建材秒知道
登录
建材号 > 能源科技 > 正文

唯铁氢化酶

健壮的小蝴蝶
现代的钢笔
2023-02-01 10:27:48

唯铁氢化酶

最佳答案
阔达的花卷
机智的红酒
2025-06-20 06:35:48

主要催化质子的还原生成氢气这一反应!

按照本人理解,应该是两个质子能生成一个氢分子.

氢化酶 - 简介

氢化酶是自然界厌氧微生物体内存在的一种金属酶,它能够催化氢气的氧化或者质子的还原这一可逆化学反应(图1)。根据氢化酶活性中心所含金属的不同,可以分为镍铁氢化酶,铁铁(唯铁Iron-only)氢化酶等。其中目前受到广泛关注的是唯铁氢化酶,因为它主要催化质子的还原生成氢气这一反应,众所周知,氢气是一种清洁、高效无污染的可再生能源,在从微生物体内提取的氢化酶的晶体结构(图2)被报道以后,合成化学家们希望通过模拟唯铁氢化酶的结构来人工地实现它的功能,从而为氢能的产生找到一种更加经济环保的新途径。

最新回答
傻傻的猫咪
苗条的花卷
2025-06-20 06:35:48

炼金术是寻求长生的灵丹妙方,是人类受到一切诱惑中的最大诱惑。有史以来,人类就曾希望自己长生,并且做过种种的尝试。在所有的尝试中,炼金术士的幻想和技艺是被应用得最普遍的。为什么称氢为炼金术士呢当今世界开发新能源迫在眉睫,原因是目前所用的能源如石油、天然气、煤,均属不可再生资源,地球上存量有限,而人类生存又时刻离不开能源,所以必须寻找新的能源。

氢能是一种二次能源,它是通过一定的方法制用其他能源制取的,而不像煤、石油和天然气等可以直接从地下开采、几乎完全依靠化石燃料。随着化石燃料耗量的日益增加,其储量日益减少,终有一天会枯竭。这就迫切需要寻找一种不依赖化石燃料的储量丰富的新的含能体能源。莫非氢就是这样一种在常规能源危机和开发新的二次能源的同时出现,人们期待的新的二次能源时至今日,氢能的利用已有长足进步。自从1965年美国开始研制液氢发动机以来,相继研制成功了各种类型的喷气式和火箭式发动机。美国的航天飞机已成功使用液态氢作燃料。我国长征2号、3号也使用液氢作燃料。利用液态氢代替柴油,用于铁路机车或一般汽车的研制也十分活跃。氢汽车靠氢燃料、氢燃料电池运行也是沟通电力系统和氢能体系的重要手段。

目前,世界各国正在研究如何大量而廉价地生产氢。利用太阳能来分解水是一个主要研究方向。在光的作用下将水分解成氢气和氧气,关键在于找到一种合适的催化剂。如今世界上有50多个实验室在进行研究,至今尚未有重大突破,但它孕育着广阔的前景。

发展氢能源,将向建立一个美好、无污染的新世界迈出重要一步。

在众多的新能源中,氢能将会成为21世纪最理想的能源。这是因为,在燃烧相同重量的煤、汽油和氢气的情况下,氢气产生的能量最多,而且它燃烧的产物是水,没有灰渣和废气,不会污染环境;而煤和石油燃烧生成的是二氧化碳和二氧化硫,可分别产生温室效应和酸雨。煤和石油的储量是有限的,而氢主要存于水中,燃烧后唯一的产物也是水,可源源不断地产生氢气,永远不会用完。

氢是一种无色的气体。燃烧1克氢能释放出142千焦耳的热量,是汽油发热量的3倍。氢的重量特别轻,它比汽油、天然气、煤油都轻多了,因而携带、运送方便,是航天、航空等高速飞行交通工具最合适的燃料。氢在氧气里能够燃烧,氢气火焰的温度可高达2500℃,因而人们常用氢气切割或者焊接钢铁材料。

在大自然中,氢的分布很广泛。水就是氢的大“仓库”,其中含有11%的氢。泥土里约有1.5%的氢;石油、煤炭、天然气、动植物体内等都含有氢。氢的主体是以化合物水的形式存在的,而地球表面约70%为水所覆盖,储水量很大,因此可以说,氢是“取之不尽、用之不竭”的能源。如果能用合适的方法从水中制取氢,那么氢将是一种价格相当便宜的能源。

氢的用途很广,适用性强。它不仅能用作燃料,而且金属氢化物具有化学能、热能和机械能相互转换的功能。例如,储氢金属具有吸氢放热和吸热放氢的本领,可将热量储存起来,作为房间内取暖和空调使用。

氢作为气体燃料,首先被应用在汽车上。1976年5月,美国研制出一种以氢作燃料的汽车;后来,日本也研制成功一种以液态氢为燃料的汽车;70年代末期,前联邦德国的奔驰汽车公司已对氢气进行了试验,他们仅用了5千克氢,就使汽车行驶了110千米。

用氢作为汽车燃料,不仅干净,在低温下容易发动,而且对发动机的腐蚀作用小,可延长发动机的使用寿命。由于氢气与空气能够均匀混合,完全可省去一般汽车上所用的汽化器,从而可简化现有汽车的构造。更令人感兴趣的是,只要在汽油中加入4%的氢气,用它作为汽车发动机燃料,就可节油40%,而且无需对汽油发动机做多大的改进。

氢气在一定压力和温度下很容易变成液体,因而将它用于铁罐车、公路拖车或者轮船运输都很方便。液态氢既可用作汽车、飞机的燃料,也可用作火箭、导弹的燃料。美国飞往月球的“阿波罗”号宇宙飞船和我国发射人造卫星的“长征”运载火箭,都是用液态氢作燃料的。

另外,一使用氢燃料电池还可以把氢能直接转化成电能,使氢能的利用更为方便。目前,这种燃料电池已在宇宙飞船和潜水艇上得到使用,效果不错。当然,由于成本较高,一时还难以普遍使用。

现在世界上氢的年产量约为3600万吨,其中绝大部分是从石油、煤炭和天然气中制取的,这就得消耗本来就很紧缺的矿物燃料;另有4%的氢是用电解水的方法制取的,但消耗的电能太多,很不划算。因此,人们正在积极探索研究制氢的新方法。

随着太阳能研究和利用的发展,人们已开始利用阳光分解水来制取氢气。在水中放入催化剂,在阳光照射下,催化剂便能激发光化学反应,把水分解成氢和氧。例如,二氧化钛和某些含钌的化合物,就是较适用的光水解催化剂。人们预计,一旦当更有效的催化剂问世时,水中取“火”——制氢就成为可能,到那时,人们只要在汽车、飞机等油箱中装满水,再加入光水解催化剂,那么,在阳光照射下,水便能不断地分解出氢,成为发动机的能源。

世纪70年代,人们用半导体材料钛酸锶作光电极,金属铂作暗电极,将它们连在一起,然后放入水里,通过阳光的照射,就在铂电极上释放出氢气,而在钛酸锶电极上释放出氧气,这就是我们通常所说的光电解水制取氢气法。

科学家们还发现,一些微生物也能在阳光作用下制取氢。人们利用在光合作用下可以释放氢的微生物,通过氢化酶诱发电子,把水里的氢离子结合起来,生成氢气。苏联的科学家们已在湖沼里发现了这样的微生物,他们把这种微生物放在适合它生存的特殊器皿里,然后将微生物产生出来的氢气收集在氢气瓶里。这种微生物含有大量的蛋白质,除了能放出氢气外,还可以用于制药和生产维生素,以及用它作牧畜和家禽的饲料。现在,人们正在设法培养能高效产氢的这类微生物,以适应开发利用新能源的需要。

引人注意的是,许多原始的低等生物在新陈代谢的过程中也可放出氢气。例如,许多细菌可在一定条件下放出氢。日本已找到一种叫做“红鞭毛杆菌”的细菌,就是个制氢的能手。在玻璃器皿内,以淀粉作原料,掺入一些其他营养素制成的培养液,就可培养出这种细菌,这时,在玻璃器皿内便会产生出氢气。这种细菌制氢的效能颇高,每消耗5毫升的淀粉营养液,就可产生出25毫升的氢气。

美国宇航部门准备把一种光合细菌——红螺菌带到太空中去,用它放出的氢气作为能源供航天器使用。这种细菌的生长与繁殖很快,而且培养方法简单易行,既可在农副产品废水废渣中培养,也可以在乳制品加工厂的垃圾中培育。

对于制取氢气,有人提出了一个大胆的设想:将来建造一些为电解水制取氢气的专用核电站。譬如,建造一些人工海岛,把核电站建在这些海岛上,电解用水和冷却用水均取自海水。由于海岛远离居民区,所以既安全,又经济。制取的氢和氧,用铺设在水下的通气管道输入陆地,以便供人们随时使用。

氢燃料电池技术,一直被认为是利用氢能,解决未来人类能源危机的终极方案。上海一直是中国氢燃料电池研发和应用的重要基地,包括上汽、上海神力、同济大学等企业和高校,也一直在从事研发氢燃料电池和氢能车辆。随着中国经济的快速发展,汽车工业已经成为中国的支柱产业之一。2007年中国已成为世界第三大汽车生产国和第二大汽车市场。与此同时,汽车燃油消耗也达到8000万吨,约占中国石油总需求量的1/4。在能源供应日益紧张的今天,发展新能源汽车已迫在眉睫,用氢能作为汽车的燃料无疑是最佳选择。

虽然燃料电池发动机的关键技术基本已被突破,但是还需要更进一步对燃料电池产业化技术进行改进、提升,使产业化技术成熟。这个阶段需要政府加大研发力度的投入,以保证中国在燃料电池发动机关键技术方面的水平和领先优势。这包括对掌握燃料电池关键技术的企业在资金、融资能力等方面予以支持。除此之外,国家还应加快对燃料电池关键原材料、零部件国产化、批量化生产的支持,不断整合燃料电池各方面优势,带动燃料电池产业链的延伸。同时政府还应给予相关的示范应用配套设施,并且对燃料电池相关产业链予以培育等,以加快燃料电池车示范运营相关的法规、标准的制定和加氢站等配套设施的建设,推动燃料电池汽车的载客示范运营。有政府的大力支持,氢能汽车一定能成为朝阳产业。

细腻的灰狼
年轻的香氛
2025-06-20 06:35:48
能源科学与未来发展

摘要:通过了解过去以及现在的能源结构和能源利用技术,提出能源科学需要多学科交叉与综合来为能源发展提出贡献,而且能源科学的发展是能源高技术创新的源泉和先导。因此,能源科学和能源利用技术的发展不仅为国家未来的科学发展提供帮助,也为国家解决当今的能源危机给予支持。

关键词:能源结构,能源利用技术,新能源,

能源是比较集中的含能体或能量过程,凡是能够间接或者经过转换而获取某种能量的自然资源,统称为能源。在自然界里有一些自然资源本身就拥有某种形式的能量,它们在一定条件下能够转换成人们所需要的能量形式,这种自然资源显然是能源。

能源是人类从是物质资料生产的原动力。从人类远古时代在地球上出现后,随着社会生活和经济生活的不断发展,能源的应用形势和规模在不断变化增长。在古代,人类的主要能源来自人力和畜力,辅以柴薪。自西方工业革命开始西方资本主义国家为满足其工业化的需要, 18世纪末,瓦特发明了蒸汽机、大量的以煤炭为能源的动力机械逐渐替代了小作坊式的手工业,煤炭与资本主义大生产相结合,使世界能源结构发生了重大变革。

1895年,美国开始了石油钻探开发工作,这种液体燃料显示出比煤炭更强大的吸引力,1876 年,德国人奥托创制了内燃机,进而形成了以内燃机技术为核心的汽车工业,带动了机械制造业的发展,创造了人类历史上空前的物质文明。

19世纪末开始,以电力为主导的能源结构大变革开始,从法拉第发现了电磁感应开始,人们认识到电和磁是统一的电磁现象,之后又发明了电动机、发电机和各种电器,使电力作为二次能源取得了广泛应用。据统计,现在世界上大约四分之三的能源是在发电厂中转化为电力为人类使用。但是利用常规能源(如化石燃料煤炭、石油和天然气)来产生电力,其储量有限,在可预见的将来就可能用尽或者由于利用成本过高而无法使用,因此为了满足社会发展日益增长的能源需求和可持续发展,我们必须寻找除化石燃料以外的新能源,来解决人类面临的能源问题。

能源的几种分类

1、按照能源的来源分类:

a) 来自地球以外的天体的能量,主要是太阳辐射能。

包括:固化了的太阳能,如化石燃料(煤、石油、天然气、油页岩等,由一亿年前存积下来的有机物质形成)、草木燃料等;太阳能转化成的能量,如风能、水能、波浪能、海洋能;直接的太阳辐射,如利用光电转化、光合作用等。

b) 来自地球内部蕴藏的能量。

包括:地球热能,如地震能、火山热能、地下热水、地热蒸汽、热岩层;原子核能,如蕴藏核能的元素,铀、钍、硼、氘等。

c) 来自地球和其他天体相互作用而产生的能量。

包括:地月相互吸引产生的潮汐能。地球上的能源主要来自于太阳能、地球热能、原子核能和潮汐能,占地球全部能源的99.9%。

2、按照能源存在和产生形式分类

a)一次能源———以现有的形式存在于自然界中的能源。

可再生能源———不会随着它本身的转化或被利用而日益减少的能源,包括风能、水能、海流、海洋热能、潮汐能、草木燃料、直接太阳辐射、地震能、火山活动、地下热能等。

非再生能源———随着人类的利用而逐渐减少的能源,包括矿石燃料(煤、石油、天然气、油页岩等),核燃料(铀、钍、硼、氘等)。

b)二次能源—需要依靠其他能源来制取或产生的能源,包括电能、氢能、汽油、煤油、柴油、火药、酒精、甲醇等。他们使用方便,易于利用,是高品位能源。

3、按能源本身的性质分类

a) 含能体能源———能量以某种载体形式存储起来,而为人们利用。包括各种矿石燃料、核燃料、地下热能、高位水库、氢能等。

b) 过程性能源———能量在物质运动的过程中存在,无法直接的大量存储,如需储存起来,必须把它们转化为含能体能源中的能量。包括风能、水能、海流、地震能、潮汐能以及电能等,转化方式如流水→高位水库,电能→蓄电池。

大有潜力的常规能源

最基本的常规能源——煤炭

煤炭是古代植物埋藏在地下经历了复杂的生物化学和物理化学变化逐渐形成的固体可燃性矿物。

煤作为一种燃料,早在800年前就已经开始。煤被广泛用作工业生产的燃料,是从18世纪末的产业革命开始的。随着蒸汽机的发明和使用,煤被广泛地用作工业生产的燃料,给社会带来了前所未有的巨大生产力,推动了工业的向前发展,随之发展起煤炭、钢铁、化工、采矿、冶金等工业。而且煤炭在地球上的储量丰富,分布广泛,一般也比较容易开采,因而被广泛用作各种工业生产中的燃料。

煤炭对于现代化工业来说,无论是重工业,还是轻工业;无论是能源工业、冶金工业、化学工业、机械工业,还是轻纺工业、食品工业、交通运输业,都发挥着重要的作用,各种工业部门都在一定程度上要消耗一定量的煤炭,因此有人称煤炭是工业的“真正的粮食”。现我国已探明的煤炭储量为世界第一位。尽管如此,煤炭供应不足仍制约我国国民经济发展,因此,应用高新技术进行煤炭的加工转化,提高煤炭的利用效率,减少煤炭燃烧的环境污染,是解决能源缺乏、加速国民经济发展的重要途径之一。

煤炭的处理加工及转化

(1)选煤技术:选煤是指除去或减少原煤中所含的杂质(包括灰分、矸石、硫分等),并将处理过的煤分成若干个品种等级,以满足不同用户的需要。

(2)洁净煤技术:洁净煤技术是一系列新近开发的煤炭加工、燃烧转化和煤烟通道中的烟道气净化技术的总称。目的是减轻煤炭燃烧对环境的污染,提高煤炭利用效率,并降低成本。

(3)型煤及利用:用粉煤或低品位煤制成的具有一定形状的煤制品称为型煤。燃烧型煤可以提高热效率、节约煤炭并降低污染。型煤的节能率是所有洁净煤技术中最高的,相对环境效益也很高。

(4)煤液混合新型燃料技术:煤液混合新型燃料是一项新技术,这些混合燃料是粉煤在液体中的一种悬浮物,即煤液混合料。目前已有多种混合料经过全面试验,最有工业应用价值的煤液混合料是水煤浆,是一种低污染的燃料。

当代工业的血液——石油和天然气

石油又称原油,是从地下深处开采的棕黑色可燃粘稠液体。它是古代海洋或湖泊中的生物经过漫长的演化形成的混合物,属于化石燃料。石油及其产品广泛用于生产和生活的各个方面,被称为工业的血液。石油是现代世界一次能源消费构成中的主要能源,据1990年的资料统计,石油在世界一次能源消费构成中居第一位;在我国仅次于煤炭居第二位。至1990年底,世界天然气在世界一次能源构成中次于煤炭和石油,居第三位。我国已探明的天然气储量居世界第九位。1990年我国天然气在一次能源消费构成中次于煤炭、石油、水电,居第四位。

原油经过加工,形成汽油、煤油、柴油、润滑油、化工轻油和石脑油六大类产品。石油产品的范围从液化石油气开始,中间是石油化工原料、燃料和润滑油料,一直到沥青。原油在加工过程中还会释放出大量的石油气。石油加工后,可以得到利用率高、经济、合理的各种液体燃料,主要为内燃机燃料、锅炉燃料和灯油三类。其他的石油产品主要有润滑油、蜡、沥青以及石油化工产品如石油溶剂、乙烯、丙烯和聚乙烯等。天然气是一种混合气体,其主要成分为甲烷。天然气作为燃料容易燃烧、清洁无灰渣、热值高而且不污染环境。

天然气和石油一样是非常重要的基本有机化工原料。从天然气中分离出来及从石油炼厂汽中回收和分离的许多物质是最基本的化工原料,并可进一步制造转化出多种化工产品,如合成纤维、合成橡胶、合成塑料和化肥等产品。

火力发电的主要燃料就是前面我们讲述过的煤炭,有时候也有用油作燃料的。而且我国在很长一段时期电力建设的主要任务仍将是发展火力发电。火力发电设备容量和参数的提高,有一系列问题需要解决。特别是在当今我们赖以生存的生态环境日趋恶化的情况下,如何降低甚至消除火力发电对环境的污染是一个迫切需要解决的问题,因此采取低污染的燃烧方式是必然的发展趋势。

最干净的常规能源——水能

水能利用的主要方式是发电。水力发电就是利用河流中蕴藏着的水能来产生电能,其中最常用的方法就是在河流上建筑拦河坝,将分散在河段上的水能资源集中起来,然后靠引水管道引取集中了水能的水流去转动设在厂房中的水轮发电机组,在机组运转的过程中,就将水能转变成了电能。因为利用的是水能,而水流本身并无损耗,仍可以为下游用水部门所利用。我国水能资源的特点是水力资源总量较多,但开发利用率低,水力资源分布不均,西部多,东部少,相对集中在西南地区,而经济发达、能源需求大的东部地区水力资源极少,与经济发展不匹配。

水力发电有以下特点:

(1)水作为一种资源可由自然界水循环中的降水补充,使水能资源成为不会枯竭的再生能源,所以其发电成本非常低。

(2)水力发电事业和其他水利事业可以互相结合。为了使水能产生电能,常常要修建水库,而水库可作为防洪、供水、发展航运事业等多种任务。

(3)水电站中装设的水轮机开启方便、灵活,适宜于作为电力系统中的变动用电器,有利于保证供电质量。

(4)水电站建成后,能够连续提供廉价的电力。

(5)水力发电不污染环境,是一种公认的清洁能源。

充满希望的新能源

21世纪的主要能源——太阳能

太阳是一个炽热的气体球,蕴藏着无比巨大的能量。地球上除了地热能和核能以外,所有能源都来源于太阳能,因此可以说太阳能是人类的“能源之母”。没有太阳能,就不会有人类的一切。1945年,美国贝尔电话实验室制造出了世界上第一块实用的硅太阳能电池,开创了现代人类利用太阳能的新纪元。

人们利用太阳能的方法主要有三种,一种是使太阳能直接转换成电能,即光电转换。太阳能电池就属于这种转换方式;第二种是使太阳能直接转变成热能,即光热转换,如太阳能热水器等;第三种是使太阳能直接转变成化学能,即光化学转换,如太阳能发动机等。

实际上,人类早就有意识地利用太阳能,自从有了太阳能电池,就为太阳能的利用开辟了广阔的途径,人造卫星和宇宙飞船探测宇宙空间时用上了重量轻、使用寿命长和耐冲击振动的太阳能电池。目前,世界各国都在大力研究新型太阳能电池,提高光电转换率,使太阳能的开发利用进一步深化。

太阳能电站通常人们所说的太阳能电站,指的是太阳能热电站。这种发电站先将太阳光转变成热能,然后再通过机械装置将热能转变成电能。

太阳能电站能量转换的过程是:利用集热器(聚光镜)和吸热器(锅炉)把分散的太阳辐射能汇聚成集中的热能,经热换器和汽轮发电机把热能变成机械能,再变成电能。

太阳能电站靠太阳能热管来聚集热能,太阳能热管又叫真空集热管,它在结构上与我们平常所用的热水瓶相似,但热水瓶只能用来保温,而太阳能热管却能巧妙地吸收太阳的热能,即使阳光很微弱,它也能达到较高的温度,比一般太阳能集热器的本领强。热管在一天之内可以提供大量的工业用热水,又能一年四季不断地为它的主人供应所需要的热能。

魔鬼与天使——核能

从 1954年前苏联建成世界上第一座核电站以来,人类和平利用核能的历史还不到半个世纪;然而,核能的发展却异常迅速。

核能的发展之所以如此迅速,主要是因为它有着显著的优越性:其一,它的能量非常巨大,而且非常集中。其二,运输方便,地区适应性强。其三,储量丰富,用之不尽。

从目前情况来看,世界各国的核能发电技术已相当成熟,大量投入使用的单机容量达百万千瓦级的发电机组,使核电站得到了迅速的发展。

近十多年来,人们已经成功地研制出能充分利用铀燃料的核反应堆,这就是被称为“明天核电站锅炉”的快中子增殖核反应堆。这种核反应堆能使核燃料增殖,也就是说,核燃料在这种“锅炉”里越烧越多。如果能大量使用快中子增殖核反应堆,不仅能使铀资源的有效利用率增大数十倍,而且也将使铀资源本身扩大几百倍。

另外,近年来在激光核聚变、核电池、太空核电站和海底核电站等研究试验方面也都取得了一定的成果,促进了核能发电技术的进一步提高。

前景诱人的海洋能

海洋能是海水运动过程中产生的可再生能,主要包括温差能、潮汐能、波浪能、潮流能、海流能、盐差能等。潮汐能和潮流能源自月球、太阳和其他星球引力,其他海洋能均源自太阳辐射。全世界海洋能的总储量,约为全球每年耗能量的几百倍甚至几千倍。这种海洋能是取之不尽、用之不竭的新能源。在不远的将来,海洋能在造福于人类方面,将发挥巨大而重要的作用。

海洋潮汐发电你听说过吗?大海也会进行呼吸。海洋的潮汐,是由于月亮、太阳对地球上海水的吸引力和地球的自转而引起海水周期性、有节奏的垂直涨落现象。

海洋的潮汐中蕴藏着巨大的能量。在涨潮的过程中,汹涌而来的海水具有很大的动能,随着海水水位的升高,就把大量海水的动能转化为势能;在落潮过程中,海水又奔腾而去,水位逐渐降低,大量的势能又转化为动能。海水在涨落潮运动中所蕴含的大量动能和势能,称为潮汐能。

潮汐发电具有如下优点:

(1)潮汐发电的水库都是利用河口或海湾建成的,不占用耕地,也不像河川水电站或火电站那样要淹没或占用大面积土地。

(2)潮汐发电站不像河川水电站那样受洪水和枯水的影响,也不像火电站那样污染环境,是一种不受气候条件影响的、干净的发电站。

(3)潮汐电站的堤坝较低,容易建造,投资也较少。

海水盐差发电海水里面由于溶解了不少矿物盐而有一种苦咸味。然而,这种苦咸的海水大有用处,可用来发电,是一种能量巨大的海洋资源。

在大江大河的入海口,淡水和咸水的交汇处,淡水和咸水就会自发地扩散、混合,直到两者含盐浓度相等为止。在混合过程中,还将放出相当多的能量。这就是说,海水和淡水混合时,含盐浓度高的海水以较大的渗透压力向淡水扩散,而淡水也在向海水扩散,不过渗透压力小。这种渗透压力差所产生的能量,称为海水盐浓度差能,或者叫做海水盐差能。

海流能顾名思义,海流就是海洋中的河流。浩瀚的海洋中有一部分海水经常是朝着一定方向流动的,在海洋中常年默默奔流着。海流和陆地上的河流一样,也有一定的长度、宽度、深度和流速。风力的大小和海水密度不同是产生海流的主要原因。由定向风持续地吹拂海面所引起的海流称为风海流;而由于海水密度不同所产生的海流称为密度流。归根结底,这两种海流的能量都来源于太阳的辐射能。利用海流发电比陆地上的河流优越得多,它既不受洪水的威胁,又不受枯水季节的影响,几乎以常年不变的水量和一定的流速流动,完全可成为人类可靠的能源。海流发电是依靠海流的冲击力使水轮机旋转,然后再变换成高速,带动发电机发电。

海水温差能,辽阔的海洋,是一个巨大的“储热库”,它能大量地吸收辐射的太阳能;它又是一个巨大的“调温机”,调节着海洋表面和深层的水温。海水的温度随着海洋深度的增加而降低。这是因为太阳辐射无法透射到400米以下的海水,海洋表层的海水与500米深处的海水温度差可达20℃以上。海洋中上下层水温度的差异,蕴藏着一定的能量,叫做海水温差能。利用海水温差能可以发电,叫海水温差发电。现在新型的海水温差发电装置,是把海水引入太阳能加温池,把海水加热到45~60℃,有时可高达90℃,然后再把温水引进保持真空的汽锅蒸发进行发电。用海水温差发电,还可以得到副产品——淡水,所以说它还具有海水淡化功能,可以用来解决工业用水和饮用水的需要。

生物能源——沼气能

沼气是一种可燃气体,由于这种气体最早是在沼泽、池塘中发现的,所以人们称它“沼气”。我们通常所说的沼气,是人工制取的,所以它属于二次能源。而作为能源的沼气,至今尚未得到广泛的应用,所以它还属于现代新能源的成员。沼气的主要成分是甲烷(CH4)气体。通常,沼气中含有60~70%的甲烷,30~35%的二氧化碳,以及少量的氢气、氮气、硫化氢、一氧化碳、水蒸汽和少量高级的碳氢化合物。

甲烷气体的发热值较高,因而沼气的发热值也较高,所以说沼气是一种优质的人工气体燃料。甲烷在常温下是一种无色、无味、无毒的气体,它比空气要轻。由于甲烷在水中的溶解度很低,因而可用水封的容器来储存它。生产沼气的原料丰富,来源广泛。人畜粪便、动植物遗体、工农业有机物废渣和废液等,在一定温度、湿度、酸度和缺氧的条件下,经厌氧性微生物的发酵作用,就能产生出沼气。沼气是一种可以不断再生、就地生产就地消费、干净卫生、使用方便的新能源。在目前,它可以代替供应紧张的汽油、柴油,开动内燃机发电,驱动农机具加工农副产品,也可以用来煮饭照明。

从现今情况看来,使用沼气具有以下的优点:

(1)沼气不仅能解决农村能源问题,而且能增加有机肥料资源,提高质量和增加肥效,从而提高农作物产量,改良土壤。

(2)使用沼气,能大量节省秸杆、干草等有机物,以 便用来生产牲畜饲料和作为造纸原料及手工业原材料。

(3)兴办沼气可以减少乱砍树木和乱铲草皮的现象,保护植被,使农业生产系统逐步向良性循环发展。

(4)兴办沼气,有利于净化环境和减少疾病的发生。这是因为在沼气池发酵处理过程中,

新时代“古老”能源——风能

在自然界,风是一种巨大的能源,它远远超过矿物能源所提供的能量总和,是一种取之不尽、尚未得到大量开发利用的能源。风能是空气在流动过程中所产生的能量,而大气运动的能量来源于太阳辐射。由于地球表面各处受太阳辐射后散热的快慢不同,加之空气中水蒸汽的含量不同,从而引起各处气压的差异,结果高压地区空气便向低气压地区流动,从而形成了风,因此,风能是一种不断再生的没有污染的清洁能源。

当前,世界各国对风能的利用,主要是以风能作动力和发电两种形式,其中以风力发电为主。以风能作动力,就是利用风轮来直接带动各种机械系统的装置,如带动水泵提水等。这种风力发动机的优点是,投资少、工效高、经济耐用。

根据我国风能资源分布情况和当前的技术条件,近期开发利用风能的重点将放在内蒙古、东北、西北、西藏和东南沿海,以及岛屿、高山、风口等风能资源丰富的地区。在年平均风速超过6米/秒的地区,特别是电网很难达到的牧区、海岛和高山边远地区,开发利用风能资源更具有深远意义。

21世纪的理想能源——氢能

在众多的新能源中,氢能将会成为21世纪最理想的能源。这是因为,在燃烧相同重量的煤、汽油和氢气的情况下,氢气产生的能量最多,而且它燃烧的产物是水,没有灰渣和废气,不会污染环境,而氢主要存于水中,燃烧后唯一的产物也是水,可源源不断地产生氢气,永远不会用完。氢的用途很广,适用性强。它不仅能用作燃料,而且金属氢化物具有化学能、热能和机械能相互转换的功能。例如,储氢金属具有吸氢放热和吸热放氢的本领。可将热量储存起来,作为房间内取暖和空调使用。

氢气在一定压力和温度下很容易变成液体,因而将它用铁路罐车、公路拖车或者轮船运输都很方便。液态的氢既可用作汽车、飞机的燃料,也可用作火箭、导弹的燃料。美国飞往月球的“阿波罗”号宇宙飞船和我国发射人造卫星的长征运载火箭,都是用液态氢作燃料的。

另外,使用氢—氢燃料电池还可以把氢能直接转化成电能,使氢能的利用更为方便。目前,这种燃料电池已在字宙飞船和潜水艇上得到使用,效果不错。当然,由于成本较高,一时还难以普遍使用。

本世纪70年代,人们用半导体材料钛酸锶作光电极,以金属铂作暗电极,将它们连在一起,然后放入水里,通过阳光的照射,就在铂电极上释放出氢气,而在钛酸锶电极上释放出氧气,这就是我们通常所说的光电解水制取氢气法。科学家们还发现,一些微生物也能在阳光作用下制取氢。人们利用在光合作用下可以释放氢的微生物。通过氢化酶诱发电子,把水里的氢离子结合起来,生成氢气。

本学科存在的主要问题

一、简单运用传统经验进行具体工程项目的开发工作较多,研究运用技术科学基础不够。

二、在发展新技术方面, 创新概念少, 自主概念少, 往往是跟着外国人提出的一种概念和已经发表的文献,缺乏自己独立自主的见解和正确分析判断, 跟着上马, 以致往往在人家已下马之后,不得不跟着下马。应结合我国实际,做出科学分析,提出自己独立的见解。要做到这一点,需要有深厚的技术科学基础。

三、能源项目规模大, 投资多, 周期长, 全新概念不是很多,需要看准方向,长期坚持,及时总结,调整发展。

重点发展方向的展望

结合我国情况,重点发展方向应当是以下一些技术:

石油天然气工业关键技术

油气地球物理勘探与钻井新技术,海洋石油天然气开发技术,提高石油采收率新技术,在注水开发后期的油田,应用三次采油等方法提高石油采收率。

煤炭高效洁净利用关键技术

我国煤炭开发利用关键是解决生产效率低、不安全和环境严重污染两个方面的问题, 并应逐渐发展两大技术:一是安全、高效开采技术二是高效、洁净利用的洁净煤技术:煤炭安全、高效开采技术煤层气开发技术煤洗选、加工、处理技术洁净煤燃烧技术煤炭气化技术。

电力工业关键技术

超临界、超超临界蒸汽参数发电技术,燃气蒸汽联合循环发电技术,洁净煤发电技术,热电联产及多联供技术,先进压水堆发电技术, 燃料电池发电技术, 全国大区电网互联和灵活的交流输配电技术。

节能技术

中低温余热利用系统和中低温能源利用新技术,热泵技术,建筑节能,新型低温储能(含冰蓄冷及电力调峰) 系统,节能电器,交通运输节能,高能耗工业的节能新工艺流程。

核能释放与利用的科学问题

核废料处理及再利用,提高安全性,新的安全堆型探索快堆与高温气冷堆受控热核聚变堆关键技术。

可再生能源与氢能开拓与利用的科学问题

低价、高效、长寿新型光伏发电技术生物质能转换的化学生物技术光热利用新技术(发电、制冷等) 氢能规模制备、储运、利用技术。

能源环境技术

能源转换利用中有害元素控制与无公害定向转换技术城市废弃物无公害、资源化利用技术回收利用CO2 的能源环境系统探讨燃煤生态工程,煤基制氢及氢能利用系统。

农村能源技术

沼气技术生物质气化、液体燃料、发电技术生物质加工处理技术。

措施及建议

一、能源与环保的立法,价格政策,倾斜政策。

二、对能源科学技术(不是具体生产项目) 给予强大支持,由国家、产业联合支持。科教部门专门支持。

三、对较远见效的方向,如先进概念的发电系统、太阳能、核能要给予重视和布局研究发展工作。

四、培养基础扎实,知识面广,解决问题能力强的能源科学方面青年人才。

五、加大能源科技研究开发的投入:我国能源R&D 经费占国家R&D 总经费的比例比国际上发达国家的相应值小一个数量级。能源R&D 投入过低导致我国科技自主研究开发

参考文献:

《环境与能源科学导论》作者:刘震炎 出版社: 科学出版社第1版

《能源科学导论》作者:黄素逸 出版社:中国电力出版社

《2011-2020年我国能源科学学科发展战略报告》(第四稿) 中国科学院

《能源科学发展战略研究》中国科学院院士 吴承康 徐建中

自觉的摩托
勤恳的电话
2025-06-20 06:35:48
化石燃料有限的储量使人类正面临着前所未有的能源危机。同时其燃烧产物被排放到大气中加速了温室效应。氢气具有含量丰富、燃烧热值高、能量密度大、热效率高、清洁无污染以及输送成本低以及用途广泛等优点川,被认为最有可能成为化石燃料的替代能源。 氢气是一种理想的能源,具有转化率高、可再生和无污染等优点。与传统制氢方法相比,生物制氢技术的能耗低,对环境无害,其中的厌氧发酵生物制氢已经越来越受到人们的重视。主要介绍了厌氧发酵生物制氢技术的方法和机理,分析了生物制氢的可行性,结合国内外研究现状提出了未来的发展方向。 全球石油储量不断减少。最新研究表明:按目前全球消费趋势,球上可采集石油资源最多能使用到21世纪末。石化、燃煤能源使用,还带来严重大气环境污染,人们日益感觉到开发绿色可再生能源急迫性,研究和开发新能源被提到紧迫议事日程。2000年7—8月美国《未来学家》杂志刊登了美国乔治·华盛顿大学专家对21世纪前10年内十大科技发展趋势预测,其中第二条是燃料电池汽车问世,福特和丰田公司实验性燃料电池汽车将2004年上市。第九条是替代能源挑战石油能源,风能、太阳能、热、生物能和水力发电将占到全部能源需求30%。这两条实际上都是新型能源开发利用。我国“十五”国家重点开发技术项目中也将新型能源开发利用放极为重要位置。目前,人们对风能、太阳能开发已经有了相当研究,并已到了进行加以直接使用阶段,生物能研究也取了重要进展,如何将所获能量储存起来,如何将能量转化为交通工具可利用清洁高效能源,是一亟待解决重要课题。 内容摘要

2生物制氮技术研究进展

2.1传统制氢工艺方法

传统制氢工艺方法有:电解水;烃类水蒸汽重整制氢方法及重油(或渣油)部分氧化重整制氢方法。电解水方法制氢是目前应用较广且比较成熟方法之一。水为原料制氢工程是氢与氧燃烧生成水逆过程,提供一定形式一定能量,则可使水分解成氢气和氧气。提供电能使水分解制氢气效率一般75%-85%。其中工艺过程简单,无污染,但消耗电量大,其应用受到一定限制。目前电解水工艺、设备均不断改进,但电解水制氢能耗仍然很高。烃类水蒸汽重整制氢反应是强吸热反应,反应时需外部供热。热效率较低,反应温度较高,反应过程中水大量过量,能耗较高,造成资源浪费。重油氧化制氢重整方法,反应温度较高,制氢纯度低,利于能源综合利用。

2.2新型生物制氢工艺发展

氢气用途日益广泛,其需求量也迅速增加。传统制氢方法均需消耗大量不可再生能源,不适应社会发展需求。生物制氢技术作为一种符合可持续发展战略课题,已世界上引起了广泛重视。如德国、以色列、日本、葡萄牙、俄罗斯、瑞典、英国、美国都投入了大量人力物力对该项技术进行研究开发。近几年,美国每年生物制氢技术研究费用平均为几百万美元,而日本这研究领域每年投资则是美国5倍左右,,日本和美国等一些国家为此还成立了专门机构,并建立了生物制氢发展规划,以期对生物制氢技术基础和应用研究,使21世纪中叶使该技术实现商业化生产。日本,由能源部主持氢行动计划,确立最终目标是建立一个世界范围能源网络,以实现对可再生能源--氢有效生产,运输和利用。该计划从1993年到2020年横跨了28年。

生物制氢课题最先由Lewis于1966年提出,20世纪70年代能源危机引起了人们对生物制氢广泛关注,并开始进行研究。生物质资源丰富,是重要可再生能源。生物质可气化和微生物催化脱氢方法制氢。生理代谢过程中产生分子氢,可分为两个主要类群:

l、包括藻类和光合细菌内光合生物;Rhodbacter8604,R.monas2613,R.capsulatusZ1,R.sphaeroides等光合生物研究已经开展并取了一定成果。

2、诸如兼性厌氧和专性厌氧发酵产氢细菌。目前以葡萄糖,污水,纤维素为底物并不断改进操作条件和工艺流程研究较多。中国此方面研究也取了一些进展,任南形琪等1990年就开始开展生物制氢技术研究,并于1994年提出了以厌氧活性污泥为氢气原料有机废水发酵法制氢技术,利用碳水化合物为原料发酵法生物制氢技术。该技术突破了生物制氢技术必须采用纯菌种和固定技术局限,开创了利用非固定化菌种生产氢气新途径,并首次实现了中试规模连续流长期生产持续产氢。此基础上,他们又先后发现了产氢能力很高乙醇发酵类型发明了连续流生物制氢技术反应器,初步建立了生物产氢发酵理论,提出了最佳工程控制对策。该项技术和理论成果中试研究中到了充分验证:中试产氢能力达5.7m3H2/m3.d,制氢规模可达500-1000m3/m3,且生产成本明显低于目前广泛采用水电解法制氢成本。

生物制氢过程可以分为5类:

(1)利用藻类青蓝菌生物光解水法;

(2)有机化合物光合细菌(PSB)光分解法;

(3)有机化合物发酵制氢;

(4)光合细菌和发酵细菌耦合法制氢;

(5)酶催化法制氢。

目前发酵细菌产氢速率较高,对条件要求较低,具有直接应用前景。但PSB光合产氢速率比藻类快,能量利用率比发酵细菌高,且能将产氢与光能利用、有机物去除有机耦合一起,相关研究也最多,也是最具有潜应用前景方法之一。生物制氢全过程中,氢气纯化与储存也是一个很关键问题。生物法制氢气含量通常为60%-90%(体积分数),气体中可能混有CO2、O2和水蒸气等。可以采用传统化工方法来,如50%(质量分数)KOH溶液、苯三酚碱溶液和干燥器或冷却器。氢气几种储存方法(压缩、液化、金属氢化物和吸附)中,纳米材料吸附储氢是目前被认为最有前景。

2.3目前研究中存问题纵观生物技术研究各阶段,比较而言,对藻类及光合细菌研究要远多于对发酵产氢细菌研究。传统观点认为,微生物体内产氢系统(主氢化酶)很不稳定,进行细胞固定化才可能实现持续产氢。,迄今为止,生物制氢研究中大多采用纯菌种固定化技术。

,该技术中也有不可忽视不足。首先,细菌包埋技术是一种很复杂工艺,且要求有与之相适应菌种生产及菌体固定化材料加工工艺,这使制氢成本大幅度增加;第二,细胞固定化形成颗粒内部传质阻力较大,使细胞代谢产物颗粒内部积累而对生物产生反馈抑制和阻遏作用,使生物产氢能力降低;第三,包埋剂或其它基质使用,势必会占据大量有效空间,使生物反应器生物持有量受到限制,限制了产氢率和总产量提高。现有研究大多为实验室内进行小型试验,采用批式培养方法居多,利用连续流培养产氢报道较少。试验数据亦为短期试验结果,连续稳定运行期超过40天研究实例少见报道。即便是瞬时产氢率较高,长期连续运行能否获较高产氢量尚待探讨。,生物技术欲达到工业化生产水平尚需多年努力。

3、展望氢是高效、洁净、可再生二次能源,其用途越来越广泛,氢能应用将势不可当进人社会生活各个领域。氢能应用日益广泛,氢需求量日益增加,开发新制氢工艺势必行,从氢能应用长远规划来看开发生物制氢技术是历史发展必然趋势。

开发中国生物制氢技术需要做到以下政策和软件支持:

(1)励大宣传。人是生物能源生产主体和消费主体,有必要舆论宣传加强人们对生物能源认识;

(2)加大政府投资和扶持。新生物能源初始商业化阶段要进行减免税等优惠政策;

(3)借鉴国外经验。充分调动方和工业界积极性八

(4)加强高校对生物能源教育及研究。人们对生物能源认识不断加深,政府扶持力度加大和研究深人,生物制氢绿色能源生产技术将会展现出它更大开发潜力和应用价值。

本文出自:广州灵龙电子技术有限公司,制氢、氢燃料电池(www.liongon.com)