绿氢合成氨什么意思
绿氢合成氨指可再生能源电解水制绿氢,根据查询相关资料显示,绿氢和氮气催化合成氨是最先实现绿氨工业化生产的技术路线。可再生能源制绿氢合成氨及其应用对于全球实现碳中和至关重要,绿氨合成将会成为绿氢的重要应用之一。
氨(NH3)是化肥的重要组成部分,是世界第二大工业化学品,年产量约1.8亿吨,其中近90%用于满足全球农业生产需求。
同时,鉴于相比绿色氢气有许多优势,氨也越来越被视为潜在的绿色能源,可用于电力生产和航运业等一些难以脱碳的行业领域。但是,目前传统生产氨的主要方式——哈伯-博世法(Haber-Bosch【H-B】)与人类应对气候变化的主旋律并不相容。
在H-B工艺中,氢气(H2)和氮气(N2)在可承受高温(350-500°C)高压(150-300 bar)的反应器中通过放热催化反应生成氨。在工业H-B工艺中,这种氨生产工艺的基本原料是通过消耗碳氢化合物获得的:H2通常通过蒸汽重整从甲烷(CH4)中获得,N2则来自CH4燃烧去除氧气(O2)后的空气。在此过程中,碳氢化合物燃料被燃烧以产生反应过程所需的热量和机械能,但同时会排放出大量二氧化碳(CO2)。据统计,全球平均每生产3吨氨气就会产生一吨二氧化碳。
能不能用可再生能源以一种更加绿色环保的方式来生产氨呢?比如太阳能?
为了设计这样一种全新的工艺,多国科学家进行了大量的可持续能源研究,也得到了各国政府的资助。然而,到目前为止,大多数研究人员已经研究了如何将H-B过程转化为绿色(无化石燃料)或蓝色(化石燃料,具有碳捕获和储存功能),但是这些思路并未改变氨气催化反应所需要的高压运行条件。
不过,目前美国能源部资助的一个由桑迪亚国家实验室、乔治亚理工学院和亚利桑那州立大学组成的多机构项目提出了一个区别大多数研究的创新型思路,即:利用太阳能聚光集热技术来作为生产氨的唯一能源。
一种全新的太阳能热化学氨生产工艺
据悉,由桑迪亚国家实验室Andrea Ambrosini博士领导的多机构团队目前正在研究这种完全不涉及H-B工艺的碳中性氨生产方法。该团队正在评估一种独特的太阳能热化学氨生产工艺的可行性,该工艺完全不排放二氧化碳。
来自亚利桑那州立大学、参与撰写《太阳能驱动的基于两步热化学循环的空气氮气分离工艺》的助理研究科学家Alberto de la Calle博士介绍:“我们提出了一种可持续的氨生产思路,不需要化石燃料,而是利用集中太阳能辐射。这种正在开发的先进太阳能热化学循环技术可以从空气中生产和储存氮气,然后通过先进的两级工艺生产氨,更重要的是它可以降低合成氨所需的压力
氢气是可再生能源,常温常压下,氢气是一种极易燃烧,无色透明、无臭无味且难溶于水的气体。氢气是世界上已知的密度最小的气体,氢气的密度只有空气的1/14,即氢气在1标准大气压和0℃,氢气的密度为0.089g/L。
可再生能源
一次能源可以进一步分为再生能源和非再生能源两大类型。再生能源包括太阳能、水能、风能、生物质能、波浪能、潮汐能、海洋温差能、地热能等。它们在自然界可以循环再生。是取之不尽,用之不竭的能源,不需要人力参与便会自动再生,是相对于会穷尽的非再生能源的一种能源。
氢气氢气(H2)最早于16世纪初被人工制备,当时使用的方法是将金属置于强酸中。1766–1781年,亨利·卡文迪许发现氢元素,氢气燃烧生成水(2H₂+O₂点燃=2H₂O),拉瓦锡根据这一性质将该元素命名为“hydrogenium”(“生成水的物质”之意,“hydro”是“水”,“gen”是“生成”,“ium”是元素通用后缀)。19世纪50年代英国医生合信(B.Hobson)编写《博物新编》(1855 年)时,把“hydrogen”翻译为“轻气”,意为最轻气体。
工业上一般从天然气或水煤气制氢气,而不采用高耗能的电解水的方法。制得的氢气大量用于石化行业的裂化反应和生产氨气。氢气分子可以进入许多金属的晶格中,造成“氢脆”现象,使得氢气的存储罐和管道需要使用特殊材料(如蒙耐尔合金),设计也更加复杂。
短期内吸入大量氨气后会出现流泪、咽痛、咳嗽、胸闷、呼吸困难、头晕、呕吐、乏力等。若吸入的氨气过多,导致血液中氨浓度过高,就会通过三叉神经末梢的反射作用而引起心脏的停搏和呼吸停止,危及生命。
室内空气中氨气主要来自建筑施工中使用的混泥土添加剂。添加剂中含有大量氨内物质,在墙体中随着温度、湿度等环境因素的变化而还原成氨气释放出来
绿氨的生产具有较低的碳排放,是绿氢的重要来源,因为生产可以只依赖水、空气以及电力,这意味着理论上也存在和氢气同样清洁的制备方式,所以是对的。
绿氢,特指的是使用可再生能源(例如太阳能、风能、核能等)制取的氢气,它可以做到全生产周期无碳排,对温室气体的减排具有非常重要的意义。