加拿大卡尔顿大学的专业设置丰富吗,他的哪些
卡尔顿大学专业设置广泛,可以提供包括各领域的65种课程,在经济学,公共事务管理,高科技等领域享有较高声誉。学校的新闻学院被公认是加拿大最好的,给学生提供很多实践机会,到国内各媒体如当地电台、电视台实习等。2000年,还开设了经济,金融方面、科技新闻的专题报道专业课程。卡尔顿大学是加拿大最早设立公共关系及管理、高科技专业的大学之一,与领先的高技术企业和研究机构联系紧密,许多当地的政府机构、研究单位、社会服务机构和软件、工程公司的人员选择卡尔顿大学的业余课程进修。随着生物技术及医药公司的飞速发展,大学近期又新开设了生物、生化及化学的学位。卡尔顿大学经济学、社会学和统计学的毕业生被联邦政府录用的人数位居第一。
学校有学士学位专业64个,硕士及博士学位专业60个以及90个研究中心。
重点推荐:计算机系统工程、新闻传媒、经济学、电子工程、建筑研究
本科专业
艺术和人文学院
经济学;法学;哲学
生物学;人类学;心理学
社会工作;公共事务及政策管理
艺术与文化;大众传媒实用语言研究;历史;语言学
工程与设计学院
航天航空工程;土木工程
电子工程;计算机系统工程
工业设计;软件工程
生物医学与电气工程
机械工程
可持续与可再生能源工程(现三个学校重点支持专业之一)
Sprott商学院
会计学;人力资源管理;金融及信息系统
国际商务;市场营销;商业经营分析;经营管理
3月23日,Stellantis集团和LG新能源(LG Energy Solution)宣布,双方已签署具有约束力的最终协议,即以双方合资的形式共同建立加拿大境内第一家大型的电动汽车电池制造厂。该合资公司将生产先进的锂离子电池单元和模块,以满足Stellantis集团在北美地区的大部分汽车生产需求。
该合资公司将投资逾50亿加元(41亿美元)以展开运营,其中包括位于加拿大安大略省温莎市的一家全新的电池制造工厂。工厂的建造计划于今年晚些时候展开,预计工厂将于2024年第一季度投产。
该工厂的目标是年产能超过45GWh,并将在温莎市及其周边地区创造约2500个新工作岗位。加拿大的联邦、省、市各级政府均同意全力支持合资公司的运营。
该电池制造工厂位于加拿大最大的汽车产业集群所在地安大略省温莎市,Stellantis集团和LG新能源预计该工厂将成为该地区建立强大电池供应链的催化剂。加拿大致力于通过利用其在可再生能源发电等方面的领先地位,建立广泛的本地电池制造生态系统。
Stellantis集团首席执行官唐唯实(Carlos Tavares)表示:“我们与LG新能源共同建立的合资公司为Stellantis集团在该地区实施其积极的电气化战略提供了有力支持。根据该战略,Stellantis集团的目标是在2030年内,实现在美国和加拿大售出的车辆中有50%为纯电动车型。我们感谢加拿大联邦、省、市各级政府的支持和承诺,这有助于加拿大成为北美电动汽车电池生产领域的领导者。”
LG新能源首席执行官Youngsoo Kwon表示:“通过与Stellantis集团组建的这家合资企业,LG新能源将成为该地区构建绿色能源价值链的关键参与者。加拿大被公认为是可再生能源领域的领先国家之一,对于LG新能源来说,在加拿大成立一家合资的电池制造企业至关重要,因为我们的目标是在全球范围内为更多的电动汽车提供动力。”
作为Stellantis集团“Dare Forward 2030”战略规划的一部分,Stellantis集团已宣布计划到2030年实现如下目标:集团在全球范围内的纯电动汽车年销量达到500万辆,在欧洲售出的所有乘用车均为纯电动汽车,在北美售出的乘用车及轻型卡车中有50%为纯电动汽车。同时,Stellantis集团将此前计划的电池容量储备增加140GWh,从而提升至约400GWh,这将由5家电池制造工厂和其他的供应商提供支持。
1.1 能源安全是最重要的战略目标
在当前全球气候变化的形势下,以及意识到不可再生资源总有一天会日渐耗竭的背景下,随着紧缺的石油资源问题突出,国际油价持续攀升、各国对能源资源安全关注程度也随之普遍上升。维护国家能源安全是当今世界各国面临的重大课题,无论是发达国家,还是发展中国家都将保障能源安全作为国家能源战略的首要目标。
发达国家人均能耗高,需要大量进口补充境内能源资源的短缺,因此,能源发展战略除了考虑本国的资源因素外,极为注重涉及到国外资源开发利用的国际因素影响,甚至关注其他国家能源需求变化对国际能源市场的影响及对自身的影响程度。在历年的石油危机后,针对当前石油资源紧张的形势,发达国家以其较充沛的经济实力逐渐加大石油战略储备力度,建立和加强战略石油储备是发达国家保障能源安全的主要措施。而且,由于国家的经济实力强,对能源发展战略的考虑既重视近期的能源供应安全问题,又重视长远的能源可持续发展。发展中国家在国际竞争中处于弱势,多偏重于建立当前自身的能源安全供应体系。能源资源充裕的发展中国家已认识到利用资源优势发展国家经济的重要性,逐步加大了国家对国外企业开采和资源输出的控制。菲律宾明确国家能源和经济安全的底线是“确保实现国家能源60%自给自足”。巴基斯坦战略目标明确,突出增加本土能源比重,减少对外进口依赖的重要性,并对落实目标,做出了详尽的项目规划。乌克兰在经历了能源供应危机后,能源战略更加强调节能降耗、提高能源自主供应能力的必要性。墨西哥强调能源立法,同时,要及时分析阻碍国家能源发展的主要障碍,进行能源战略调整。
石油战略储备曾是以石油消费为主的发达国家应付石油危机的最重要手段,作为保障石油供应安全的这一战略措施也逐渐为发展中国家所效仿。现在,具有一定经济实力的国家为减少供应风险,都开始着手石油战略储备。石油战略储备已超出一般商业周转库存的意义,更重要的是取得主动,避免受制于人,有利于稳定国内经济发展,增强国际竞争力。
各国能源战略最突出的变化特点就是以减少石油消费、减少进口能源依存度为主要目标。在当前可再生能源尚未能够实现全面替代的形势下,节能是实现这个目标最现实、收效最快的措施。历史上,发达国家曾以减少石油消费的战略赢得了更大的市场利益,在20世纪70年代石油危机的后的20年内,迫使石油价格处于甚至低于10美元/桶的低价运行时期。当前更加强调综合利用法律、经济和技术等手段鼓励节能,从开采、加工、运输、利用和消费等多环节深挖节能潜力,发展节能产业。为达到节能目的,利用市场和企业、消费者行为开发节能机械、节能汽车等;取消石油价格管制,主张由市场机制调节能源供求关系,对能源企业进行私有化改革,提高资源配置能力,加强勘探等措施。
各国经济持续发展和人民生活水准提高的要求,必将加大能源资源的消费量。如何减缓能源消费的增速,只有提高能源效率、加强节能。各国不同程度地采取立法、经济激励、政府补贴、自愿协议和广泛宣传等各种政策措施,并且相互借鉴有成效的举措,体现在各自的能源发展战略中。近年来全球气候变暖,生物多样性锐减,气候灾害频繁的形成与人类过度地消耗化石能源存在密切的因果关系。虽然能源给当代人的生活带来了一定的舒适和便利,但是全球能源消耗量持续增加的趋势不仅对世界能源供应是严峻的挑战,而且给全球减少温室气体排放带来巨大压力。当人类生存环境遭到严重破坏后,很难逆转。
越来越多的国家在制定本国能源战略和政策时,已将环境因素放在优先考虑的地位。不少国家的能源战略强调发展新能源替代化石能源和实现《京都议定书》的温室气体控制目标。在《京都议定书》建立的减、限排温室气体总量机制下,大气中温室气体排放空间凸显为一种稀缺性的经济资源,拥有了这种资源就等于拥有了温室气体排放权和经济发展空间。依据《京都议定书》的规定,可以出售多余的二氧化碳排放配额。美国为了国内集团利益拒绝批准《京都议定书》,俄罗斯于2004年11月批准了《京都议定书》。
由此可见,能源的战略选择不仅是能源本身的问题,也是经济利益的问题,环境保护和人类生存的问题。能源发展在经济发展的推动下,正越来越受到环境因素的制约,能源战略目标由单纯强调能源供应向3E(Energy,Economy,Environment)方向发展,即能源、经济与环境的协调发展转变。 各国的国家能源战略均加重强调实现保障能源安全需要全方位的措施,不过度依赖单一的能源形式,减少经济发展对石油、煤炭、天然气的依赖程度,战略的核心是安全、环境和效益。各国的能源战略都出现了“多元化”的宇样,其含义是非常深刻的:一是能源资源种类的多元化,这可以带来能源产业的繁荣,同时将促进能源科学技术的飞速发展;二是以保障石油安全为核心,积极开拓新的石油供应基地,实现能源进口渠道的多元化,并且各国都有意识地避开主要从中东地区进口的做法,将多元化进口的目标锁定在其他具有一定油气资源输出能力的拉美、非洲或东欧地区。三是关注全球资源状况,将资源开发重心由境内移向境外。无疑,这一策略的普遍采用,又必然将带来新的矛盾和问题。虽然对于能源资源出口国,是本国经济发展的太好契机,但是也会相应带来一些争端,如国内资源保护派的激烈反对,或者贸易国之间各种各样的资源争夺战,由此可能会引发出新的一类局势不稳定问题。
由于石油价格的暴涨,各发达国家的能源结构逐渐发生了变化。坚定不移地奉行能源多元化战略,积极寻求替代石油资源,开发核能、氢能和其他新能源,甚至适度发展国内的煤炭工业,以降低对进口石油的过度依赖程度。重新认识煤炭,加快洁净煤技术的研发和推广。
为确保能源供给的自主性,能源发展的可持续性,21世纪以来全世界已形成转变以石油为主的能源经济,积极开发可再生能源的新高潮。各国能源发展战略措施各有侧重,有的国家积极发展风电、有的国家积极发展核电,但都是以逐步替代油气资源为核心展开的一系列研究方案。可再生能源技术和清洁能源技术的创新将成为世界能源未来发展的制高点,世界能源市场将由目前的资源型转向未来的技术型,是一场更具竞争性的挑战。
从可再生能源发展的状况分析,欧盟是世界上最推崇发展可再生能源的国家集团,其发展可再生能源的战略是:在全面发展的同时,突出风力发电、太阳能发电、生物质液体燃料技术的开发和应用。发展可再生能源方面所采取的主要措施是:制定具体目标、落实经济政策、建立研发队伍、培育产业基础、建立市场氛围、鼓励企业竞争。目前欧洲已成为风力发电、光伏发电技术和市场发展的中心。
印度和巴西是发展中国家发展可再生能源的榜样。印度注重根据自身条件,寻找突破口,所采取的策略是:风力发电以市场换技术,市场规模和产业技术同步发展;适度发展太阳能;生物质能源则以解决农村能源为主;氢能研发有所投入,跟随国际潮流。巴西坚持能源多样化和多渠道,因地制宜发展生物质能源的能源发展战略:依靠水电和生物液体燃料资源优势,减少石油进口,保障国家能源安全,2004年的生物液体燃料产量达到了1500万t,处于世界领先地位,甚至出口生物质能源促进经济发展。
不但一个国家的不可再生能源资源是有限的,而且全球的不可再生能源资源也是有限。资源的有限性与各国能源战略区域向境外转移的特点,意味着国际间的能源资源争夺正在加剧。与过去不同,各国发展所面临的外部环境发生了重大的变化,不能再靠殖民地的方式掠夺资源。资源与市场的国际化,使各国政府意识到,必须加强与能源生产国的外交往来,保证能源供应的来源;同时,必须加强能源消费国之间能源合作,形成联盟,增强话语权,抵御能源价格的上涨。资源进出口国之间的外交关系、资源国之间的战略联盟(如OPEC)的合作以及资源进口国之间的战略联盟(如IEA)的竞争与合作关系更加微妙。突出体现在国际石油问题上,焦点集中在中东。为保障能源安全,能源外交成为能源消费国家21世纪以来的外交重点。各国能源战略普遍出现加强国际化的趋势。例如,韩国对内制定正确的能源政策;对外开展有效的能源外交,实施能源进口多元化。积极倡导区域间的能源合作,加强与产油国的谈判力度。非洲各国强调需要进一步加强团结和合作,协调各国能源政策,明确能源发展战略。无论是产油国还是消费国,积极推动国际合作都是十分必要的。油气出口是印度尼西亚的经济支柱,巩固与邻近国家间的互补合作机制成为国家能源战略的主要目标。
由于能源对国家社会经济发展和国计民生具有重要作用,能源的市场性质已从一般商品转为重要的战略商品,能源问题已呈现出日益全球化和政治化的趋势。由一国自主的能源发展向境外资源的拓展是各国能源需求数量和品种的要求,为避免国家之间对世界有限能源资源的恶性竞争,积极开展能源外交,将能源作为处理国际关系的重,要战略因素,强调能源生产大国之间以及消费大国之间的对话机制,发展多国的能源国际合作是十分必要的。而且,由此也将会进一步促进经济全球化的发展。
欧盟的能源战略就突出体现了以上国际能源战略的特点。欧盟的能源战略重点是保证“经济安全、国防安全、生活安全”,提出“保障能源供应、保护环境和维护消费者利益”的基本原则。在确保本国能源供应方面以节能和发展可再生能源和生物燃料为主要战略措施,加强能源共同体的建设。
欧盟各国的能源战略虽各具特点,但是总体上是一致的。例如,德国的能源战略锁定长远目标,从能源资源利用的经济效益出发,有效控制国内有限的能源资源开发;持续不断地节能;积极开发风能等可再生能源,占据能源新技术的制高点,实现传统能源的替代。能源进口多元化,石油储备法定化,保障安全供应。面对本国不可再生能源资源递减的趋势和全球气候变化的挑战,英国新的能源战略基点是低碳。强调在市场框架和政策相互影响下,培育市场竞争力,实现提高能源效率、发展可再生能源促进能源多样性的战略。能源技术的研发不局限于本国的能源资源,着眼于世界主要的能源应用技术,以实现未来的能源技术出口换能源资源进口的发展战略。法国立足国情,因地制宜地发展能源多样化,积极发展核电,提高能源供应独立性,实现安全供应。比利时的能源战略长远目标是使用更利于环保的能源,逐步向全部使用可再生能源过渡。波兰在长期能源战略目标下,针对当前问题,突出过渡期的能源战略重点。依据国家能源法,明确政府与企业的职责,国家财政将不直接参与能源项目投资,只在法律和税收政策、贷款担保等方面为企业提供支持。美国能源战略的核心是提高能源供应自主性,突出特点是一个具有长期性和综合性的国家战略。战略目标明确,并辅有相应详细的政策和对策目标、措施,易于操作、监管。实际上,美国能源战略还有一个极为重要内容就是充分开发利用全球的油气资源。观察美国国家外交战略圈,几乎囊括了地下埋藏着丰富的石油等战略资源的国家,特别是中东地区。在不断努力巩固海外石油来源的同时,逐渐明确要减少对石油的依赖。发展新技术,包括燃料的替代技术和设备的更新技术。
能源战略和政策是日本政府一贯的工作重点,能源战略的稳定性促进能源政策的有效实施。虽然日本能源资源贫乏,目前日本一次性能源的自给率不足20%,但是政府立足于技术创新致力节能,成立“节能中心”,健全能源管理体系,指导国民和企业的节能以及节能技术的研究开发,积极发展太阳能等新能源;着眼于全球能源资源的利用,坚持实施以保障能源安全为重点的外交策略,以及国内企业联合一致对外,参与国际竞争的做法,不断提高开发国外石油资源的份额。随着社会经济的发展和外部环境的变化,日本不断完善能源构成多样化、进口多元化和以石油储备为依托的能源战略,从政治、外交、经济、科技等全方位考虑能源战略的发展,确保了自身能源的长期安全供给,保障了国家的经济安全,并使得日本成为世界能源效率最高的国家。俄罗斯能源发展战略制定经历了较长的时间。能源战略目标明确,所关系到的对象明确。能源区域发展具有地域资源特点,相应的能源政策针对性强,每一种能源,如石油、天然气、煤、电能(包括核能和热能)、能源输送等的发展预测都提出了经济体制改革问题以及为实现改革所应该创造的必要条件。同时,指明了能源工业和其他工业部门的相互关系,能源工业科技和创新的重要意义。并且明确了能源战略实施系统,包括:联邦政府行动计划,实施国家能源政策的指标体系,原有相关规划的修订,利用国家信息资源建立的能源战略实施监控系统。实现可持续发展已经成为世界各国的共同课题,而对人口众多的中国来说,具有更大的特殊性和挑战。为实现全面建设小康社会的目标和应对能源长远发展遇到的严峻挑战,我国采取正确的能源战略具有决定性意义。只有实现可持续发展的能源战略,才能保证在“能源消耗最少,环境污染最小”的基础上,实现经济社会快速发展和人民,水平的提高。我国必须汲取西方发达国家的成功经验,学习其他发展中国家根据具体国情发展的经验,建立符合中国特色的、能源效率不断提高和环境保护日益加强的中、长期可持续发展能源战略。
加拿大曼尼托巴水电公司作为省级国有企业 [1] 为曼尼托巴省的近600,000名电力客户提供服务,并为该省南部的约30万名天然气客户提供服务。作为加拿大最大的、垂直一体化能源公用事业公司之一,曼尼托巴水电不仅利用其大规模的水力发电厂来为全省供电,而且还向邻近的萨斯喀彻温省和美国北部提供清洁、接近零排放能源。
对外部销售的可再生能源有助于受电侧公用事业减少煤炭的使用,同时减少温室气体排放,并帮助这些客户消纳更多的间歇性可再生能源,如风能和太阳能。由于存在着巨大的能源需求,该电力公司最近投资了一条高压直流(HVDC)输电线路,以维持其输电系统的稳定和安全。
曼尼托巴水电公司约70%的电力来自在该省北部尼尔森河上的水力发电站。几乎所有这些水力发电一直通过20世纪70年代建造的Bipole I和Bipole II高压直流输电线路输送到该省南部的客户。这两条输电线路大部分是并行通过该省中部,两条线路最终都汇集到位于省会城市温尼伯(Winnipeg)西北部的多尔西(Dorsey)换流站。
由于Bipole I和Bipole II线路高度重合以及公共的终端换流站,龙卷风或覆冰风暴等主要天气事件将对HVDC系统的运行和水电客户电力供应的可靠性构成重大风险。1996年的一场严重风暴在两条线路上摧毁了19座杆塔,中断供电4天,极端天气暴露了高压直流输电系统的易感性。也因此,有史以来第一次曼尼托巴省在恢复重建这些杆塔时限制了电力供应。
2011年,由于河流水位升高,北部偏远的Bipole I和Bipole II输电线路遭受了严重洪灾。当冬天到来并且水冻结时,大约50座杆塔地基隆起。因此,曼尼托巴水电不得不启动其两座火力发电厂,以弥补其高压直流输电系统潜在的输电容量损失。为了解决这些风险并维持其高压直流输电系统的供应安全,该公司决定投资新建一条±500千伏高压直流输电线路Bipole III。
Bipole III HVDC输电线路(绿色)连接Riel和Keewatinohk换流站。以红色显示的高速公路供参考。
Bipole III HVDC
为了最大限度地降低未来与天气有关的线路中断的风险,Bipole III HVDC输电线路建在不同的路线上,穿过曼尼托巴省的西部。该项目包括两个新的换流站,第一个是位于Fox Lake保护区的Keewatinohk换流站,位于曼尼托巴省北部Gillam镇西北约80公里(49.7英里)处。第二个是Riel换流站,位于温尼伯以东,还包括额外的230千伏交流互连,以集成新的高压直流系统。
新的Bipole lll HVDC输电线路共有3078个塔,与换流站一起提供2000 MW的输送容量和完全独立且物理上独立的HVDC系统。这将显着减少恶劣天气事件可能对未来HVDC系统造成的影响。
新的Bipole III换流站的设计基于曼尼托巴水电在Bipole I和Bipole II系统上40多年的运行经验,基于传统的晶闸管技术在Bipole I和Bipole II换流站中的可靠性,选择继续使用该技术用于Bipole III。同样,Bipole III换流站设计为每极两个换流器组,以减少单个转换器中断对传输容量的影响。换流器设备的设计和构造,包括直流(DC)开关场,交流(AC)谐波滤波器和阀厅——由Siemens Canada Ltd.和Mortenson Construction的财团完成。
曼尼托巴省面临着独特的气候挑战,夏季气温接近40°C(100°F),冬季低温为-50°C(-58°F)。换流站内使用的所有设备必须满足这些极端温度的挑战,在某些情况下,要求对设备设计进行修改或将设备安全地安装在室内。
通过SNC-Lavalin公司设计和建造的新的交流开关场,将Keewatinohk换流站连接到曼尼托巴水电现有的北部230kV交流电网。该开关场包括完全冗余的IEC 61850控制和保护系统以及冗余12kV和600 V辅助电源系统,可实现可靠的换流站运行。
在Riel换流站,由福伊特水电公司(Voith Hydro Inc.)和斯图尔特奥尔森工业建设公司(Stuart Olson Industrial Constructors Inc.)联合制造并安装的四台大型250-MVAR同步调相机,为高压直流换流过程提供电压支撑并稳定南方电力系统。每个同步调相机都使用了氢气冷却,以获得最佳性能。因此,设计中融入了多个安全系统,以便在运行时安全地管理氢气。
位于曼尼托巴省北部的Keewatinohk换流站的设计和建造为该项目带来了额外的挑战。建筑和设备基础位于尼尔森河沿岸,处于不连续的永久冻土区域,需要专门的设计,以提供所需的容量,并最大限度地降低这个偏远的北部地区的建设成本。在换流站内的大多数基础上选择了驱动钢和螺旋桩。
由于当地没有足够的基础设施来容纳建造Keewatinohk换流站所需的劳动力,因此建造了一个临时工人小屋以容纳600人的劳动力。曼尼托巴水电公司与Fox Lake Cree Nation合作,在其保护区建造换流站同时,在远离当地居民的区域为建筑工人设计和建造一个家庭住宅,以保护当地居民特色的文化元素,同时提供独特和温馨的环境。
将德国的大型高压直流换流变压器和加拿大魁北克的同步调相机送到Bipole III换流站需要精心规划和协调。根据2016年和2017年的施工计划,专用铁路运输、重型运输卡车和专用自行式多轮车辆的组合确保了关键设备的安全交付和九尾,每个设备的重量都超过250,000千克(250吨)。
换流站是一项庞大而复杂的工作,涉及来自世界各地的多个承包商以及超过1000万个工时来完成。在2016年高峰期建设期间,约有1200人参与了两个换流站的建设。
选择用于连接两个新换流站的±500kV Bipole III输电线路的路线几乎遍历了曼尼托巴省的所有土壤条件,包括沼泽、北方森林和草原农田。在建造Bipole III输电线路之前的许多年,曼尼托巴水电公司参与了该项目的环境许可评价程序。在这条1388公里(860英里)的路权上获取土地和路线需要对细节进行一丝不苟。它涉及与该省南部的农业生产者合作,以保护他们在输电塔基础和结构的建造过程中免受潜在的生物安全风险。因此,制定并实施了旨在防止入侵物种和病原体引入的严格协议。
由于土壤条件和地形的变化,输电线路包括各种塔基础和塔架设计,包括南部的自支撑钢格构塔和北部的拉索钢格构造。在北部地区,输电线路的建设仅在冬季进行,当时地面已经充分冷冻,重型设备可以进入该地区。
沿着输电线路的一些偏远的曼尼托巴地区是众所周知的沼泽地,将杆塔就位是具有挑战性的。为了解决这个问题,塔架安装工程的大部分工作依赖于使用大型直升机将预装配的塔架结构运送到现场,预期可以使用数十年。
Bipole III输电电线路采用防级联(anti-cascading)塔设计,可最大限度地减少在极端风或冰暴时可能损坏的线路长度。线路上的每个HVDC极包括由28个220kN绝缘体支撑的三束806-A4-61全铝合金导体(AAAC)。Bipole I和Bipole II线路的运行经验用于优化导体束几何形状和绝缘体长度,以进一步提高绝缘性能。避雷线采用的是48芯光纤地线OPGW,它提供了换流站之间的通信路径。沿着线路全长安装了四个光学转发器设备,以确保足够的信号强度。
该项目使曼尼托巴水电有机会与该省的土着和梅蒂斯人(Métis)就培训和就业举措进行密切合作。雇用Bipole III项目的工人中约有80%是当地人,几乎有一半来自土着。这不仅限于本地施工的就业;尽一切努力促进土着企业参与该项目的商品和服务采购,以支持曼尼托巴省一个强大,有竞争力的本土商业发展。
曼尼托巴水电公司于2018年7月完成其第三条直流输电项目Bipole III,为曼尼托巴省南部的客户提供曼尼托巴省北部生产的可再生水力发电。项目建设用了五年时间,实际上规划工作比这个还早,目前该项目是北美地区最高水平、最大的建筑项目之一。
这条新的1388公里(860英里),±500千伏高压直流输电线路已经完成它的预期目标:提高加拿大曼尼托巴省电网的可靠性。
曼尼托巴水电 | www.hydro.mb.ca
Mortenson建筑 | www.mortenson.com
西门子加拿大 | www.siemens.com
SNC-Lavalin | www.snclavalin.com
Stuart Olson工业建设 | www.stuartolson.com
福伊特水电 | www.voith.com
Manitoba Hydro HVDC Project
New Bipole III HVDC transmission line delivers 2000 MW of hydroelectric power to increase grid reliability.
Brian Frost, Bruce Owen | Aug 02, 2019
https://www.tdworld.com/overhead-transmission/manitoba-hydro-hvdc-project
范莎学院位于加拿大安大略省的伦敦市,距多伦多市和美国密西根的底特律市都只有 200 公里。而且,举世闻名的尼加拉瓜大瀑布离范莎学院仅两小时的车程。范莎学院是安大略省的 25 所公立大学中排名第五大的院校,是由安大略省政府创办并管理的。该校师资力量雄厚,拥有约 1700 名教职工,并且许多优秀的教师都有在海外学习和教课的经验。另外,学院还有完善的设备,包括 1400 个计算机工作站等等。
范莎学院是安大略省职业技术教育中心,范莎学院开设的专业主要有:三维动画角色设计、农业设备技术、麻醉助理、建筑技术、音频后期制作、汽车服务技术、飞机维修、航空电子设备维修、电视新闻、会计、人力资源、细工木匠、土木工程技术、计算机系统技术、建筑木工技术、当代媒体、烹饪管理、牙科卫生、儿童早期教育、电气工程技术、电气技术、机电工程技术、应急管理、应急通信、创业、环境技术、时装设计、时装营销、地理信息系统、平面设计、发型设计、重型设备、酒店管理、人力资源管理、互动媒体设计、室内装修、室内设计、国际企业管理、景观设计、制造工程技术、营销管理、按摩疗法、机械技术、医疗辐射技术、动力技术、摄影、项目管理、可再生能源技术、呼吸治疗、戏剧艺术、焊接技术等等。
学院特色
1.与大学平等,加拿大没有高考
2.可转学分进入大学
3.课程设置以就业为导向( 87.5% )
4.很多课程包含证书和执照内容
5.暑期四个月带薪实习 co—op , 70% 的专业可参加带薪实习或实习
6.20—30人的小班授课,提供课外辅导
7.学费低廉:14000—18000加币
8.语言环境好,中型城市,华人少(但有三个华人超市)
热门专业介绍
会计学
会计学是以应用和就业为导向的两年制学院文凭专业,目标是让学生熟练掌握一般会计原理与方法,毕业后能很快胜任企业会计工作,并能再短期内担任管理职务。由于该专业学习时间较短,投资较少,但就业率高,所以无论是当地学生,国际学生还是来自中国的新移民普遍乐于选择会计学。该专业毕业生平均成绩达到 75 分便有资格直升西安大略大学管理与商务学士学位会计专业三年级,也可在范莎学院继续深造,获得范莎学院会计学商学士本科学位。
景观设计
该专业是以就业为导向的三年制带薪实习文凭课程。重点培养学生掌握环境景观设计及如何实施设计理念的专业知识与实际操作能力,包括景观建筑设计、园林规划与设计、环境景观规划设计、植物种植与设计、景观工程技术以及各种商业、政府或民用住宅的设计。素描、透视及构图等多种技巧与应用、软硬性材料及景观建设等多种理论的掌握为学生从事景观设计这一领域奠定坚实的基础。
音乐产业艺术(音乐录音和制作)
该专业旨在培养音乐及娱乐领域相关的专业人才。所学内容极为使用,课程设置广泛,包括音乐录音、混音、音乐出版、音乐理论、艺术发展、练耳、作曲、编曲、创新性的音频制作技巧、录音棚的操作、设计及管理等等。音乐及音频相关的电脑实用技术、音频后期制作及 MIDI 技巧也会穿插在课堂教学及实际应用中。
该专业的教学已十分成熟,教学设施非常完善,师资队伍强大。此专业录取竞争非常激烈,每年只招收有限的国际生。
食品和营养管理
该专业所学内容主要包括营养、食品科学、食谱设计、食品生产、设备维护及预算制定等。食品营养管理者会协同营养师、厨师及餐饮工作人员共同为食客们提供优化的营养搭配。该专业还要求学生学习关于人员管理、财务预算、营养数据分析方面的内容、以及利用营养学原理提升人民的健康水平、保证食品的安全。
三维动画及艺术设计
三维动画及艺术设计是为具有相关专业背景的学生设置的一年制研究生证书课程。毕业生将熟练掌握三维动画设计相关专业技能,包括角色设计、游戏背景设计、生活绘画及故事编辑、三维建模、动画设计、视频、音频处理等等。同时培养学生的概念开发、团队合作、战略规划及项目管理的能力。
环境技术
该专业硕士以应用以导向的 3 年制带薪实习文凭课程,帮助学生深入掌握空气、水的测量及分析技巧,废物处理、环境规划及环境评价等。该专业学生 3 年内可累计获得 12 个月带薪实习的工作经验,毕业生平均成绩达到 75 分可有资格直升西安大略大学环境科学学士三年级。
儿童早期教育
该专业理论学习与实践紧密结合,培养学生在儿童早期的成长及教育方面的专业知识和技能、幼儿教育中看护者的角色和职责、家庭的参与、课程设置及寓教于乐的重要性,为毕业生从事 12 岁以前儿童的监管、成长、教育及托管等工作奠定基础。范莎在儿童早期教育这一领域开设有两年的学院文凭课程及四年制本科早教管理课程,学生可根据自己的情况进行选择。
入学途径有三种选择:
1.读大专课程
有两年制的,有三年制的。读完以后获毕业证书,即可申请三年工作签证。但薪水跟本科是不一样的,加拿大法律明确规定了不同学历的工资标准,大专、本科、硕士和博士都是不同的。但这种大专毕业找工作却很好找,因为有很多职位,用人单位会认为聘用一个大专毕业生就够了,不需要聘用本科、硕士或者博士生,付更高的薪水。而且,薪水会随着工作年限和经验的积累,有提高的。
2.在范莎读语言以后,过语言关后可以直接就读西安大略大学国王学院的本科课程。可以拿范莎学院和西安大略国王学院的本科双录取。
3.如果选择文科,范莎学院和西安大略大学的文科有1+3的协议,即范莎学院读一年,再转到西安大略大学就读文科学士。 4。选择四,范莎和很大公立大学有2+2的合作,即在范莎学院读两年,再转到其它大学读两年,获学士学位。 所以,以上选择看你自己怎么考虑,如果一定要学位,后三种选择。如果想尽早就业,移民,第一种是最好的选择,找工作很好找。
个人简介: Edward H. Sargent,加拿大多伦多大学副校长、加拿大皇家科学院院士、加拿大工程院院士,是多伦多大学电子与计算机工程系教授。他是加拿大纳米技术领域的首席科学家,是胶体量子点光探测领域的开拓者,也是量子点PN结太阳能电池的发明者和光电转换效率的世界纪录的保持者,并通过所领导团队的努力,每年都在刷新纪录。迄今为止,已在Nature和Science等国际顶级期刊发表论文多篇团队已经发表超过300篇论文,论文被引用超过20000次,H因子72。
团队合照
接下来,我列举了Edward H. Sargent教授近期发表在Nature/Science系列期刊的工作!希望借此机会向大佬学习一下!
通过将二氧化碳电化学还原为化学原料,如乙烯,可同时达到二氧化碳减排和生产可再生能源的目的,目前,Cu是CO2RR的主要电催化剂。然而,迄今为止所达到的能源效率和生产率(目前的密度)仍然低于以工业生产乙烯所需的值。
鉴于此,卡内基梅隆大学的Zachary Ulissi、多伦多大学的Edward H. Sargent等人通过密度泛函理论计算结合主动机器学习来识别,描述了Cu-Al电催化剂能有效地将二氧化碳还原为乙烯,具有迄今为止所报道的最高的法拉第效率。与纯铜相比,在电流密度为400mA/cm2下Cu-Al电催化剂的法拉第效率超过了80%,以及在150mA/cm2下,在其阴极乙烯的能量转换效率则达到了~55%。理论计算表明,铜铝合金具有多个活性位点、表面定向和最佳CO结合能,有利于高效的、高选择性地还原CO2。
此外,原位X射线吸收光谱表明,铜和铝能够形成良好的铜配位环境,从而增强C-C二聚作用。这些发现说明了计算和机器学习在指导多金属系统的实验 探索 方面的价值,这些系统超越了传统的单金属电催化剂的局限性。
Accelerated discovery of CO2 electrocatalysts using active machine learning, https://doi.org/10.1038/s41586-020-2242-8
电解二氧化碳电还原反应(CO2RR)可用于绿色生产乙醇,然而,该反应的法拉第效率目前仍然不高,特别是在总电流密度超过10mA cm−2下。
鉴于此,多伦多大学的Edward H. Sargent团队报道了一类催化剂,其产乙醇的法拉第效率高达52.1%,阴极能量转化效率为31%。作者发现通过抑制中间体HOCCH*的脱氧作用,可以降低乙烯的选择性,促进乙醇生产。密度泛函理论(DFT)计算表明,由于封闭的N-C层具有很强的供电子能力,在Cu表面涂覆一层氮掺杂碳(N-C)可以促进C-C耦合,抑制HOCCH*中碳氧键的断裂,从而提高CO2RR中乙醇的选择性。
Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation, https://doi.org/10.1038/s41560-020-0607-8
堆叠具有较小带隙的太阳能电池形成双结膜,为克服单结光伏电池的Shockley-Queisser极限提供了可能。随着溶液处理钙钛矿的快速发展,有望将钙钛矿的单结效率提高>20%。然而,这一工艺仍未实现与行业相关的纹理晶体硅太阳能电池进行整体集成。
来自多伦多大学的Edward H. Sargent 和阿卜杜拉国王 科技 大学的Stefaan De Wolf团队,报道了将溶液处理的微米级钙钛矿顶部电池与完全纹理化的硅异质结底部电池相结合,进行集成双叠层电池的方法。为解决微米级钙钛矿中电荷收集的难点,作者将硅锥体底部的耗尽宽度提高了三倍。此外,通过在钙钛矿表面固定一种自限型钝化剂(1-丁硫醇),增加了扩散长度且进一步抑制了相偏析。这些多方位的结构改善,使钙钛矿—硅串联太阳能电池的整体效率达到了25.7%。在85°C下进行400小时的热稳定性测试,以及在40°C、在最大功率点下工作400小时后,发现其性能衰减可忽略不计。
Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon, https://science.sciencemag.org/content/367/6482/1135
在这里,作者首先讨论了四类分子强化策略:①分子加成修饰的多相催化剂、②有机金属络合物催化剂、③网状催化剂和④无金属聚合物催化剂。作者介绍了目前在分子策略方面的挑战,并描述了电催化CO2RR产多碳产品的前景。这些策略为电催化CO2RR提供了潜在的途径,以解决催化剂活性、选择性和稳定性的挑战,进一步发展CO2RR。
Molecular enhancement of heterogeneous CO2 reduction, https://doi/10.1038/s41563-020-0610-2
目前通过优化钙钛矿的组成经过组合优化,在最先进的钙钛矿太阳能电池中通常含有六种成分(AxByC1−x−yPbXzY3−z)。关于每个组成部分的精确作用仍然存在许多不清晰,如何正确理解和掌握钙钛矿材料中不同组分对晶体结构、性能的影响关系,对于制备新型的高性能钙钛矿材料而言具有重要的指导意义。
鉴于此,多伦多大学的Edward H. Sargent与麻省理工学院的William A. Tisdale等人利用瞬态光致发光显微镜(TPLM),并结合理论计算,探究了钙钛矿材料中组分—结构—性能之间的关系。研究表明,单晶钙钛矿材料内部载流子的扩散率与结构组成无关;而对于多晶钙钛矿,不同的成分对载体扩散起着至关重要的作用。与CsMAFA型钙钛矿相比,不含MA的CsFA型钙钛矿载流子扩散率要低一个数量级。
元素组成研究表明,CsFA颗粒呈级配组成。在垂直载流子输运和表面电位研究中可以看到,CsFA型钙钛矿由于其非均匀结晶,从而引起晶粒的元素分布不一致,形成了不利于载流子扩散的“壳核结构”。而掺入MA可以有效改善颗粒成分的均匀性,在CsMAFA薄膜中产生了高的扩散系数。
Multi-cation perovskites prevent carrier reflection from grain surfaces, https://doi /10.1038/s41563-019-0602-2
电解二氧化碳还原(CO2RR)转化为有价值的燃料和原料,为这类温室气体的利用提供了一条有吸引力的途径。然而,在这类电解装置内,往往是由有限的气体通过液体电解质扩散到催化剂的表面,电解效率仍然不高。
鉴于此,多伦多大学的David Sinton和Edward H. Sargent等人提出了一种催化剂:离聚物本体异质结结构(CIBH),可用于分离气体、以及离子和电子的传输。CIBH由金属和具有疏水和亲水功能的超细离子层组成,可将气体和离子的输运范围从数十纳米扩展到微米级。采用这种设计策略,作者实现了在7 M KOH电解液中,以铜为催化剂进行电还原CO2,在阴极法拉第效率为45%下,产乙烯的偏电流密度高达1.3A cm-2。
CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2, https://science.sciencemag.org/content/367/6478/661
手性材料在推动生物标记、手性分析和检测、对映异构体选择性分离、偏振相关光子学和光电子学应用等领域的发展具有重要意义。一维半导体的区域选择性磁化可以实现室温下的各向异性磁性,以及自旋极化——这是自旋电子学和量子计算技术所必需的特性。
鉴于此,中国科学技术大学俞书宏院士团队与国家纳米科学中心唐智勇研究员课题组、多伦多大学Edward Sargent教授团队等人利用局域磁场调控电偶极矩与磁偶极矩之间的相互作用,成功合成了一类新型手性无机纳米材料。
利用这一策略,作者将具有不同晶格、化学成分和磁性能的材料,即一个磁性成分(Fe3O4)和一系列半导体纳米棒结合在一起,在特定的位置吸收紫外线和可见光谱。由此产生的异质纳米棒表现出由特定位置磁场诱导的光学活性。本文提出的区域选择性磁化策略为设计手性和自旋电子学的光学活性纳米材料提供了一条途径。
Regioselective magnetization in semiconducting nanorods, https://doi.org/10.1038/s41565-019-0606-8
电催化CO2还原反应(CO2RR)为温室气体的利用、化学燃料的生产提供了一种可持续的、碳中性的方法。然而,从CO2RR高选择性地生产C2产品(例如乙烯)仍然是一个挑战。
鉴于此,多伦多大学Edward H. Sargent教授、加州理工学院Theodor Agapie教授、Jonas C. Peters教授等人提出了一种分子调控策略,用有机分子使电催化剂表面功能化,用于稳定反应中间产物,使CO2RR高选择性地产乙烯。
通过电化学、操作/原位光谱和计算研究,研究了通过芳基吡啶的电二聚作用衍生的分子库对Cu的影响。结果发现,粘附分子提高了CO中间体的稳定性,有利于进一步还原成乙烯。在中性介质的液流电池中,在偏电流密度为230 mA cm-2下,电催化CO2RR产乙烯的法拉第效率高达72%。
Molecular tuning of CO2-to-ethylene conversion, https://doi/10.1038/s41586-019-1782-2
物质、能量与信息。
因此,能源的发展史直接影响人类的发展史。
我们人类生存与发展中最具有决定性意义的要素是三个:¾¾ 物质、能量和信息。
组成我们的世界是物质;人类生存活动决定于对信息的认知和反应;而维持生命,从事发展的活动又地要通过消耗能量来进行。
一切能量来自能源,人类离不开能源。能源是人类生存、生活与发展的主要基础。能源科学与技术,能源利用的发展在人类社会进步中一直扮演着及其重要的角色。
能源发展的里程碑可以这么说,每一次能源利用的里程碑式发展,都伴随着人类生存与社会进步的巨大飞跃。几千年来,在人类的能源利用史上,大致经历了这样四个里程碑式的发展阶段:原始社会火的使用,先祖们在火的照耀下迎来了文明社会的曙光;18世纪蒸汽机的发明与利用,大大提高了生产力,导致了欧洲的工业革命;19世纪电能的使用,极大地促进了社会经济的发展,改变了人类生活的面貌;20世纪以核能为代表的新能源的利用,使人类进入原子的微观世界,开始利用原子内部的能量。
未来对能源的要求
有足够满足人类生存和发展所需要的储量,并且不会造成影响人类生存的环境污染问题。
未来对能源的需求 未来的人类社会依然要依赖于能源,依赖于能源的可持续发展。因此,我们须现在就很清楚地了解地球上的能源结构和储量,发展必须开发的能源利用技术,才能使人类的生存得于永久维持。
而我们赖于生存的能源是取之不尽用之不完的吗?回答是:不是,也是。事实上,进入21世纪后,人类目前技术可开发的能源资源已将面临严重不足的危机,当今煤、石油和天然气等矿石燃料资源日益枯竭,甚至不能维持几十年。因此,必须寻找可持续的替代能源。而近半世纪的核能和平利用,已使核能已成为新能源家属中迄今为止能替代有限矿石燃料的唯一现实的大规模能源。而且,未来如能实现核能的彻底利用,人类的能源将是无穷的。
除了物质、能量和信息三大因素外,人类对安全的要求也越来越重要了。安全包括社会安全、健康安全和环境安全等。它们同能源的关系也是非常密切的。现在利用的能源已造成了大量的环境污染问题,严重影响了人类的生存。因此,未来对能源的要求将不仅是储量充足,而且还必须是清洁的能源。相对其它化石能源而言,核能的和平利用已充分证明了核能是清洁的能源之一。
u 能源的定义与源头
究竟什么是“能源”呢?《科学技术百科全书》是这样说的:“能源是可从其获得热、光和动力之类能量的资源”;《大英百科全书》说:“能源是一个包括着所有燃料、流水、阳光和风的术语,人类用适当的转换手段便可让它为自己提供所需的能量”。可见,能源是呈多种形式的、可以相互转换的能量的源泉。简而言之,能源是自然界中能为人类提供能量的物质资源。
能源的源头
来自地球以外天体的能源(如太阳能)、地球本身蕴藏的能源(如地热、核能)、地球与其它天体相互作用产生的能源(如潮汐)。
而能源是产生能量的源头。
人们通常按形态与应用方式对能源进行分类。一般分为:固体燃料、液体燃料、气体燃料、水能、电能、太阳能、生物质能、风能、核能、海洋能和地热能。其中,前三类统称化石燃料或化石能源。已被人类认识的这些能源,在一定条件下可以转换为人们所需的各种形式的能量。比如薪柴和煤炭,加热到一定温度,能和氧气化合并放出大量热能,可以直接用来取暖,也可用来产生蒸汽推动汽轮机,再带动发电机,使热能变成机械能,再变成电能。把电送到工厂、机关和住户,又可以转换成机械能、光能或热能。
在我们生活的地球上,能源形形色色。总起来说有三个初始来源。
太阳能
地球
来自地球外部天体的能源(主要是太阳能)人类所需能量的绝大部分都直接或间接地来自太阳。正是各种植物通过光合作用把太阳能转变成化学能在植物体内贮存下来。煤炭、石油、天然气等化石燃料也是由古代埋在地下的动植物经过漫长的地质年代形成的。它们实质上是由古代生物固定下来的太阳能。此外,水能、风能、波浪能、海流能等也都是由太阳能转换来的。
地球本身蕴藏的能量 通常指与地球内部的热能有关的能源和与原子核反应有关的能源。
与地球内部的热能有关的能源,我们称之为地热能。温泉和火山爆发喷出的岩浆就是地热的表现。地球可分为地壳、地幔和地核三层,它是一个大热库。地壳就是地球表面的一层,一般厚度为几公里至70公里不等。地壳下面是地幔,它大部分是熔融状的岩浆,厚度为2900公里。火山爆发一般是这部分岩浆喷出。地球内部为地核,地核中心温度为2000度。可见,地球上的地热资源贮量也很大。
与原子核反应有关的能源正是本书要介绍的核能。原子核的结构发生变化时能释放出大量的能量,称为原子核能,简称核能,俗称原子能。它则来自于地壳中储存的铀、钚等发生裂变反应时的核裂变能资源,以及海洋中贮藏的氘、氚、锂等发生聚变反应时的核聚变能资源。这些物质在发生原子核反应时释放出能量。目前核能最大的用途是发电。此外,还可以用作其它类型的动力源、热源等。
来自星球引力的能量指由于地球与月球、太阳等天体相互作用的形成的能源。地球、月亮、太阳之间有规律的运动,造成相对位置周期性的变化,它们之间的引力随之变化使海水涨落而形成潮汐能。与上述二类能源相比,潮汐能的数量很小。全世界的潮汐能折合成煤约为每年30亿吨,而实际可用的只是浅海区那一部分,每年约可折合为6000 万吨煤。
u 能源结构与储量
地球上有哪些能量资源可供我们使用?它们还能维持多久?我们该怎么办?
能源的种类
一次能源:煤炭、石油、核能等自然界天然能量资源;
二次能源:汽油、电力、蒸汽等人工制造的能量资源,
一次能源和二次能源能源按其生成方式,分为天然能源(一次能源)和人工能源(二次能源)两大类。天然能源是指自然界中以天然形式存在并没有经过加工或转换的能量资源,如煤炭、石油、天然气、核燃料、风能、水能、太阳能、地热能、海洋能、潮汐能等;人工能源则是指由一次能源直接或间接转换成其他种类和形式的能量资源,如煤气、汽油、煤油、柴油、电力、蒸汽、热水、氢气、激光等。
常规能源和新能源其中,已被人类广泛利用并在人类生活和生产中起过重要作用的能源,称为常规能源,通常是指煤炭、石油、天然气、水能等四种。而新近才被人类开发利用、有待于进一步研究发展的能量资源称为新能源,相对于常规能源而言,在不同的历史时期和科技水平情况下,新能源有不同的内容。当今社会,新能源通常指核能、太阳能、风能、地热能、氢气等。
煤的时代
能源结构的变迁历史上,伴随着新的化石资源的发现和大规模开采与应用,世界的能源消费结构经历了数次变革。18世纪的以煤炭替代柴薪,到19世纪中叶煤炭已经逐渐占主导地位。20世纪20年代,随着石油资源的发现与石油工业的发展,世界能源结构发生了第二次转变,即从煤炭转向石油与天然气,到20世纪60年代,石油与天然气已逐渐称为主导能源,动摇了煤炭的主宰地位。但是,20世纪70年代以来两次石油危机的爆发,开始动摇了石油在能源中的支配地位。以此同时,大部分化学能源的储量日益减少,并伴随着许多环境污染问题。
而人类对能源的需求却在与日俱增。例如主要能源形式 地球能源的储量估计
煤炭:~200年
石油、天然气:~50年
核能:无穷多
之一的电力消耗逐年增加。根据统计,人口若每30年增加一倍,电力的需求量每八年就要增加一倍。
于是,20世纪末,能源结构开始经历第三次转变,即从以石油为中心的能源系统开始向以煤、核能和其它再生能源等多元化的能源结构转变。特别是随着时间的推移,核能的比例将不断增长,并将逐步替代石油和天然气而成为主要的大规模能源之一。
化学能的储存量煤炭、石油、天然气还有多少年可以让人类开采利用?据世界能源会议统计,世界已探明可采煤炭储量共计15980亿吨,预计还可开采200年。探明可采石油储量共计1211亿吨,预计还可开采30~40年。探明可采天然气储量共计119万亿立方米,预计还可开采60年。必须指出的是,煤炭、石油等直接燃烧用来生产电能与热能实在太可惜了,且不说可能带来的环境污染,它们还是很好的化工原料呢!
水能及新能源的潜力那么水能呢?我们知道,水力是可以长期开发利用的。但是,在那些大面积缺水、水力资源不丰富的国家和地区怎么办?再说,水能还有个季节性的问题。这些都使水能无法成为世界能源结构中唯一的主力军。新能源中,太阳能虽然用之不竭,但代价太高,并且就目前的技术发展情况来看,在一代人的时间里不可能迅速发展和广泛使用。其它新能源也是如此。其它一些能源与水能相似,它们的规模受到环境、季节、地理位置等条件的限制,如风能、潮汐能、地热能等等。
易裂变核素
易发生裂变的原子只有铀-235(U235)、钚-239(Pu239)、铀-233(U233)三种。而天然存在的易裂变元素只有铀-235,钚-239可由铀-238生成,铀-233可由钍-232(Th232)生成。
易聚变核反应
氘(D2)-氚(D3)反应。氘和氚都是氢原子的同位素。氘天然存在,而氚极少,必须由人工生成(如由锂制造)。
核能--无穷的能源 核能分为裂变能和聚变能两种。目前人类能正在用于和平利用的只有裂变能。可控聚变能利用技术正在攻克。
天然铀的成份
天然铀中占99.3%为难裂变的铀-238,仅有0.714%为易裂变的铀-235。铀-238可通过吸收一个中子变成易裂变的钚-239。
作为发展核裂变能的主要原料之一的铀,世界上已探明的铀储量约490万吨,钍储量约275万吨。如果利用得好,可用2400~2800年。
聚变反应主要来源于氘-氚的核反应,氘来可大量自海水,氚可来自锂。因此聚变燃料主要是氘和锂,海水中氘的含量为0.03克/升,据估计地球上的海水量约为138亿亿米3,所以世界上氘的储量约40亿万吨;地球上的锂储量虽比氘少得多,也有2000多亿吨,用它来制造氚,足够满足人类对聚变能的需求。这些聚变燃料所释放的能量比全世界现有能源总量放出的能量大千万倍。按目前世界能源消费的水平,地球上可供原子核聚变的氘和氚,能供人类使用上千亿年。如果人类实现了氘-氚的可控核聚变,核燃料就可谓“取之不尽,用之不竭了”,人类就将从根本上解决能源问题,这正是当前核科学家们孜孜以求的所以。聚变能源不仅丰富,而且安全、清洁。聚变产生的放射性比裂变小的多。
专家们预测,核能在未来将成为人类取之不尽的持久能源。
1.2 变脏的地球与干净的核电
本节要点:回答的问题以下问题:现有的能源还能维持多久?能源利用可以不污染环境吗?核能真是可持续能源吗?
u 能源的可持续发展
必须寻找一些既能保证有长期足够的供应量又不会造成环境污染的能源。
而目前人类面临的问题正是:能源资源枯竭;环境污染严重。
能源利用与环境的可持续发展
能源危机
目前世界上常规能源的储量有的只能维持半个世纪(如石油),最多的也能维持一、二百年(如煤)人类生存的需求。
今天,几乎所有的工业化国家都面临着两个关系到可持续发展的紧密相连的挑战:保证令人满意的长期能源供应和减少人类活动带给环境的影响。能源利用与环境的可持续发展已成为关系到人类未来生存与文明延续的一个重要问题。
能源供应危机今天的世界人口已经突破60亿,比上个世纪末期增加了2倍多,而能源消费据统计却增加了16倍多。无论多少人谈论“节约”和“利用太阳能”或“打更多的油井或气井”或者“发现更多更大的煤田”,能源的供应却始终跟不上人类对能源的需求。当前世界能源消费以化石资源为主,其中中国等少数国家是以煤炭为主,其它国家大部分则是以石油与天然气为主。按目前的消耗量,专家预测石油、天然气最多只能维持不到半个世纪,煤炭也只能维持一二百年。所以不管是哪一种常规能源结构,人类面临的能源危机都日趋严重。
浓烟滚滚的火电厂
能源对环境的污染 另一方面,特别是利用化石能源的过程也直接影响地球的环境,使大气和水资源遭受严重污染。大气中主要的五种污染物是:氮氧化物(如NO与NO2)、二氧化硫(SO2)、各种悬浮颗粒物、一氧化碳(CO) 大气污染的主要源头
目前世界上最严重的大气污染来自化石能源燃烧造成的大气中二氧化碳量的增加。带来的主要后果是:酸雨、温室效应和臭氧层破坏。
和碳氢化合物(如CH4、C2H6、C2H4等)。其来源主要有三个方面:① 煤、石油等化石燃料的燃烧;② 汽车排放的废气;③ 工业生产(如各种化工厂、炼焦厂等)产生的废气。而其中燃烧化石燃料的火力发电厂是最大的固定污染源。
1. 多元化
世界能源结构先后经历了以薪柴为主、以煤为主和以石油为主的时代,现在正在向以天然气为主转变,同时,水能、核能、风能、太阳能也正得到更广泛的利用。可持续发展、环境保护、能源供应成本和可供应能源的结构变化决定了全球能源多样化发展的格局。天然气消费量将稳步增加,在某些地区,燃气电站有取代燃煤电站的趋势。未来,在发展常规能源的同时,新能源和可再生能源将受到重视。在欧盟2010年可再生能源发展规划中,风电要达到4000万千瓦,水电要达到1.05亿千瓦。2003年初英国政府公布的《能源白皮书》确定了新能源战略,到2010年,英国的可再生能源发电量占英国发电总量的比例要从目前的 3%提高到10%,到2020年达到20%。
2. 清洁化
随着世界能源新技术的进步及环保标准的日益严格,未来世界能源将进一步向清洁化的方向发展,不仅能源的生产过程要实现清洁化,而且能源工业要不断生产出更多、更好的清洁能源,清洁能源在能源总消费中的比例也将逐步增大。在世界消费能源结构中,煤炭所占的比例将由目前的26.47%下降到2025年的21.72%,而天然气将由目前的23.94%上升到2025年的28.40%,石油的比例将维持在37.60%~37.90%的水平。同时,过去被认为是“脏”能源的煤炭和传统能源薪柴、秸杆、粪便的利用将向清洁化方面发展,洁净煤技术(如煤液化技术、煤气化技术、煤脱硫脱尘技术)、沼气技术、生物柴油技术等等将取得突破并得到广泛应用。一些国家,如法国、奥地利、比利时、荷兰等国家已经关闭其国内的所有煤矿而发展核电,它们认为核电就是高效、清洁的能源,能够解决温室气体的排放问题。
3. 高效化
世界能源加工和消费的效率差别较大,能源利用效率提高的潜力巨大。随着世界能源新技术的进步,未来世界能源利用效率将日趋提高,能源强度将逐步降低。例如,以1997年美元不变价计,1990年世界的能源强度为0.3541吨油当量/千美元,2001年已降低到0.3121吨油当量/千美元,预计 2010年为0.2759吨油当量/千美元,2025年为0.2375吨油当量/千美元。
但是,世界各地区能源强度差异较大,例如,2001年世界发达国家的能源强度仅为0.2109吨油当量/千美元,2001~2025年发展中国家的能源强度预计是发达国家的2.3~3.2倍,可见世界的节能潜力巨大。
4. 全球化
由于世界能源资源分布及需求分布的不均衡性,世界各个国家和地区已经越来越难以依靠本国的资源来满足其国内的需求,越来越需要依靠世界其他国家或地区的资源供应,世界贸易量将越来越大,贸易额呈逐渐增加的趋势。以石油贸易为例,世界石油贸易量由1985年的12.2亿吨增加到2000年的21.2 亿吨和2002年的21.8亿吨,年均增长率约为3.46%,超过同期世界石油消费1.82%的年均增长率。在可预见的未来,世界石油净进口量将逐渐增加,年均增长率达到2.96%。预计2010年将达到2930万桶/日,2020年将达到4080万桶/日,2025年达到4850万桶/。世界能源供应与消费的全球化进程将加快,世界主要能源生产国和能源消费国将积极加入到能源供需市场的全球化进程中。
5. 市场化
由于市场化是实现国际能源资源优化配置和利用的最佳手段,故随着世界经济的发展,特别是世界各国市场化改革进程的加快,世界能源利用的市场化程度越来越高,世界各国政府直接干涉能源利用的行为将越来越少,而政府为能源市场服务的作用则相应增大,特别是在完善各国、各地区的能源法律法规并提供良好的能源市场环境方面,政府将更好地发挥作用。当前,俄罗斯、哈萨克斯坦、利比亚等能源资源丰富的国家,正在不断完善其国家能源投资政策和行政管理措施,这些国家能源生产的市场化程度和规范化程度将得到提高,有利于境外投资者进行投资。
三、启示与建议
1. 依靠科技进步和政策引导,提高能源效率,走高效、清洁化的能源利用道路
中国有自己的国情,中国能源资源储量结构的特点及中国经济结构的特色,决定在可预见的未来,我国以煤炭为主的能源结构将不大可能改变,我国能源消费结构与世界能源消费结构的差异将继续存在,这就要求中国的能源政策,包括在能源基础设施建设、能源勘探生产、能源利用、环境污染控制和利用海外能源等方面的政策应有别于其他国家。鉴于我国人口多、能源资源特别是优质能源资源有限,以及正处于工业化进程中等情况,应特别注意依靠科技进步和政策引导,提高能源效率,寻求能源的清洁化利用,积极倡导能源、环境和经济的可持续发展。
2. 积极借鉴国际先进经验,建立和完善我国能源安全体系
为保障能源安全,我国一方面应借鉴国际先进经验,完善能源法律法规,建立能源市场信息统计体系,建立我国能源安全的预警机制、能源储备机制和能源危机应急机制,积极倡导能源供应在来源、品种、贸易、运输等方式的多元化,提高市场化程度;另一方面应加强与主要能源生产国和消费国的对话,扩大能源供应网络,实现能源生产、运输、采购、贸易及利用的全球化.
综合能源系统特指在规划、建设和运行等过程中,通过对能源的产生、传输与分配(能源网络)、转换、存储、消费等环节进行有机协调与优化后,形成的能源产供销一体化系统。它主要由供能网络(如供电、供气、供冷/热等网络)、能源交换环节(如CCHP机组、发电机组、锅炉、空调、热泵等)、能源存储环节(储电、储气、储热、储冷等)、终端综合能源供用单元(如微网)和大量终端用户共同构成。
各国研究
美国在2001年提出了综合能源系统发展计划,目标是促进分布式能源(DER)和热电联供(CombinedHeating and Power,CHP)技术的推广应用以及提高清洁能源使用比重。2007年美国颁布了能源独立和安全法,以立法形式要求社会主要供用能环节必须开展综合能源规划而随着天然气使用比例的不断提升,如2011年后美国25%以上的能源消耗源于天然气,美国自然科学基金会、能源部等机构设立多项课题,研究天然气与电力系统之间的耦合关系。奥巴马总统推进的智能电网国家战略,其愿景是构建一个高效能、低投资、安全可靠、智能灵活的综合能源网络,而智能化的电力网络在其中起到核心枢纽作用。
加拿大将综合能源系统视为实现其2050年减排目标的重要支撑技术,而关注的重点是社区级综合能源系统(Integrated Community Energy System,ICES)的研究与建设,为此加拿大政府在2009年后颁布了多项法案,以助推ICES研究、示范和建设。
欧洲同样很早就开展了综合能源系统相关研究,并最早付诸实施。通过欧盟框架项目,欧洲各国在此领域开展了卓有成效的研究工作。除在欧盟整体框架下推进该领域研究外,欧洲各国还根据自身需求开展了一些特色研究。以英国为例,英国工程与物理科学研究会资助了大批该领域的研究项目,涉及可再生能源入网,不同能源间的协同,能源与交通系统和基础设施的交互影响以及建筑能效提升等诸多方面。
日本由于其能源严重依赖进口,因此成为最早开展综合能源系统研究的亚洲国家,并希望通过该领域的技术创新进步,缓解其能源供应压力。在政府大力推动下,日本各界从不同方面对综合能源系统开展了广泛研究(如NEDO倡导开展的智能社区和智能微网研究)。
我国已通过973计划、863计划、国家自然科学基金等研究计划,启动了众多与综合能源系统相关的科技研发项目,并与新加坡、德国、英国等国家共同开展了这一领域的很多国际合作,内容涉及基础理论、关键技术、核心设备和工程示范等多个方面。两大电网公司、天津大学、清华大学、华南理工大学、河海大学、中国科学院等研究单位已形成综合能源系统领域较为稳固的科研团队和研究方向。
意义
提出综合能源系统有三重意义,第一,创新管理体制。实现多种能源子系统的统筹管理和协调规划,打破体制壁垒。第二,创新技术。通过研究研发异质能源物理特性,明晰各种能源之间的互补性以及它的可替代性。开发转换和存储新技术,提高能源开发和利用效率,搭配技术壁垒。第三,创新市场模式。建立统一的市场价值衡量标准,以及价值的转换媒介。使得能源的转换和互补能够体现出经济和社会价值,不断挖掘新的潜在市场。
水利发电的经济优势有:第一,从经济方面来说,水力发电是最具直接效益的,其还能衍生出很多间接经济效益,例如,旅游娱乐的经济效益、水产养殖、水上航运或者是供水等的可以量化的价值,另外还包括农业灌溉以及调节电网等无法量化的价值。虽然水电开发也会带来一系列问题,比如处理起来比较棘手的移民问题,或者是对生态环境造成破坏。从经济效益上来看,这些问题都会造成经济成本的增加,但是如果单纯考虑水电和火电等其他方式的话,光电、风电等需要政府消耗大量的补贴,而水电则不需要,只要将全部移民的成本支付了,并交清环保的成本之后,其经济优势是很大的,虽然风电光电等的开发能够有效降低化石能源比重,且有环保作用,但是需要进一步提高开发技术,且需要政府的支撑来获取更多的利润。
第二,除了在经济收益上,水电具有较多的优势,但是表现在其他方面,同样也有很多积极作用,例如,从社会以及文化、环境的角度来看,水电的价值是不可忽视的,其同样也是一种经济收益,但是无法量化,其能提供水源、灌溉农作物,也能预防旱灾等。如果从这些方面来考虑,那么水电对于水资源的调节、各种涝旱灾害的预防是具有重要作用的,因此,只要合理利用水电,那么不仅能对环境起到改善作用,也有利于满足电力需求,对于降低温室气体等的排放具有重要意义,从而促进了我国经济社会的发展。
法国
法国在能源方面最大的特征是核能大国。一次能源中有4成多是核能,并向多个国家出口电力。另一方面,法国国内资源贫乏,石油、天然气和煤炭的大部分都要依靠进口。
其能源政策的基本方针是,能源自给、实现有竞争力的能源价格、削减温室气体、向全体国民提供能源等,其中心措施为推进核能。
法国也在推进采用可再生能源。
欧洲风力能源协会的调查结果显示,2010年法国采用了108.6万千瓦的风力发电设备,2010年年底发电规模达到了566万千瓦。2009年的装机容量规模在欧洲仅次於西班牙和德国,累计规模也排名第四。
法国政府一直从潜在能力、供电能力及景观等方面考虑,指定可建设风力发电设施的地区。从地区来看,在北部的皮卡第(Picardie)、洛兰(Lorraine),中部Centre地区,西北部布列塔尼(Bretagne)等地区,采用风力发电发展较快,在今后的计划中,也是在这些地区以及香槟-阿登地区(champagne-ardenne)的预定建设项目多。
法国今后将继续扩大利用可再生能源。法国政府描绘了这样一幅蓝图,到2020年使风力发电的采用规模扩大到2500万千瓦,把其培育成可与水力发电相媲美的电力资源。
加拿大
加拿大河流和湖泊众多,这也使得该国成为世界第二大水力发电国家,全国能源的60%都来自水 力发电。不过目前加拿大的水力发电仍有很大的潜力可挖。根据加拿大今年2月的一份报告,该国从2011年到2030年间将投入3475亿加元用於建设新的电力设施。而根据以往的经验,很大一部分投入将用於建设水力发电站上。
加拿大还是世界上第六大利用风能发电的国家。近两年来,加拿大风能发电经历了大幅度的发展。到2011年12月,加拿大风能发电约达5177兆瓦,风能发电约占加拿大电力需求的2%。加拿大风能协会预计,在15年的时间内该国风能发电能翻10番,在电力需求的比例能占到20%。到2050年,风能工业预计将给加拿大创造52000个新的工作岗位。
美国
美国再生能源发电占新发电容量比重渐增。美国联邦能源管理委员会(Federal Energy Regulatory Commission, FERC)能源计画办公室最近公布的”能源结构更新”资料显示,2013年10月份太阳能、生质能源和风力合计的新发电容量为694百万瓦,占全部新上线发电的99.3%。
10月份的新发电容量中以12座共504百万瓦容量的新太阳能发电站占72.1%居先,其後为4座生质发电站(124百万瓦,占17.7%)和2座风力发电场(66百万瓦,占9.4%)。
2013年前10个月内再生能源(生质、地热、太阳能、水力和风力发电)共占新发电容量的32.8%,比燃煤发电(1,543百万瓦,12.5%)、燃油发电(36百万瓦,0.3%)高出很多。
2013年1月至10月太阳能发电占新发电容量的20.5%(2,528百万瓦),是上年度同期(1,257百万瓦)的两倍多。然而,天燃气则以6,625百万瓦的新发电容量占53.7%居前。
2013年前10个月的各能源全部17,008百万瓦新发电容量则较上年度同期的12,327百万瓦衰退27.5%之多。
至目前为止,再生能源约占全美营运发电容量的16%,包括:水力为8.3%、风力为5.21%、生质为1.32%、太阳能为0.59%、地热为0.33%,大於核能(9.22%)和燃油(4.06%)两项的合计。
另外,美国能源部的美国能源资讯署发行的最近一期电力月刊(Electric Power Monthly)指出,2013年前三季,再生能源发电占净发电的12.95%(水力--6.90%、风力--4.03%、生质--1.40% 、地热--0.41%、太阳能--0.21%)。
俄罗斯
除核电外,俄罗斯的其他非化石能源模式也方兴未艾。“俄罗斯可再生能源潜力巨大。”
俄罗斯每年产生1亿吨生物废料用于发电,目前,这些生物质能可产生3亿兆瓦时的电量。另外尽管俄罗斯不是世界上太阳能最丰富的国家,但小型太阳能发电机却广受欢迎。他们在自己住宅或别墅安装太阳能装置。
水电在俄罗斯电力结构中起到很大作用,被视为保证国家统一电力系统可靠性的关键因素。俄罗斯已投入运行的水电装机容量为49.7吉瓦,其中装机容量大于10兆瓦的水电站有85座。为了实现到2020年水电装机达60吉瓦的国家电力战略目标,俄罗斯国有水力发电公司正在加大水电开发力度。
而虽然俄罗斯拥有巨大的非化石能源潜力,但正在运行或待建的项目屈指可数。阻碍俄非化石能源发展的因素来自多方面。首先,受丰富的传统能源石油、天然气的影响,俄政府很难改变原有的能源结构,非化石能源领域缺乏先进技术和专业人才。其次,政策上,缺少相应的财政机制和优惠的税收政策。再者,可再生能源也有自己的劣势,如光伏发电受昼夜和季节变化影响较大;生物质发电占地面积大、效率低等。另外,建设非化石能源电厂要比建设常规火电厂造价昂贵,投资回报期也长。
近几年,在世界范围内可再生能源技术蓬勃发展,许多国家都走向了自己的非化石能源时代。眼看各国争先恐后地发展非化石能源,俄罗斯也不甘人后。为达到非化石能源战略预定目标,俄政府计划在2020年前拨出3万亿卢布用于发展可再生能源发电。其中,5000亿卢布为国家预算资金,2.5万亿卢布为私人投资者资金,未来装机能力将达200亿瓦。其中,80亿瓦装机能力主要是生物质发电;70亿瓦为风能发电;40亿瓦为小型水力发电;10亿瓦为小型模块式发电、地热发电、潮汐发电、太阳能发电等。俄罗斯能源部也称,目前正在制定可再生能源等一系列相关法律条例,用于扶持太阳能、风能和生物发电。
澳大利亚
澳大利亚得天独厚的自然资源,为其发展清洁能源奠定了雄厚物质基础。澳拥有100余座水电站;建有61个风电场、1353个风力发电机组,总装机容量约为2500兆瓦。作为全球光照资源最为丰富的国家(90%以上的地面光照强度超过1950千瓦时/平方米),其太阳能发电特别是光伏产业的发展潜力巨大。2011年,光伏发电能力达1.4吉瓦,其中新增837兆瓦,成为世界光伏增量最大的十个市场之一。澳大利亚的生物质、波能和热岩地热等资源也十分丰富。
澳大利亚是首个提出“可再生能源目标”的国家。到2020年,可再生能源发电量在总发电量中的比重要从目前的8%提升至20%,即达到45000吉瓦时。权威机构据此预测,未来10年内,澳大利亚的可再生能源发电规模至少应达到20吉瓦(其中光伏安装容量将达到5吉瓦),是现有规模的5倍,将创造360亿澳元的投资机会。
它同时是全球利用太阳能能源最为广泛与先进的国家之一,太阳能技术被广泛的应用在工业,农业,民用设施等领域。自1990年代开始後,澳洲大量兴建太阳能发电厂以取代核电站的作用,太阳能能源与风力发电在全国被大力推广。此外墨尔本亦是世界上第一个使用太阳能动力供给城市交通灯以及储存太阳能供应路灯电力的城市。