已知2021m=2022n,则m:n的值为什么?
述(最多18字
现在流行上网课,网课的时光真的难熬呀!那网课上的答案我们在哪里找呢,今天小编就教你如何查找答案一些试卷试题的答案
2021年智慧树医学统计学原理与实践网课答案快速关`注→ 蓝莓教室 ←(公)众(号)
然后复制发送题干,返回答案。2021年智慧树医学统计学原理与实践网课答案和解析,讲题让学习有乐趣已知f1(t)=tε(t),f2(t)=ε(t)-ε(t-2),求y(t)=f1(t)*f2(t-1)*δ&39(t-2)。
y(t)=(t-3)ε(t-3)-(t-5)ε(t-5)
放大电路如下图所示,已知RB=470kΩ,RC=6kΩ,RS=1kΩ,RL→∞,C1=C2=5μF,晶体管的参数为β=49,rbb'=500Ω,rbe=2kΩ,fT
1)电路的低频微变等效电路如下图所示。图中有两个含单一时间常数的RC电路:①包含C1,其τ1=C1(RS+RB∥rbe)=15ms,fL1=10.6Hz;②包含C2的,其τ2=C2(RC+RL)→∞,fL2≈0Hz。所以,下限截止频率要由含C1的回路决定,fL=10.6Hz。 2)电路的高频微变等效电路如下图所示,为此先由β求gm和由fT求Cπ。 C'π=Cπ+(1+gmR'L)Cμ=[74.3+5(1+32.67×6)]pF=(74.3+985.1)pF=1059.4pF 图中只有一个包含C'π的RC电路,其时间常数τ为 τ=G'π[rb'e∥(rbb'+RS∥RB)]=1059.4×10-12×0.75×103s=794.55×10-9s 上限截止频率为 所以电路的下限截止频率fL=10.6Hz,上限截止频率fH=200kHz。
用恒流源取代长尾式差分放大电路中的发射极电阻Re,将使电路的______。 A.差模放大倍数数值增大 B.抑制共模
B
用施密特触发器能否寄存1位二值数据,说明理由。
不能。因为施密特触发器不具备记忆功能。
电感式传感器的测量范围大,可以从0~0.001N·m到0~100kN·m。
正确
利用生物质能发电的关键技术在哪些方面?生物质能发电的主要特点是什么?
利用生物质能发电的关键在于生物质原料的处理和转化技术。采用生物质能发电的特点是: (1)生物质能发电的重要配套技术是生物质能的转化技术,且转化设备必须安全可靠、维护方便; (2)利用当地生物资源发电的原料必须具有足够数量的储存,以保证连续供应; (3)发电设备的装机容量一般较小,且多为独立运行的方式; (4)利用当地生物质能资源就地发电、就地利用,不需外运燃料和远距离输电; (5)城市粪便、垃圾和工业有机废水对环境污染严重,若用于发电,则化害为利、变废为宝; (6)生物质能发电所用能源为可再生能源,资源不会枯竭、污染小、清洁卫生,有利于环境保护。
用MultlSim7中的逻辑转换器将下列逻辑函数转换为真值表,并求出函数式的最简与或形式和对应的逻辑图。 (1) Y
打开MultlSim7的主界面窗口,单击仪器栏里的“Logic Converter”按钮.窗口中出现一个矩形的图标“XLC1”。双击“XLC1”,窗口中出现逻辑转换器的操作面板。在操作面板最下边一栏里输入给定的逻辑函数式,单击右侧第4个按钮,函数的真值表便出现在操作面板左侧的窗口中。再单击操作面板右侧的第3个按钮,即可在操作面板最下边的一栏里给出函数化简后的最简与或形式了。 (1) Y1的真值表和逻辑图见表A2.34(1)和图A2.34(1)。化简结果为 Y1(A,B,C,D)=B'D+ABC'+C'D (2) Y2的真值表见表A2.34(2)。化简结果为 Y2(A,B,C.D)=0 (3) Y3的真值表和逻辑图见表A2.34(3)和图A2.34(3)。化简结果为 Y3(A,B,C,D,E)=B'C+BD'+BE'+A (4) Y4真值表和逻辑图见表A2.34(4)和图A2.34(4)。化简结果为 Y4(A,B,C,D,E,F)=A'B'D'+A'B'CE'+B'D'EF'+CDE'F'+CEF (5) 将逻辑转换器操作面板上的A,B,C,D视为Y5中的M,N,P,Q,得到Y5真值表和逻辑图见表A2.34(5)和图A2.34(5)。化简结果为 Y5 (M,N,P,Q)=MN'P (6) 将逻辑转换器操作面板上的A,B,C,D视为Y6中的P,Q,R,S,得到Y6真值表和逻辑图见表A2.34(6)和图A2.34(6)。化简结果为 Y6(P,Q,R,S)=PQ'R'
外汲电流的存在会使距离保护的测量阻抗______,保护范围______。
减小$增大
如图11.4.3所示电路中,电压源△uS表示电压源uS自某一标称值的微小变化量,作出原电路的小信号电路,并导出非线
小信号电阻为
设存储器的起始地址为全0,试指出下列存储系统的最高地址的十六进制地址码为多少? (1)2K×1 (2)16K×4 (3)256
给存储阵列中的每个字赋予一个编号,称为地址。(1)、(2)、(3)中地址位数分别为11位(211),14位(214),18位(218),则由起始地址全0知,它们的十六进制地址是:(1)7FFH;(2)3FFFH;(3)3FFFFH。
窗函数性能的三个频域指标是什么?对其有何要求?
(1)3dB带宽B:它是主瓣归一化幅值20lg|W(f)/W(0)|下降到-3dB时的带宽。当时间窗的宽度为τ,采样间隔为Ts时.对应于N个采样点,其最大的频率分辨率可达到1/(N·Ts)=1/τ,令Δf=1/τ,则B的单位可以是Δf。 (2)最大旁瓣峰值A(dB):A越小,由旁瓣引起的谱失真越小。 (3)旁瓣谱峰渐进衰减速度D。 对时间窗的一般要求是其频谱(也叫做频域窗)的主瓣尽量窄,以提高频率分辨率;旁瓣要尽量低,以减少泄漏。
在下列平衡二叉树中插入关键字48后得到一棵新平衡二叉树,在新平衡二叉树中,关键字37所在结点的左
正确答案:C插入48以后,该二叉树根结点的平衡因子由-1变为-2,失去平衡,需进行两次旋转(先右旋后左旋)操作。
用例和参加者之间的连线称作______,是关系的一种。
派生
在创建图表之前,要选择数据,必须注意______。 A.可以随意选择数据 B.选择的数据区域必须是连续的矩形区
C
针对测试技术课程的特点,思考如何学习该课程。
本课程具有很强的实践性,只有在学习过程中密切联系实际,加强实盆,注意物理概念,才能真正掌握有关知识。 在教学环节中安排与本课程相关的必要的实验及习题,学习中学生必须主动积极地参加实验及完成相应的习题才能受到应有的实验能力的训练,才能在潜移默化中获得关于动态测试工作的比较完整的概念,也只有这样,才能初步具有处理实际测试工作的能力。
下式中a为常数,试确定平衡点的稳定性。
xe=0是唯一的平衡点。 试取 显然,V(x)>0,且有连续一阶偏导,即 当a>0时,有V(x)<0,xe是渐近稳定的平衡点,且当时,V(x)→∞,故有大范围渐近稳定; 当a=0时,有,xe是李氏稳定的平衡点; 当a<0,有V(x)>0,xe是不稳定的平衡点。 所选V(x)可判稳定性,故是李雅普诺夫函数。
试说明自耦变压器和双绕组变压器比较有哪些优缺点?为什么电压比越接近1,自耦变压器的优越性越突出?
自耦变压器和双绕组变压器比较有以下一些优缺点: (1)节省材料。变压器的体积和重量大小由绕组容量决定,与普通双绕组变压器比较,自耦变压器在相同额定容量情况下,绕组容量要小,所以可以节省材料,减低造价。 (2)效率高。由于自耦变压器绕组容量较额定容量小,所以铁耗和铜耗也减小,效率提高。 (3)有较小的电压调整率。由于自耦变压器短路阻抗标幺值较双绕组变压器小,所以运行时电压变化小。 (4)短路电流较大。因为自耦变压器短路阻抗标幺值小,所以短路电流较大。 (5)需要可靠的保护措施。由于自耦变压器一、二次绕组有电的联系,在故障情况下,低压侧可能产生过电压,危及人身和设备安全,所以使用时中性点一定要可靠接地。自耦变压器电压比KA越接近1,1-1/KA就越小,也即在变压器容量不变的情况下,绕组容量越小,其优点越突出。
在图所示电路中,要分别实现下列要求,各应引入何种反馈?G、H、J、K4点应如何连接? (1)希望向信号源索取电流
(1)要求向信号源索取电流小,换言之,就是要提高输入电阻,则应引入串联反馈,针对图所示电路,只能引入电流串联负反馈,即H与K相连。如果引入电压串联反馈(G与K相连),则为正反馈(请读者自行分析),显然不合题意。 (2)要求稳定Ic3,应引入电流负反馈,且只能引入电流串联负反馈,即H与K相连。如果H与J相连,则为电流并联正反馈(请读者自行分析),不合题意。 (3)要求稳定输出电压,应引入电压负反馈,且只能引入电压并联负反馈,即G与J相连。如果C与K相连,则为电压串联正反馈(请读者自行分析),不合要求。 (4)讨论静态工作点的稳定,也就是稳定ICQ或UCEQ(对于直流,电阻值是一定的),所以可以引入电流负反馈或电压负反馈。如果引入电流负反馈,则H与K相连;如果引入电压负反馈,则G与J相连。
软件开发项目生存期概要设计阶段应包括的文档是______、______、______和______。
概要设计说明书、数据库设计说明书、补充的用户操作手册、修订的测试计划
用国产半导体热敏电阻在遥控电路中作稳定高低频振荡振幅时,其材料常数为4000K、热导为0.25mW/℃、标称电阻R25=
Um=9.4V;Im=0.7mA
一个算法在执行过程中以动态方式使用的存储空间主要包括______和______两种情况需要的空间。
函数的递归;$调用动态分配(malloc/new)。
设某周期信号x(t)的单位为μ,则其均方根的单位为μ2,其功率谱的单位为μ。
1 6.5-1 错误
试述电子皮带秤的工作原理并分析其误差。
电子皮带秤通常用测速法和测长法测量物料的瞬时重量和累计重量。 测速法可以看作为称重和测速相配合的过程。即称重传感器在瞬间称出皮带某一微小段的重量,同时用测速传感器测量出同一瞬间皮带的线速度。这样连续测量,经过一段时间后,就可以测出皮带机输送的总质量。 采用测长法时,每当皮带移动一段距离时,测量一次重量值,由此在某段时间内根据皮带总共移动的距离得到所运物料的累计重量。把累计重量对时间进行微分即可求得瞬时重量。 电子皮带秤的误差有如下几个方面。 (1)称重传感器误差——除称重传感器本身制造误差和环境造成的误差外,秤体的安装也会带来误差。 (2)测速传感器误差——通常由传感器的本身误差和皮带打滑误差造成。 (3)机械结构误差——连续输送物料的称重是在设定的有效称重段上对物料重量的积分,因此有效称重段的变化或不稳也会造成误差。 (4)测量电路误差——主要为零漂和温漂。
绕线转子感应电机,如果定子绕组短路,在转子边接上电源,旋转磁场相对于转子顺时针方向旋转,此时转子会旋转吗
会旋转。因为旋转磁场相对于转子顺时针方向旋转时,根据电磁感应定律,在定子侧,会产生转矩企图带动定子旋转,但定子不能动,故反作用于转子,使转子以转速n旋转,转向为逆时针方向。
电路如图L6-8-1所示,试分析其工作原理,说明其功能,其中逻辑信号M为控制命令。
首先写出该电路的驱动方程 (6.831) 将式(6.8.1)代入D触发器的特性方程中便可得到电路的状态方程 (6.8.2) 当M=1时,式(6.8.2)可写成 (6.8.3) 由式(6.8.3)可见,在CLK的有效电平(高电平)作用,FF1~FF4构成环形串行移位寄存器,每一个CLK高电平到后,移存器的各位向前移l位,即,,,。 当M=0时,式(6.8.2)可写成 (6.8.4) 由式(6.8.4)可见,此时FF1~FF4也是构成环行串行移位寄存器,但是在每一个CLK高电平到后,移存器是按一次向前跳移二位,即Q1→(Q1的状态进入FF3,成为次态),Q2→,Q3→,Q4→。 在电路开始工作时,若先将按键K接通到地数毫秒后,FF1~FF3被置零,即Q1=Q2=Q3=0,FF1被置“1”,即Q4=1,即电路先由按键K设定初态。当M=1时,在CLK的每个高电平作用下,电路按每CLK移一位工作,从而构成顺序脉冲发生器。当M=0时,在CLK的每个高电平作用下,电路按每CLK移二位(即跳过一位)方式工作。若电路初态为Q2(或Q4)=1,其他为O时,则电路仅在Q2及Q4上有顺序脉冲输出,但其周期比M=1时的周期要短,在Q1及Q3上始终处于低电平。若电路初态是Q1(或Q3)=1,其他为0时,则电路仅在Q1及Q3上有顺序脉冲输出,Q2及Q4也是保持为低电平。这两种初态情况具体是哪一种,取决于M=0到达时的电路的状态。具体参见图L6-8-2所示的时序图。 电路时序图如图L6-8-2所示。
《丧钟为谁而鸣》、《老人与海》、《战地钟声》的作者是:()A.加缪B.海明威C.萨特D.桑提亚哥
当代秘书学诞生的最基本标志是()。A.专业论著的问世与学术带头人的出现B.专业学会与专业学术活
简述公共关系传播推广功能的主要表现。
无论诗话还是评点,批评的出发点还是个人的()A.思维结果B.直觉印象C.知识结构D.情感体验
湘乡派的文学主张如何?
1917年在荷兰创办《风格》杂志的是A.格罗佩斯B.威廉·莫里斯C.蒙德里安D.达利
简述分办环节的工作要求。
气候变化是人类面临的全球性问题,在2020年12月18日闭幕的中央经济工作会议上,“做好碳达峰、碳中和工作”被列为2021年的重点任务之一,环境的倒逼、消费升级、国家政策推动,也加速了能源产业的变革。
在2021 MWC上海大会期间,华为副总裁兼数字能源产品线总裁周桃园发布了数字能源零碳网络解决方案,旨在助力运营商实现零碳网络战略,并加速世界绿色可持续发展进程。
“零碳网络已成为全球领先运营商的重要战略目标。”周桃园表示,在碳中和的大背景下,全球能源大变局的序幕已拉开,未来可再生能源将成为能源界的重磅角色,与此同时,全球ICT能耗持续增长,预计到2030年达全球总电量的5%,数据中心10年TCO中电费占比将超过60%。低碳化和低能耗两条平行轨道,无疑是运营商未来发展的两大方向。
运营商身陷能耗“黑洞”
随着5G、云计算、AI、大数据等技术不断成熟,海量新兴应用不断繁荣,这都对5G网络覆盖与数据中心需求将呈爆发式增长,使得站点与数据中心数量的激增,相关预测指出,2025年,通信行业将消耗全球20%的电力,运营商在赋能行业数字化转型的同时,也面临更高的能耗挑战。
当前,能耗问题已经成为运营商建网过程中主要考量因素之一,基站作为耗电大户,大约80%的能耗均来自广泛分布的基站,众所周知,移动通信接入使用了成千上万的基站,基站能耗以电为主,随着电力成本的增加,移动网络的扩大,基站机房电费支出逐渐增大,并且由于覆盖范围的衰减,5G基站的需求数量又是成倍增加。
与此同时,移动通信基站机房均为全封闭机房,机房内的电源设备、发射设备、传输设备等都是较大的发热体,而为保障设备在恒温下运行,不因为温度过高而宕机,制冷系统就要不间断地为基站降温,这也直接导致了电量居高不下。
而在数据中心总能耗中,空调制冷系统依然是能耗大户,据悉,传统空调制冷系统能耗占比高达28%以上,随着数据流量和计算需求爆发式增长,数据中心的能耗压力势必给广大,相关数据预测,到2025年,数据中心能耗将占全球能源消耗的5%。
需要指出的是,刨除环境治理等问题,5G网络与数据中心的功耗增加也给运营商OPEX带来不小挑战,据周桃园透露,某运营商在加入5G基站后,整体OPEX增加了34%,这其中很大一部分是电费的增长,因此我们可以清晰看到,我们的能源基础设施,距离碳中和目标还有很大挑战。
助力运营商迈向“零碳网络”
毋庸置疑,节能增效对于运营商不仅仅是技术问题,更是商业与 社会 责任,对此电信企业也正积极行动,目前,全球已有超过50家运营商制定节能减排目标,在媒体沟通会上,周桃园首提“零碳网络”并发布华为数字能源零碳网络解决方案,包括极简站点、极简机房、极简数据中心、无处不在的绿电、智慧能源云,助力运营商引入绿电、节能减排,实现零碳网络,助力实现碳中和。
在站点方面,华为通过站点形态极简化,从室内站点到室外站点,进一步发展到室外刀片,让房变柜、柜变杆,全面杆站化,实现降低能耗、省电费、省租金。
而在机房的构建上,华为对于新建场景,以机柜替代机房对于扩容场景,免增机房、免改线缆、免增空调,从而节省能耗、空间及工程。
对于传统数据中心的建设,周桃园认为,当前数据中心建设模式主要通过采购不同的部件来形成整个能源设施,这种建设模式势必会导致基础设施能耗高、建设周期长。
华为推出的极简数据中心,通过全预制化、模块化建设重构架构,建设周期从20个月缩短至6个月,并且通过融合高密、高效节能的方案重构供电,提升效率,并实现预测性维护,在制冷方面,通过间接蒸发冷却和iCooling等解决方案,最后通过智能运维解决方案重构运维,提升运维效率。
“绿电”则是华为智能光储解决方案,通过将绿电引入站点、机房、数据中心等场景,实现全场景叠光,自发自用,降低用电成本。
“零碳网络的提出,将显著提高运营商的经济价值与 社会 价值。”谈及构建数字能源零碳网络解决方案的初衷,周桃园指出,华为对于数字能源零碳网络解决方案的构建,是由三个层面逐层递进,首先要消除浪费,提升能效其次要将运营商从能源的消费者变为绿色能源的生产者最后是将运营商的能源基础设施打造为具备数字化和智能化的能源网络,最终全面实现零碳网络,构建 社会 价值。
做大“绿电” 加速碳中和进程
据国际能源机构(IEA)的统计,过去三十年全球能源消耗增长了超过70%,碳排放累计增加近80%,能源消耗激增导致全球温室效应加剧。
周桃园认为,未来世界有两大主要驱动力,一是全球数字化、智能化转型趋势,二是以碳中和为目标的能源革命,即从传统的化石能源走向以太阳能光伏、风能为代表的可再生能源、绿色能源。
以上海地铁龙阳路基地光伏项为例,作为海地铁四大基地分布式光伏项目之一,华为智能光伏解决方案通过对地铁车库屋顶进行太阳能板改造,共安装了近13000个280瓦组件,所发的光伏电力并网接入基地内的综合变电所,供地铁就近使用。
据悉,该光伏电站一年的发电量,大约可供8节编组的一辆2号线列车跑20万公里,相当于行驶1560多个来回。是“光伏+地铁”应用典范,实现了绿色能源为绿色交通赋能,助力上海提前实现碳达峰目标。
目前,华为智能光伏解决方案已广泛应用于60多个国家,累计减少二氧化碳排放1.48亿吨,相当于种植超过2亿棵树。由此可见,加大可再生能源的使用,提高能源利用效率和效益,推动能源结构向绿色化方向发展,不仅在生态文明建设中有着十分重要的作用,也是应对能源危机和气候变化的重大举措。
“为世界碳中和做贡献是目标和使命。”正如周桃园指出,华为数字能源零碳网络解决方案将积极助力产业链合作伙伴向低碳可持续发展,加速世界碳中和进程。
提起全球变暖这一话题,许多人可能还会觉得全球变暖离我们还有段距离,现在还不需要去考虑这些问题,但是如果人类再不做出一些什么举动来加以控制的话全球变暖将会迅速来临,甚至影响到人类的生存环境。实际上近几年来,全球变暖已经悄悄的来临,只是还没有到我们想象中那么严重的地步而已。
从2019年的数据显示,北极常年冰在过去的35年里整整消失了95%,或许在几十年的时间内,北极将会出现无冰的情况。1984年的1月北冰洋的海冰有310万公里,到2019年的1月已经缩短到仅剩下11.6万平方米,如此迅速的变化让人触目惊心,更何况已经到了2020年,我们能感受得到今年的气候十分温热,每天都是差不多35到40度的高温,可想而知,人类再不做出一些改变的话,全球变暖将会发展得越来越猛烈。
而全球变暖首当其冲受到影响的就是可怜的北极熊,它们正在面临灭亡的危险,而造成它们灭亡的原因无外乎两个,饿死和溺死。在过去的纪录片中我们能看到许许多多的北极熊在长达5~8天无尽头的游泳中发生溺死的情况,这直接导致了许多的北极熊不敢下水捕猎造成饿死,但是除此之外还有一个非常残忍的现象,公熊们因为不敢去捕猎而只能杀死同伴,吃同伴的肉体,不顾母熊的哀嚎,猎杀小熊。
除此之外,人类的生存也遭受威胁。第一发生大海啸,北冰洋的冰山被融化,而那些水就会流进大洋里面,如果这些水流到海拔相对低的地方,那么就会淹没这些海拔低的地方,如果刚好有人类居住在这些地方,那么就要面临被淹没的危险。第二发生温盐环流失效,这个温盐环流其实就是地球自我平衡自我保护的一种手段,倘若失效的话就会造成低纬度地区热死了,高纬度地区处于冰天雪地。
要说过去几个月,话题度比较高的应该是全球范围内的能源危机和能源转型大趋势,从大国抛售原油库存到全球新能源的大力发展,新能源 汽车 的火爆,都离不开一个词能源。
那刚刚过去的2021年全球各国能源消费量和能源形势如何呢,一起看看吧。
7月4日,英国石油公司发布了《bp世界能源统计年鉴2022》,报告对全球能源生产、消费做了系统的回顾。
《bp年鉴》中显示, 2021年全球一次能源需求同比增长31EJ,增长5.8%,已经超过2019年的水平,创 历史 最大涨幅 。其中占比最高的依然是石油、天然气和煤炭,其中让人眼前一亮的是可再生能源中 风能、太阳能增长幅度成为所有能源中最高的,达到15% 。
全球能源转型的步伐逐步加快, 可再生能源在一次能源消费中的占比逐步加大 。
01
非化石能源加速发展
首先来看一下可再生能源,近几年可再生能源的发展犹如坐上了高速列车一般,发展速度迅猛。
可再生能源中占比最大的是风能和太阳能,占可再生能源的79.1% 。近年来,得益于全球光伏项目和风力发电项目的持续推进,太阳能和风能发电量持续增长。去年一年 太阳能发电量涨幅为19% ,其中太阳能利用最多的是中国,美国和德国。 风能发电量去年一年增长15.8% ,风能利用最多的是中国,其次是美国。
在可再生能源消费国中,中国是最多的,其次是美国。其中可再生能源涨幅最大的国家是中国,其次是澳大利亚和土耳其。
接下来看一下核能和水利发电。全球核能的利用达到了25.31EJ,增幅为3.8%,依然低于2019年水平。相比于其他新能源不断增加的趋势, 水力发电不增反降1.4% 。
02
化石能源占主体
在《bp年鉴》中显示 石油占全球能源一次消费的30.95% ,依然是能源消费中比重最大的一部分,与2020年相比变化不大。
石油价格一直以来是能源行业关心的话题,此次《bp年鉴》显示2020年布伦特原油全年平均价格41.84$/桶,而2021年全年平均价格为70.91$/桶, 价格增长了69.47% 。
其中,天然气在一次能源消费中占24.42%,增长幅度为5.3%;煤炭占比26.9%,增长幅度为6%。
水力发电和可再生能源在全球一次能源消费中占比达到了13.47%,基本与2020年13.45%持平,其中水利发电不增反降,可再生能源增幅拉齐了这一比率。
数据显示, 化石能源(石油、天然气和煤炭)依然是主要能源 ,占比高达82%,这个数据与2019年相比下降了只有1个百分点。
过去一年, 全球石油产量每天增加138万桶,总体产量增长了1.5% 。在主要产油国中增幅最大的是加拿大和伊朗,并且巴西、伊拉克和沙特阿拉伯产量略有下降。
接下来,一起来看一下主要产油国的产量状况。美国年产石油7.11亿吨,成为原油产量最多的国家,这得益于油价上涨之后,美国重新开启部分因为疫情停产的页岩油的开采。其次是俄罗斯和沙特阿拉伯,产量分别为5.36亿吨和5.16亿吨,这三个国家的石油产量总量占了全世界石油产量42.21亿吨的41.75%。
03
能源格局继续变化
去年,全球各国一次能源消耗量的对比显示, 中国成为全球能源消耗最大的国家 (10 EJ),其次是美国。同时,年鉴中还列出了全球石油天然气贸易量,显示中国成为全球进口原油、天然气最多的国家。疫情和国际能源局势动荡之下, 中国成了全球最大经济体 。
这也不难解释,自疫情以来中国实行强有力的管控措施,经济的持续增长拉动了能源需求增长。
总体来看, 全球能源需求正在增长,渐渐从疫情中好转过来 。
2022年以来,能源安全的矛盾日渐突出,人类正面临近50年来最大的挑战和不确定性。
由于长期以来石油行业投资不足造成的全球石油供应短缺,及疫情和地缘政治因素等造成能源市场动荡,原油价格暴涨,更进一步凸显了能源安全的重要性,由此引起的人类关于能源“安全性”“经济性”和“低碳化”的思考。
与此同时,各国都在寻求稳定能源供应的方法,大国也在寻求共同商讨石油增产的可能,都在为能源稳定供应努力。
目前,全球都在寻求能源净碳化,期望实现零碳排放, 可再生能源项目的不断推进就显得越来越重要 。