,但现在他们有了生气勃勃的地热热泵项目。另外,还有一些国家正在探索其应用潜力。从小的家庭安装到大功率的系统安装,各种型号的地热热泵都在增加。这篇文章主要对近10年这些高效率、长寿命、低污染的可再生能源系统的发展和安装进行评价。

1 介绍

地热热泵是世界上发展最快的可再生能源利用技术之一,在过去的10年里,大约30个国家平均增长速率达到10%。它主要的优点是可以利用平常的地温或地下水的温度(5~30℃)就可以运行,而这些资源全世界各个国家都可以获得。在1995年的佛罗伦萨世界地热大会上,人们尝试着总结了当时的这项技术状况和发展水平,到2005年,地热热泵已经进一步提升为新能源和可替代能源的重要角色。它们尤其已经被作为一种高效的可再生供热装置,而且更重要的是它们在减少二氧化碳方面得到认可。来自加拿大的一篇文章中提到:“当前在市场上不可能有任何其他的单项技术比地热热泵在减少温室气体排放和导致全球变暖效应方面的潜力更大。”这句话同当前流行的一种认识相一致:热泵作为供热装置可以减少全球6%以上的二氧化碳排放量,它是目前市场上可获得的减少二氧化碳排放量最大的单项技术之一。这样的说法正好适合当前提倡的把更多的注意转移到可再生热能的利用上来,就像现在提倡可再生电能一样。2005年9个欧洲组织和贸易协会共同提倡采用可再生能源进行供热和制冷的行动。三个主要的技术被提到:生物能、太阳能和地热能。过去10年已经进行的工作,说明正确设计的热泵系统,无论是对单孔安装还是多孔安装,都可以确保从地下汲取的热能是真正可再生和永久可持续的。最近,世界能源组织公布了多种可再生技术的生命周期分析,对于加热技术,地热热泵的生命期二氧化碳排放量是第二低,仅次于木屑。

在这篇文章里,我们简短介绍了地热热泵技术,提出当前流行的一些综合信息。读者会发现2005年世界地热大会论文集第14章收集了比以前大会论文集更多的关于地热热泵的论文,反映了它在世界范围内的快速增长。尽管地热热泵有比较高的应用潜力,但在一个国家或地区的优势条件取决于当地的经济生存能力、应用能力和增长率。我们介绍了几个不同地理区域和国家的发展情况。一些地区已经安装了很多的地热热泵,而且显示了不断增长的趋势,有些地区才刚刚开始。开发利用较好的国家有美国、北欧、瑞士、德国,尤其是瑞典。刚开始开发利用的国家包括英国和挪威。其他有大量装机的国家还有加拿大和奥地利,法国、荷兰也显示了比较快的增长速度。中国、日本、俄罗斯、英国、挪威、丹麦、爱尔兰、澳大利亚、波兰、罗马尼亚、土耳其、韩国、意大利、阿根廷、智利、伊朗等国开始意识到地热热泵技术。论文集第一部分里许多国家介绍了他们的开发利用状况。

2 装机

尽管许多国家都开始对热泵产生兴趣,但热泵的增长主要还是发生在美国和欧洲。据不完全统计,目前全世界范围内的装机容量可能接近10100MWt,年均利用的能量大约59000TJ(16470GWh)。实际安装的机组数量大约900000个。表1列举了地热热泵利用率最高的几个国家。

表1 利用地热热泵领先的国家

3 地热热泵系统

热泵系统利用相对不变的地下温度来为家庭、学校、政府和公共建筑供热、制冷和提供生活热水。输入少量的电能驱动压缩机后,可以产生相当于输入能量4倍的能量。这样的机器使热能从低温区流向高温区,实际上是一台能倒流的制冷机。“泵”说明已经做功,温差称为“抬升”,抬升越大,输入的能量越多。该项技术并不是一项新技术,1852年Lord Kelvin提出了这个概念,20世纪40年代Rober Webber修改成地热热泵,60、70年代获得商业推广。图1是典型的水-气型热泵系统。这样的热泵在北美应用很广泛,但在北欧家庭供暖市场主要利用水-水热泵。

热泵有两种基本的配置:土壤偶极系统(闭路系统)和地下水系统(开路系统),地下系统可以水平或垂直安装,取用井水或湖水。系统的选择依赖安装地点的土壤和岩石类型,能否经济施工水井或现场已有水井,还需场地条件。图2是这些系统的示意图。如前面的水-气型热泵所示,对于热水加热系统,家用热水交换器可以在夏天利用回灌的热量,冬天利用输出的热量来加热生活用水,水-水型热泵一般只能通过转换供热模式到生活热水模式,将输出温度提高到最大来加热生活热水。

图1a 制冷循环中的水-气型地热热泵

图1b 供暖循环中的水-气型地热热泵

图2a 密闭环路热泵系统

图2b 开放环路热泵系统

在土壤偶极系统里,一条封闭的管路被水平的或者垂直的埋在地下,防冻液通过塑料管循环,或者在冬天从地下获得热量,或者在夏天将热量灌入地下。开放环路系统利用地下水或湖水直接通过热交换器后灌入另一眼井(或者河渠、湖里,或者直接用于灌溉),主要按照当地法规执行。

其他种类的热泵系统正在兴起,如竖井和本次大会上提到的一种新类型。这些系统效率很高,但大多需要更加精细的水文地质信息和比闭路系统更加专业的设计。

热泵机组的效率在供暖模式通过运行系数COP来表示,在制冷模式下用能量效率比(EER)来表示,它是输出能量与输入能量(电能)之比,目前的设备基本在3和6之间变化。这样COP为4意味着输入每个单位的电能可以产生4个单位的热能。经过对比,空气源热泵的COP大约为2,取决于高峰供暖和制冷需要的备用电能。在欧洲,这个比率有时候作为“季节性运行参数”,即供暖季和制冷季的平均COP,同时要考虑系统特性。

4 地热热泵的可再生讨论

随着热泵装机的稳定增加,使人认识到它们对可再生能源利用的贡献。这只是部分的认识,因为它们只涉及了供暖和制冷的表面,所以没有可再生电能的考虑。然而,这里面有两个其他的因素——一个是关于地下能源的可持续问题,一个是基于空气源热泵的问题,在能量输出时没有纯能量的增加,所以它们仅仅是一种能量效率技术。

20世纪50、60年代,当空气源热泵风靡的时候,在城市里的化石燃料电厂发电的效率接近30%。当时空气源热泵的COP一般在1.5~2.5之间变化。表2显示了在建筑物里能量释放的情况,60%的能量来自于空气,而用来发电的原生能量只有75%作为有用的热能得到利用。这样,从空气中提取的可再生能量已经高效地释放了热能,但没有剩余能量。表2的第二列是当前的数据。新型的组合或联合循环发电厂发电效率已超过40%。土壤源热泵的SPF已超过3.5。这导致了140%的效率,其中最终能量的71%来自地下。更重要的是,超过40%的剩余量已高于发电消耗的原始能量。

表2 能量和效率对比表

水源热泵和新型发电效率的联合才构成剩余可再生能源的释放。

如果从一开始就用可再生能源发电,则所有传递的能量就都是可再生的。为了释放可再生的能量最多,建议应该尽快使可再生电能变得经济,并与地源热泵结合起来。

能量讨论可能是有争议的,但二氧化碳排放量的减少却很容易证实。举个例子,当前英国电网和地热热泵联合供暖相对于传统的化石燃料供暖技术可以减少50%的二氧化碳排放量。这归功于当前英国电网的联合。由于目前发电所排放的二氧化碳在减少,所以通过利用地热热泵而排放的二氧化碳会更少。随着利用可再生能源发电,建筑供暖将不再需要排放二氧化碳。

如果要计算一下世界范围内可节约的石油当量和当前地热热泵装机容量所能减少的二氧化碳排放量,则需要有几个假设条件。如果每年地热能被利用28000TJ(7800GWh),将此量与30%效率的燃油发电相比,则会节约15.4百万桶石油,或者2.3百万吨石油当量,减少700万吨二氧化碳的排放量。如果我们假想每年同样长时间的制冷,则这个数字会翻倍。

5 美国的经验

在美国,大多数系统都是根据高峰制冷负荷设计的,它高于供暖负荷(主要是北方地区),这样,估计平均每年有1000个小时满负荷供暖。在欧洲,绝大多数系统是根据供暖负荷设计的,所以经常据基础荷载设计,另加化石燃料调峰。结果,欧洲的系统每年可以满负荷运行2000到6000个小时,平均每年2300个小时。尽管制冷模式将热量灌入地下,它不是地热,但它仍然节省能量,有利于清洁环境。在美国,地热热泵装机容量能稳定在12%,大多数安装在中西部地区和从北达科他州到佛罗里达州的东部地区。目前,每年接近安装50000个热泵机组,其中46%是垂直闭路循环系统,38%是水平闭路循环系统,15%是开路系统。超过600个学校安装了热泵系统进行供暖和制冷,尤其在得克萨斯州。应该注意到这一点,热泵按照吨(1吨冰产生的制冷量)来分等级,这个吨相当于12000Btu/hr或3.51kW(Kavanaugh和Rafferty,1997)。一个典型的家庭需要的热泵机组应该是3吨或者是105kW的装机容量。

美国装机容量最大的热泵是在肯塔基州路易斯维尔市的一个宾馆。通过热泵为600个宾馆房间、100个公寓和89000m2的办公区(整个宾馆161650m2)提供冷热空调服务。热泵利用出水量177l/s、出水温度14℃的4口水井,提供15.8MW的冷负荷和196MW的热负荷。消耗的能量是没有热泵系统附近相似建筑的53%,每月节约25000美元。

6 欧洲的状况

地热热泵实际上可在任何地方既供热又制冷,可以满足任何的需求,具有很大的灵活性。在西欧和中欧,直接利用地热能对众多客户进行区域供暖受限于区域的地质条件。在这种情况下,通过分散的热泵系统采集到处都有的浅层地热是一个明智的选择。相应的,在欧洲各个国家,热泵正在快速增长和发展起来。热泵系统的市场正在蔓延,从事该项工作的商业公司也在增长,他们的产品已经进入“黄页”。

欧洲超过20年对热泵的研究开发为该项技术的可持续性建立了一个完善的概念,还解决了噪音问题,制定了安装标准。图3是一个典型的井下热交换器型热泵(BHE)。这个系统每输出1kWh的热或冷需要0.22~0.35kWh的电能,它比季节性利用大气做热源的空气源热泵少需要30%~50%的能量。

图3 中欧家庭中BHE热泵系统的典型应用,典型的BHE长度大于100m

根据欧洲许多国家的天气条件来看,目前大多数的需求是供暖,空调很少需要。所以热泵通常只是用于供暖模式。然而随着大型商业利用数量的增加,制冷的需要以及这项技术推广到南欧,将来供暖和制冷双重功效就会越来越重要。

在欧洲统计热泵安装的可靠数量是相当困难的,尤其是个人的利用。图4是欧洲主要利用热泵的几个国家安装热泵的数量。2001年瑞典大幅增加的热泵主要是空气源热泵,然而瑞典在欧洲也是安装地热热泵最多的国家(见表1)。总的情况,除了瑞典和瑞士,地热热泵的市场扩展在整个欧洲还不太大。

7 德国的经验

1996年之后,根据热泵的销售统计,德国各种热源的热泵销售情况各不相同(图5)。在经过1991年销售量小于2000台的低迷后,热泵的销售量呈现稳定的增长。地热热泵的份额从80年代少于30%上升到1996年的78%,2002年达到82%。而且从2001年到2002年,当德国的房地产由于经济萧条正在缩水的时候,地热热泵的销售量仍然有所增长。将来它在市场上仍然有增长的机会,因为有较好技术前景做保证。

图4 一些欧洲国家热泵机组的安装数量对比图

图5 每年德国热泵的销售数量对比图

德国地热热泵在住宅利用的数量是巨大的,许多小型系统安装在独立的房子里,而较大系统用于一些需要供暖和制冷的办公楼等商业区域。德国的大部分地区夏季的湿度允许制冷不带除湿,例如冷却顶棚。热泵系统就很适合直接利用地下的冷能,不需要冷却器,它们显示了非常高的制冷效率,COP能达到20以上。第一个利用井下热交换器和直接制冷的系统在1987年安装的,同时该项技术成为一个标准设计选择。一些最新的德国地热热泵的例子Sanner和Kohlsch有文章介绍。

在德国,地热热泵已经走过了研究、开发和开发现状阶段,当前的重点是选型和质量安全性。像技术准则VDI4640、合同规范以及质量认证等工作正开始被强制执行来保护工业和消费者,避免质量不合格和地热热泵系统无法长期运行等问题。

8 瑞士地热热泵的繁荣

地热热泵系统在瑞士已经以每年15%的速度快速增长。目前,有超过25000台热泵系统在运行。来自地下有三种热能供应系统:浅层水平管(占所有安装热泵的比例小于5%)、井下换热器系统(100~400m深,占65%)、地下水水源热泵(占30%)。仅仅在2002年,就施工钻孔600000m,并安装了井下换热器系统。

地热热泵系统非常适于开发到处都有的浅层地热资源。热泵系统长期运行的可靠性现在已经通过理论和实践研究以及通过在几个供暖季的测试得到证明。季节运行因素已大于3.5。

各种测试和模型模拟证明这种系统可以持续性的吸取热量。长期运行的可靠性保证了系统可以无故障应用。热泵系统所配备井下换热器的合理尺寸也有利于广泛的应用和选择。实际上,热泵系统的安装在1980年从零开始,经过快速发展,现在是瑞士地热直接利用里最大的部分。

地热热泵系统的安装自从20世纪70年代末期开始认识以来发展很快,这种印象深刻的增长可见图6和图7。

图6 1980~2001年瑞士地热热泵安装的发展趋势图

图7 1980~2001年瑞士井下换热装置和地下水的地热热泵系统装机容量发展趋势图

每年的增长非常显著:新安装系统的数量以每年大于10%的速度增长。小型系统(<20kW)显示了最高的增长速度(大于15%,见图1)。2001年地热热泵系统的装机容量是440MWt,产生的能量为660GWh。2002年施工了大量的钻孔(几千个),并安装了双U型管的井下热交换器。井下换热器的平均深度大约150~200m;超过300m深度的钻孔也越来越多。平均每米的造价是45美元左右,包括钻井、下入U型管和回填。2002年,井下换热器的进尺达到600000m。

热泵快速进入瑞士市场的原因

热泵系统在瑞士市场上快速发展的原因主要是那里除了这种到处都有的地热以外,在地壳浅层没有其他地热能资源。另外,也有许多其他的原因,包括技术上的、环境上的以及经济上的原因。

技术原因

大多数人口居住的瑞士高原合适的天气条件:大气温度在0℃附近,冬天日照很少,

地下浅层温度在10~12℃之间,长供暖期。

恒定的地下温度通过正确选型尺寸,可以提供热泵最好的季节运行因素和长期使用寿命。

地热热泵以分散方式进行安装,适合于独立用户需要,避免了如同区域供暖系统的昂贵的热分配。

安装位置在建筑物附近(或建筑物地下),相对自由,在建筑物内对空间的要求也不高。

至少对小型系统来说,不需要进行回灌,因为在系统闲置期(夏天)地下的热能可以自动恢复。

环境原因

没有交通运输、储藏和运行的危险(与石油相比);

没有地下水污染的危险(与石油相比);

系统运行可以减少温室气体二氧化碳的排放。

经济原因

环境友好的地源热泵安装成本比得上传统(燃油)系统的安装(赖贝奇,2001);

比较低的运行成本(与利用化石燃料供暖进行比较,不需购买石油或天然气,和燃烧器控制);

对环境友好的热泵,当地给予对用电费用优惠。

二氧化碳的排放税预计要实施。

进一步快速推广地热热泵的刺激因素是公用事业的“能量合同”。它暗示了利用热泵的公司以自己的成本设计、安装、运行和维护地热热泵,同时以合同价格卖热能或冷能给合适的用户。

尽管绝大多数地热热泵是为单独住宅供暖(生活热水),但一些新的利用方式正在出现(包括各种井下换热器系统,联合太阳能进行热量采集和储存、地热供暖和制冷,“能量堆”)。对于每2km2一台机组,它们的地区密度是世界上最高的。这保证了瑞士在地热直接利用方面是有优势的(在世界上前五个国家中人均装机容量)。相信瑞士的地热热泵在相当长的一段时间内会兴盛下去。

9 英国的地热热泵

在英国,路特·开尔文努力发展了热泵理论,但利用热泵进行供暖却进展缓慢。第一个安装地热热泵的记载要追溯到1976年夏天。小型闭路系统的先锋设置是在90年代初期苏格兰的住宅进行安装的。英国花了很长时间发现为什么到目前为止在英国该项技术要落后于北美和北欧。首要的原因是相对温暖的天气、房屋材料的保温性较差、缺少适合的热泵机组和与天然气庞大管网的竞争。

在20世纪90年代中期,通过吸取加拿大、美国和北欧地区利用热泵的经验教训,英国的地热热泵开始缓慢发展。他们利用很长时间确定合理的技术来适用于本国的住宅材料,以及克服英国特有的各种问题。另外的一个难题就是英国的地质条件复杂。

过去的两年时间里,热泵已经被公认在几个英国政策里扮演着重要的角色,例如供热保障程序、可再生能源以及能源效率目标。

在英国,很少人知道其实热泵系统比起传统的那些系统可以大量减少二氧化碳的排放。利用英国电网的地热热泵系统将会立刻减少40%~60%的二氧化碳排放量。随着英国电网在将来几年变得越来越清洁,长寿热泵的排放量也会进一步下降。建筑师和发展商发现新的建筑评价标准正开始考虑二氧化碳这个新参数。

从非常小的起步,目前地热热泵系统已经出现在整个英国,从苏格兰到Cornwall。私人建筑家、房地产商和建筑协会现都成为这些系统的消费者。室内安装热泵系统一般在25kW到2.5kW之间,主要选择各种水对水和水对空气的热泵,安装在几种不同地质条件的地区。

最近宣称有拨款计划(清洁天空项目)会帮助建立该项技术的部门鉴定,会建立可信的安装队伍、技术标准以及适用于英国室内的热泵。随着去年英国主要的用户发起了热泵安装发展到1000家的活动,希望对于该项技术的兴趣能够快速增长,同时希望在将来几年能够大量涌现出室内地热热泵安装的成功案例。

另一个利用地热热泵的重要领域就是供暖和制冷都需要的商业和公共建筑。2002年国际能源协会热泵中心安排了首批国家级研究,对热泵可能减少二氧化碳的排放量进行研究(IEA,2002)。其中第一个就是在英国展开的,研究结论是热泵系统应用于办公室和小商店效果最好。第一个不在室内安装的热泵仅25kW,是在Scilly的Isles的健康中心。这个系统在接下来的2000年到今天得到迅速发展,设备尺寸和型号目前已经达到300kW。

热泵的利用已经发展到学校、单层或者多层的办公楼和展览中心。显著的一个例子就是Derbyshire的国家森林展览中心、Chesterfield、Nottingham、Croydon地区的办公楼以及Cornwall的Tolvaddon能源公园。一个大型的系统已经在Peterborough地区的新宜家销售中心进行安装。这些系统的安装采用了各种各样的类型,有简单利用地板供暖的,反循环热泵供暖和制冷的,也有复杂的整合机组同时进行供暖和制冷的。单独的或者是混合的配置都已经被采用,包括利用大型地下水平循环和其他相互联系的钻孔网。

10 瑞典的地热热泵

20世纪80年代初期,地热热泵在瑞典开始盛行。到1985年,已有50000台热泵机组被安装。随后较低的能源价格和技术质量问题使热泵市场萎缩,在接下来的10年里,平均每年安装2000个热泵机组。1995年,由于瑞典政府的支持和补贴,公众对地热热泵的兴趣开始增强。根据占住宅销售市场约90%的瑞典热泵机构(SVEP)统计的销售数据显示,2001年和2002年大约有27000个热泵机组被安装(见图8)。因此,安装的机组数量估计达到200000台。

目前,热泵是瑞典小型住宅区最流行的采用液体循环的供暖方式,由于当前的油价,它替代了烧油;由于电费高昂,它又替代了电;由于方便而替代了木炭火炉。直接利用电加热的发展速度已相当减慢。除了住宅方面,还有一些大型的系统安装(包括闭路和开路循环)用于区域供暖网。所有热泵机组平均输出的热能估计大约10kW。

瑞典地热热泵的安装通常建议占标称负荷的60%,即每年大约3500~4000个小时满负荷运行。整合在热泵里的电加热器提供剩余的负荷,有将热泵负荷增加到80%~90%的趋势。大约80%的热泵采用的是垂直类型(钻孔类型)。在住宅里,钻孔的平均深度大约125m,水平类型平均循环长度大约350m。开式、充满地下水的单U型管(树脂管,直径40mm,压力正常6.3bar)几乎用于所有的热泵安装。当热量需要被回灌入地下时,双U型管有时候被采用。热反应测试已经显示自然对流在充满地下水的钻孔中比填满砂(砾石)的钻孔热交换更强烈。地源热泵的盛行已经使人们逐渐关注相邻钻孔之间长期热影响的问题。

图8 每年瑞典热泵销售数量对比图

用于客户住所的大型系统正在变得越来越流行。用来制冷的垂直式安装正在占据市场,但在住宅方面仍然没有引起人们的兴趣。在商业和工业上制冷的需求为地热热泵打开了一个崭新的市场。

热泵技术上的发展有由涡轮式压缩机逐渐代替活塞式压缩机的趋势,它的优点是运行平稳、设计简洁。另外人们对各种容量控制也产生了兴趣,例如在同一个机组里分别安装一个小型压缩机和一个大型压缩机,夏天,生活热水可以通过小型压缩机来供给。绝大多数进口的热泵利用的工质是R410A。瑞典生产商仍然利用的是R407C,但有向R410A转变的趋势,还有的对丙烷也感兴趣。目前正在研究利用极少量的工质来组建热泵。一些生产商通过利用废气和土壤作为热源的热泵抢占市场。废气可以被用来预加热从钻孔开采出来的热运移流体,或者热泵闲置时灌入地下。

在大型钻孔型热泵系统里,为了确保系统长期运行,不得不考虑地下热能的平衡。如果主要是满足热负荷,则在夏天必须向地下回灌热能。自然界的可再生能源,如室外空气、地表水和太阳能都应该被考虑。在Nasby公园,在建筑物下面安装了一套系统,施工了48个200m深的钻孔,利用400kW的一个热泵基本提供热负荷,每年运行6000个小时。夏天,从附近的湖引来的地表温水(15~20℃)通过钻孔灌入地下。

11 挪威的例子

在奥斯陆的Nydalen,180个基岩井将会是给一个接近20万m2的建筑进行供热和制冷的关键。这是欧洲这种类型的系统里最大的项目。

一个能量供应站将为Nydalen的这个建筑供暖和制冷。通过利用热泵和地热井,热能既可以从地下采集,也可以将能量储存地下。夏天,但有制冷需要时,热能可以灌入地下。基岩的温度可以从平常的8℃上升到25℃。在冬天,热能可以用来供暖。供暖的输出功率是9MW,而制冷是7.5MW。与电、石油和天然气供暖相比,每年供暖的成本可以减少60%~70%。供暖和制冷的联合调用确保了能量站的高效利用。

这个项目最独特的地方是地热能量储藏。这里的180个井,每个都深200m,可以提供4~10kW能量。整个储热基岩的体积是180万m3,主要在建筑物的下面。塑料管形成封闭环路,用来传递热能。

该项目总投资是6千万挪威克朗(相当于750万欧元)。这比起传统方式(即没有能量井和收集装置)多投资1700万挪威克朗。然而,每年购买的能量减少约400万挪威克朗,项目还是有利润的。这个项目由政府实体Enova SF和奥斯陆能源基金拨款支持了1100万挪威克朗。

能量站按计划在2003年4月开始建设,包括施工一半的基岩井。剩下的井可能安排在2004年的建设中。

该项目的细节可以在项目组www.avantor.no和热能储存www.geoenergi.no两个网站上查询。

结论

地热热泵是一个刚兴起的技术,有能力利用地下巨大的可再生贮存能量,提供高效率的供暖和制冷。它们正逐渐被认为是替代化石燃料的一种选择,在许多国家,它们在对建筑进行供暖和制冷时可以极大地减少二氧化碳的总排放量。相信安装热泵系统的数量和国家都会快速增长起来。

参考文献(略)

最新回答
可靠的柜子
碧蓝的外套
2025-06-22 15:21:23

德国可再生能源供电目标提前15年,德国可再生能源是否实现了“大跨步”?

该国的可再生能源提上一个新台阶,这次归功于风能和太阳能基础设施的扩张,在这个加速发展的时代以后人们就不会在面临资源短缺问题了。对此我还有以下几点看法:

一、什么是可再生能源?

1.太阳能:我们可以利用太阳辐射的光通过太阳能电池转换成电力,也可以利用太阳的即热气来把水加热就是我们常见的太阳能热水器。

2.风力发电:风力发电是由风的力量转动扇叶来带动发电机发电,扇叶越长风速越快就能截取越多的风能。

3.海洋能:海洋覆盖地表三分之二以上并隐藏着丰富的海洋能源,其中包含了波浪能、温差能、潮汐能、潮流能等。

4.地热能:是来自地球内部深处的能量和机油钻井取得地底热水等。

二、可再生能源有什么作用?可用到哪些地方?

相对比石油、煤炭等化石燃料污染空气来说可再生能源在自然界可以循环再生,取之不尽用之不竭,是一种清洁绿色低碳的能源,可再生能源是中国多轮驱动能源体系的重要组成部分,对于改善能源结构,保护生态环境,应对气候变化具有重要的意义,同时可再生能源就发生在我们日常身边,现在很多农村家庭依然保持着太阳能热水器,还有很多将废弃物进一步炼化转换成能量等。

三、过度开采不可再生能源的危害有哪些?

就像是石油煤炭就是不可再生能源,如果长期大量使用肯定会对我国的空气质量造成影响,这些生活废气和工业废气的排放都可能是造成气候变暖的原因之一,所以对于新能源的开发我们一定要大力支持。

勤恳的路人
活泼的墨镜
2025-06-22 15:21:23
我给你弄点吧,现在好多人找这个,我也是找的,希望对你有用!!!!

建筑节能是指在建筑物的设计、建造和使用过程中,执行建筑节能的标准和政策,使用节能型的建材、器具和产品,提高建筑物的保温隔热性能和气密性能,提高暖通、空调系统的运行效率,以减少能源消耗。近年来,我国建筑节能也随着可持续生产与消费的发展从理念不断地走向了实践示范,成为我国政府建设资源节约型和环境型社会的重要举措。但由于我国建筑节能起步较晚,且目前我国正处于工业化和城镇化快速发展阶段,因此建筑节能面临着巨大的挑战。为此,我国应该在借鉴国际经验基础上,进一步完善和健全我国建筑节能政策制度,全面推进我国建筑节能的发展。

一、发达国家建筑节能政策的共同特点

发达国家从1973年能源危机时开始重视建筑节能,经过30多年的努力,新建建筑单位面积能耗已经减少到原来的1/3~1/5,其中节能政策的作用功不可没。尽管各国制定节能政策的出发点不同,但采取的节能政策措施大致可归纳为以下几个共同点。

1、建立完善的建筑节能管理体制

节约能源一直是德国的一项基本国策。节能与可再生能源利用,联邦层面由环境部负责,为了深入推进建筑节能,由联邦交通建设和住房部、环境部以及KFW银行共同出资成立了德国能源署(DENA)。在各级政府的高度重视和推动下,技术、政策、法规等多管齐下,逐步形成了“政府主导、市场主体、全社会参与”的良好格局。

2、注重建筑节能立法

许多国家不仅制定了节能法,还专门制定了一系列建筑节能法规、标准等法律文件。美国1978年就制订了《能源政策法》,德国1976年实施生效了《关于新建筑物节能法》而日本制定的建筑节能法则要求建筑业主能自主进行节能应用,规定以“热损失系数”作为判断建筑物节能性的标准。

3、采取经济政策鼓励建筑节能

在西方发达国家建筑节能做得比较好的国家,政府都有相应经济激励政策。如美国对新建节能建筑减税,凡在国际节能规范(IECC)标准基础上节能30%~50%以上的新建建筑,每套可以分别减免税1000美元和2000美元欧盟则提出了包括开征能源税、税收减免、补贴和建立投资银行贷款等规范性的财税政策。

4、加强节能与开发并重的科学研究

主要开展三个方面的研究工作:建筑节能技术研究,主要是建筑节能综合研究,建立“节能型”建筑体系注重太阳能、地热等建筑新能源的开发利用建设节能试点工程和样板建筑,如美国政府为取得制定节能政策的定量数据资料,由政府出面组织办公楼建筑和住宅建筑的节能型样板工程。

建筑节能的意义与主要内容

一、建筑节能的定义

1.能源是人类赖以生存和发展的基本条件。20世纪70年代的石油危机,对石油进出口的经济发展和社会生活产生极大的成绩,给发达国家敲响了能源供应紧张的警钟。同时能源大量消费造成了大气污染和全球温室效应,生态环境迅速恶化。

2.节能,是指加强用能管理,采取技术上可行、经济上合理以及环境和社会可以承受的措施,减少从能源生产到消费各个环节中的损失和浪费,更加有效、合理地利用能源。这既是《中华人民共和国节约能源法》对“节能”的法律规定,也是国际能源委员会的节能概念。

3.节能不能简单地认为只是少用能。节能的核心是提高能源利用效率。从能源消费的角度看,能源效率是指为终端用户提供的能源服务与所消耗的能源量之比。

4.建筑使用过程中所消耗的能量,即通常所说的建筑能好,在社会总能耗中占有很大的比例,而且,社会经济越发达,生活水平越高,这个比例越大。西方发达国家,建筑能耗占社会总能耗的30%~45%。美国一次能源消耗量,2000年达到36.55亿吨标准煤,其中建筑能耗占33.7%,工业能耗占35.9%,交通能耗战24.8%、法国建筑能耗占社会总能耗的45%。我国尽管社会经济发展水平和生活水平都还不高,但建筑能耗已占社会总能耗的27.6%,正逐步上升到30%。不论西方发达国家还是我国,建筑能耗状况都是牵动社会经济发展全局的大问题。

5.由于建筑能耗在社会总能耗中所占比例较大,建筑节能成为世界节能浪潮的主流之一,建筑节能技术已成为当今世界建筑技术发展的重点之一。

6.目前,公认的建筑节能的含义是:在建筑中合理使用和有效利用能源,不断提高能源利用率,减少能源消耗(主要包括采暖、通风、空调、照明、炊事、家用电器和热水供应等的能源消耗)。

7.自从1973年发生世界性的石油危机以来,在发达国家,建筑节能经历了三个阶段:

第一阶段,称为在建筑中节约能源(energy saving in buildings),我国称为建筑节能;

第二阶段,称为建筑中保持能源(energy conservation in buildings),意为在建筑中减少能源的散失;

第三阶段,近年来,普遍成为在建筑中提高能源利用率(energy efficiency in buildings),意为不是消极意义上的节省,二十积极意义上的提高能源利用效率。

建筑节能,按照国际通用说法,就是提高建筑中的能源利用效率,即在建筑中合理使用和有效利用能源,不断提高能源利用率。

2005年颁布的建设部令143号《民用建筑节能管理规定》是根据《中华人民共和国节约能源法》、《中华人民共和国建筑法》、《建筑工程质量管理条例》制定的。《民用建筑节能管理规定》对民用建筑节能的概念做了明确规定:“本规定所称民用建筑节能,是指民用建筑在规划、设计、建造和使用过程中,通过采用新型墙体材料,执行建筑节能标准,加强建筑物用能设备的运行管理,合理设计建筑围护结构的热工性能,提高采暖、制冷、照明、通风、给排水和通道系统的运行效率,以及利用可再生能源,在保证建筑物使用功能和室内热环境质量的前提下,降低建筑能源消耗,合理、有效地利用能源的活动。

二、建筑节能的意义。

1.建筑节能是发展国民经济的需要。

能源是发展国民经济、改善人民生活水平的重要物质基础。据测算,我国年需各种能源共17亿吨标准煤,但生产的能源仅有13.7亿吨标准煤,远低于世界平均水平。(所谓标准煤,是指1kg煤炭的发热量为8.14kW•h的煤量。市场供应的普通煤发热量为5.8~6.4814kW1•h/kg,经换算,1kg普通煤为0.712~0.786kg标准煤,或1kg标准煤为1.27~1.40kg普通煤。为了比较和统计计算,其他能源也可以按发热量换算成标准煤)。

我国能源生产的增长速度长期滞后于国内生产总值的增长速度,能源短缺是制约国民经济发展的根本性因素。因此,节约能源是发展国美经济的客观需要。

中国的能源蕴藏量位居世界前列,同时也是世界第二大能源生产国与消费国。中国能源开发利用呈现出三个主要特点:

A.能源以煤炭为主,可再生资源开发利用程度很低。

B.能源消费总量不断增长,能源利用效率较低。

C.能源消费以国内供应为主,环境污染状况加剧,优质能源供应不足。

据专家预测,中国的石油资源还能开采41年,煤炭资源可以开采30年。(山东的煤炭资源还可以开采20年)

我国能源消费结构以煤炭为主。我国煤炭和水利资源蕴藏量丰富,但能源消费结构是以煤炭为主,煤炭占3/4以上,我国建筑采暖用煤约占75%以上,其他高质能源所占比例很小,这与发达国家存在很大差距。例如,在采暖能源中,法国:电力占5%,天然气占50%,煤和石油等只占10%;荷兰:天然气占46%,石油占46%,煤占6%,其他占2%。

二十多年以来,中国建筑迅速发展,仅近几年,全国每年竣工的房屋面积约20亿m2 ,其中公共建筑3~4亿m2,我国新建建筑规模已经超过了欧美各发达国家之和。

但是建筑能耗的增长远高于能源的增长速度。我国既有建筑及每年新建建筑量巨大,加之居住人口众多,建筑能耗占全国总能耗的1/4以上,特别是高能好建筑大量建造,建筑能耗的增长远高于能源生产的增长速度,尤其是电力、燃气、热力等优质能源的需求急剧增加。鉴于建筑用能的严重浪费,抓紧建筑节能工作是国民可持续发展的重大课题。

建筑节能是提高经济效益的重要措施。建筑节能需要投入一定的资金,但投入少、产出多。实践证明,只要选择适合当地条件的节能技术,使用4%~7%的建筑造价,可达到节能要求。建筑节能的回收期一般为3~6年,与建筑物使用周期50~100年相比,其经济效益是非常突出的,可见节能建筑在一次投资后,可短期内回收,并能长期效益。

此外,新的节能建筑的大量兴建,加上既有建筑的大规模节能改造,将产生巨大恶市场需求,可以带动新型建材、节能技术等十几个新型产业的发展,推动建设行业科技进步,促进产业结构升级和产品结构校正,拉动国民经济增长。建筑用能已逐步成为我国能源消费的主体之一。减少建筑能耗是中国可持续发展必须研究解决的重大问题。

2.建筑节能是减轻大气污染和改善建筑热环境的需要

建筑节能可改善大气环境。我国建筑采暖能源以煤炭为主,约占75%。目前我国采暖煤排放二氧化碳每年约1.9亿吨,排放二氧化硫近300万吨,烟尘约300万吨,造成严重大气环境污染。众所周知,二氧化碳及二氧化硫给大气、生态环境、人类的身体健康造成的危害不可估量。所以,降低建筑能耗,提高建筑节能效果是改善大气环境的重要途径。

建筑节能可以改善室内热环境。(室内热环境是对室内温度、空气湿度、气流速度和环境热辐射的总称。)它是影响人体冷热感觉得环境因素。适宜的室内热环境,可使人体易于保持平衡,从而使人产生舒适感。节能建筑则可改善室内热环境,做到冬暖夏凉。对符合节能要求的采暖居住建筑,屋顶保温能力约为一般非节能建筑的1.5~2.6倍,外墙的保温能力约为非节能建筑的2.0~3.0倍,窗户约为1.3~1.6倍。节能建筑的采暖能耗仅为非节能建筑的一半左右,且冬季室内温度可保持在18℃左右,并使围护结构内表面保持较高的温度,从而避免其结露、长霉,显著改展冬季室内热环境,对夏季隔热也极有利。

党的十六大提出了全面建设小康社会的历史任务,要实现经济、社会、环境和人的协调发展,要大力提高人民的生活水平。

(小康社会的内容中,针对居住环境有一个标准,即人均居住面积为35平房)

为了广大人民群众的生存、健康和生和舒适,建筑在寒冬必须采暖,炎热又要空调制冷,这就要求建筑围护结构做好保温隔热,并配备设当地供热和制冷设施。为达到外围护结构的保温隔热功效,所选用建筑材料及设备,也直接影响到能源消耗的不同,从而导致人民的生产与健康条件有所差异。

对符合节能要求的采暖居住建筑,屋顶保温能力约为一般非节能建筑的1.5~2.6倍,外墙的保温能力约为非节能建筑的2.0~3.0倍,窗户约为1.3~1.6倍。节能建筑的采暖能耗仅为非节能建筑的一半左右,且冬季室内温度可保持在18摄氏度左右,并使围护结构内表面保持较高的温度,从而避免其结露、长霉,显著改展冬季室内热环境,对夏季隔热也极有利。

山东省墙体材料革新与建筑节能办公室高级工程师朱传晟说,通俗来讲,节能65%的住宅就是住起来冬暖夏凉的房子。

三、我国建筑能耗现状。

1.我国建筑能耗的影响因素

(1)室外热环境的影响:建筑物室外热环境,即各种气候因素,通过建筑的围护结构、外门窗及各类开口直接影响室内的气候条件。与建筑物密切相关的气候因素有:太阳辐射、空气温度、空气湿度、风及降水等。

(2)采暖区与采暖度日数:采暖区是一年内日平均气温稳定低于5℃的时间超过90d的地区。采暖区与非采暖区的界线大体为陇海线东、中段略偏南,西延至西安附近后向西南延伸。(不好意思,很难找到划分地图)

从网上找到一篇资料:引自《自然资源学报 2006年第21卷第4期》

(3)太阳辐射强度:冬季青天多,日照时间长,太阳入射角低,太阳辐射度大,南翔窗户阳光射入深度大,可达到提高室内温度,节约采暖用能的效果。

(4)建筑物的保温隔热和气密性:建筑围护结构的保温隔热性能和门窗的气密性是影响建筑能耗的主要内在因素。围护结构的传热热损失约占70%~80%;门窗缝隙空气渗透的热损失约占20%~30%。加强围护结构的保温,特别是加强窗户,包括阳台门的保温性和气密性,是节约采暖能耗的关键环节。

(5)采暖供热系统热效率:采暖共存系统是由热源热网和热用户组成的系统。采暖供热系统热效率包括锅炉运行效率和管网运送效率。锅炉运行效率是指锅炉产生的可供有效利用的热量与其燃烧煤所含热量的比值。在不同条件下,又可分为过来铭牌效率(又称额定效率)和锅炉运行效率。室外管网输送效率是指管网输出总热量与管网输入总热量之比值。

2.我国建筑能耗的特点

(1)夏季空调用电量大。1997年以来,中国每年发电量以5%~8%的速度增长,工业用电量每年减少17.9%。由于空调耗电大(2001年全国新增房间空调机装机容量1600万KW)、使用集中,有些城市的空调负荷甚至占到尖峰负荷的50%以上。许多城市如伤害、北京、济南、武汉、广州等普遍存在夏季缺点现象。

(2)冬季采暖能耗高。中国的东北、华北和西北地区,城镇的建筑面积约占全国的近50%,年采暖能耗约1.3亿吨标准煤,占全国能源消费量的11%,占采暖地区全社会总能耗的21.4%。在一些严寒地区城镇建筑能耗已占到当地全社会总能耗的一半以上。

长期以来,我国单位GDP综合能耗保持下降趋势,但2002年以后却大幅度增长,情况十分紧迫。

二、建筑围护结构节能技术发展状况

1.建筑保温隔热材料

从我国新型建材工业的发展过程看,20世界80年代以前,我国建筑保温材料的发展相对缓慢。保温厂家少,生产能力低,只能生产少量的膨胀珍珠岩、膨胀蛭石、矿渣棉,超细玻璃棉等产品,而且质量很难满足要求。20世纪80年代以后是我国保温材料的飞跃发展时期,尤其是高效保温材料如泡沫塑料、玻璃棉、岩棉等地生产和应用技术得到了长足发展。

绝热保温材料广泛用于建筑、建材、冶金、电力、石化、石油天然气、军工、宇航、交通运输、仓储等行业。绝热保温材料的应用主要是建筑领域,用于建筑中的量占绝热保温材料总量的75%~80%,其余用于各类设备和管道的绝热保温。绝热保温材料在建筑中以复合行事的功能材料应用,绝热保温材料的品种很多,但不是所有的绝热保温材料都可以在建筑上使用。在建筑上一般选用密度轻【一般小于350kg/m3】,导热系数小【小于0.12W/(m•k)】、操作方便,价格合理的材料。导热系数小于等于0.05W/(m•k)的绝热保温材料都属于高效保温材料。保温隔热材料的功效性能,取决于材料导热系数的大小,导热系数愈小其保温隔热的功效性能愈高。

围护结构中最常用的绝热保温材料主要有绝热用的模塑聚苯乙烯泡沫塑料、绝热用挤塑聚苯乙烯泡沫塑料、建筑物隔热用硬质聚氨酯泡沫塑料、岩棉板、玻璃棉等,是目前外墙外保温技术和屋面节能技术中常用的高效保温材料。

保温隔热材料或绝热材料的分类,可以按照化学组成分为无机。有机保温隔热材料,金属绝热材料;按照材料形态可以分为纤维状、微孔状、发泡状、层体状;按照使用温度可以分为高温(800度)。中温(100-800度)、常温(低于100度)。

建筑节能——中国节能战略的必然选择

21世纪头20年,是我国建筑业的鼎盛时期,2020年全国房屋建筑面积将接近2000年数量的2倍。目前我国建设高潮持续不断,每年建成的房屋面积高达16亿~20亿平方米,超过所有发达国家年建成建筑面积的总和,可见建筑规模极其巨大。遗憾的是,不仅既有的近400亿平方米建筑中的99%为高耗能建筑,新建建筑中95%以上仍属于高耗能建筑,单位建筑面积采暖能耗为发达国家新建建筑的3倍以上。2002年全国空调高峰负荷已达到4500kwh,相当于2.5个三峡电站建成后的满负荷出力。这种只考虑眼前短期利益,放肆浪费能源的行为普遍存在。按照目前建筑能耗水平发展,到2020年,我国建筑能耗将达到10.89亿tce(吨标准煤),超过2000年的3倍;空调高峰负荷将相当于10个三峡电站满负荷出力。问题相当严重,情况十分紧迫,建筑节能已是国家的重大战略问题,如果国家从现在起就下定决心抓紧建筑节能工作,对新建建筑全面强制实施建筑节能设计标准,并对既有建筑有步骤地推行节能改造,则到2020年,我国建筑能耗可减少3.35亿tce,空调高峰负荷可减少约8000万kwh(大约接近4.5个三峡电站的满负荷出力,相应可减少电力建设投资约6000亿元),由此造成的能源紧张状况必将大为缓解。如果再加大工作力度,要求2020年建筑能耗达到发达国家20世纪末的水平,则节能效果将更为巨大。如果继续放任自流,错过当前这段大好机遇,不给予高度重视,不采取坚决有效的措施,则将长期大大加重国家能源负担,对我国经济社会的可持续发展产生严重障碍,对能源安全和大气环境造成重大威胁。

建筑能耗现状

建筑能耗范围

按照国际通行的分类,建筑能耗是指民用建筑(包括居住建筑和公共建筑以及服务业)使用过程中的能耗,主要包括采暖、空调、通风、热水供应、照明、炊事、家用电器、电梯等方面的能耗。其中采暖空调通风能耗约占2/3左右。

房屋建筑规模

我国房屋建筑规模十分巨大,近几年每年建成房屋达16亿~20亿平方米。如此巨大的建筑规模,在世界上是空前的;在我国历史上,这几十年是房屋建设高潮期,这段高潮过后,很可能不会再度出现。在全面建设小康社会目标的指引下,我国城镇化将加速发展,人民生活水平不断提高,21世纪头20年内,建筑业仍将迅速发展。全国城乡房屋建筑面积2002年底共计为388亿平方米,其中城市131.8亿平方米。预计到2010年底,全国房屋建筑面积为519亿平方米,其中城市171亿平方米;估算到2020年底,全国房屋建筑面积达686亿平方米,其中城市为261亿平方米。

建筑能耗现状及展望

我国由于人口众多,生活条件不断改善,建筑能耗数量十分巨大,所占全国能源消费总量的比例也在逐步升高。

目前,全世界建筑能耗约占能源总消费量的30%,其中住宅能耗约为商用建筑的2倍。建筑能耗与人民生活水平关系甚大,工业化国家建筑能耗占全球建筑能耗总量的52%,东欧和前苏联占25%,发展中国家占23%。我国建筑能耗比例也将随着人民生活水平的提高而逐步上升。

近几年,建筑能耗增长幅度较小,是由于许多家庭炊事和热水用能由煤炭改为燃气或电,能源效率有了很大提高,炊事、热水用能有所减少,抵消了一部分其他建筑能耗的增加量。建筑能耗中,以采暖、空调用能所占比例较大,照明、家电用能也在不断增加。

今后,在全面建设小康社会的进程中,随着人民生活水平的提高,建筑能耗必然较快增长,但其增长速度与节能工作进展关系甚大。尽管我国人均建筑能耗将成倍增加,但由于发展条件的限制,与发达国家相比,仍将处于较低水平。例如,美国1999年建筑能耗为12.5亿tce,人均建筑能耗458tce,约为中国人均建筑能耗的16倍。我国不可能也不应该采用这种高能耗的发展模式。

字数限制,先发一段

害羞的白昼
忧郁的秀发
2025-06-22 15:21:23
目录 1介绍 1.1条款结构 1.2这个版本认证条款的改变 2条款 2.1被动房标准 2.2 EnerPHit 标准 EnerPHit的特例 2.3 PHI低能耗建筑标准 2.4 所有标准最低条例 2.4.1过度供热的频率 2.4.2多余过高湿度频率 2.4.3最小热保护 2.4.4人员满意度 2.5 PHPP计算的边界条件 3建筑认证的技术标准 3.1测试步骤 3.2提交的文件 3.2.1被动房规划包 3.2.2建筑方案规划文件 3.2.3标准和连接细节 3.2.4窗和门 3.2.5通风 3.2.6供热/制冷(如果有),家庭热水和废水 3.2.7电气设施和照明 3.2.8可再生能源 3.2.9闱护结构气密性 3.2.10 (仅对EnerPHit)缺U检测和密封的证明 3.2.11照片 3.2.12 特例(仅对 EnerPHit) 3.2.13经济灵活性计算(仅对EnerPHit) 3.2.14 --般性最低要求的证明(根据2.3章节) 3.2.15施工经理的声明

1、介绍 1.1条款结构 目前的文件包含完整的建筑能耗标准的条款由PHI定义。3个标准的具体条款在条款2中第一个三个小部分中明确了。 2.4部分中的要求"通用的所有标准的最低条款“必须达到不管选择任何一个能耗标准,达到条款的证明必须提供(用被动房计划包和“用于PHPP计算的 边界条件”在2.5部分边界条件应用。 如果建筑物是由被动房研宄所或PHI承认的认证机构认证的,考核将按照“建筑认证的技术标准”第三部分进行。用于认证过程申请的提交文件在3.2部分中有列出。 1.2这个版本认证条例的改变。 以前有三个不同条款的文件用于住宅被动房,非住宅被动房和EnerPHit翻新。这些现在合并到一个文件中去了,并添加了新的PHI低能耗建筑标准条款。从此再也没有住宅和非住宅建筑的分开要求了。 条款根据以下几个方而扩大了: □根据一次可再生能源一个新的评价程序最近由被动房研究所整合了,对于被动房或是Ener PHit标准,标准,加强或是白金中的一个能够获得根据PER需求和可再生能源的生产。PER需求的要求代替以前不可再生一次能源需求。然而,旧的根据PE的方法可能继续平行的使用在变革的阶段。(只适用于标准或PHI低能耗建筑分类) □ EnerPHit条款用于用了被动房构件的现代化的既有建筑,以前只适用于亚寒,温带气候。 现在它将适用于全世界。这个要求可以被分成七个不同气候区域。 □以前对于亚寒,温带气候的限制无效了,这也适用于非住宅被动房。 另外,条款被完全的修改和重新组织了以便于他们更清楚更全面。以前的外部文件有关软条 款的已不再存在。这些条款被更明确地定义了并整合到实际的条款中去。

2条款 2.1被动房标准 被动房以高室内热舒适度和低能耗为特征。

大体上说被动房标准提供优秀的有效费用尤其是对于新建建筑。总体来说,被动房的标准提供了有效的花费减少尤其是对于新建建筑。被动房的分类标准,增强或白金是根据PER的需求和生产获得的。 表1被动房条款

1

纯情的时光
结实的小馒头
2025-06-22 15:21:23
“德国2000年颁布了可再生能源法,其主要特点之一是固定上网电价政策,电网公司必须全额收购光伏发电的上网电量;日本的政策倾斜体现为给用户补贴。”

再生能源包括太阳能、水能、风能、生物质能、波浪能、潮汐能、海洋温差能、地热能等。它们在自然界可以循环再生。

苗条的白昼
缓慢的季节
2025-06-22 15:21:23

德国是世界汽车制造业的强国。奔驰和宝马在各个年龄段都广为人知,而大众,奥迪和保时捷则广为人知。德国高档汽车受到各国喜爱。德国汽车工业之所以能够领先于其他产业,是因为它是德国第一产业,拥有实力和强劲的发展势头,其发展特点值得期待。首先,德国汽车研发能力强,不断提高其核心竞争力。

 2.机械设备制造德国机械设备制造业是典型的外向型产业。它是世界上最大的机械设备出口国,其机械设备产品的75%销往国外。根据民航技术设备,阀门和管件,机床,电动消防设备及设备等五个领域。世界第二大出口国。德国机械世界闻名蒂森克虏伯,西马克,海德堡印刷,海瑞克,福伊特,普茨迈斯特,通快等。3.化学和制药行业德国是全球最大的化工产品出口国,拥有基础完善的设施,研究机构和高素质的工人。德国著名的化学和制药公司包括巴斯夫,拜耳,朗盛,汉高,赢创,默克,勃林格殷格翰等。

4.电子电气行业德国的电子电气行业世界领先。汽车电子行业是德国最大的电子元件消费国,通信领域,电子数据处理和工业电子产品也是其主要用户。德国不仅将可再生能源的发展视为确保能源安全,多样化能源供应和替代能源的重要战略选择,而且还被视为减少碳排放和节省化石燃料引起的环境问题的重要措施。

由于德国的工业太发达,而且利润太高,德国人根本不愿发展房地产经济,因为根本没有必要。大力发展房地产经济,收益大于损失。 德国人不仅收入高,而且拥有完整的社会保障体系。房屋很便宜。此外,德国严格的法律使买卖房屋几乎无利可图。因此,根本没有德国人在猜测房屋,而且德国经济中的房地产行业也不高。 。

顺利的山水
靓丽的发箍
2025-06-22 15:21:23

因为俄罗斯是一个资源大国,几乎是可以控制着整个欧洲的资源,俄罗斯的油气也是很多欧洲国家的供应地。俄国的资源是比较丰富的,很多国家的国土面积比较小,所以都要依靠俄罗斯的资源出口。因为整个欧洲的能源都是比较匮乏的,但是俄罗斯的资源又非常的丰富,因为俄罗斯的国土资源面积非常的大,另一方面也是因为俄罗斯的地理环境非常的好,也一直都是欧洲很多国家的主要能源的供应地。

特别是像法国,德国这些欧洲国家和俄罗斯也有着长期的合作,俄罗斯也一直通过在海上建立的管道为德国输送能源,而且非常巧妙的避开了波兰和乌克兰。所以欧洲这些国家想要得到发展,他们肯定是没有办法离开俄罗斯所提供的能源的。虽然美国并不缺能人,但是他们肯定不会用这么低的价格把这些能源给卖出去,所以欧洲这些国家肯定不会去向美国购买能源的。

所以欧洲这些国家唯一能够以低廉的价格买到这些天然能源的国家就只有俄罗斯了,这也是很多国家都离不开俄能源的根本原因。因为现在基本上每一个国家想要得到发展,都必须要依靠天然能源,但是很多国家的国土面积都非常的小,基本上没有特别丰富的能源。虽然俄罗斯的人口数量并不是很多,但是国土面积一骑绝尘。所以肯定也是拥有着非常丰富的天然资源的,他们把这些天然的资源也非常低廉的价格向外销售,所以很多国家也是依靠俄罗斯的这些资源才得到发展的。

而且英国和法国这种国家本身就没有办法离开俄罗斯的天然气和石油资源,因为这对于一个国家的发展是至关重要的。如果停止使用俄罗斯的天然气和石油资源,对于国家的发展有着很大的影响,而且还很有可能会影响普通群众的日常生活。