发电船支撑纽约的可再生能源战略
阿斯托里亚发电公司(Astoria Generating Co.)与西门子签署了一项合同,建造两台SeaFloat发电驳船,这些驳船将配备八台西门子SGT-A65燃气轮机,替代位于纽约市布鲁克林上海湾Gowanus发电站的四艘现有发电驳船,进行更清洁、更高效的能源生产。西门子将在两艘新建的SeaFloat上预装高效发电设施,每艘发电驳的发电量约为300兆瓦。使用SGT-A65燃机的新电站对比旧的发电设施将发电效率提升50%,显著减少诸如二氧化碳和一氧化碳的排放。
要求苛刻的能源市场
随着纽约能源市场的变化,并朝向更多间歇性能源过渡,纽约市需要在减少排放的同时保持其供电的可靠性。对于超过850万人口,希望在2030年实现可再生能源占比达到70%。当太阳能和风力发电不能满足需求,像Gowanus发电站这样,可以快速启动的调峰机组将会变得尤为重要,特别是对布鲁克林西南部等供电容量不足的地区。新的发电设施将提供可靠性,同时减少排放,并提供根据需要灵活地部署可移动发电驳。
Gowanus电站最初的四艘发电驳容量是为640兆瓦,建于上世纪70年代初期,已接近使用寿命。通过西门子提供的两艘新型发电驳,Astoria发电公司将能够淘汰现有的驳船,将驳船的总数从4个减少到2个,并且还可以淘汰附近的Narrows发电站的两个驳船。西门子将提供8台SGT-A65燃气轮机发电机组,每个驳船4台,连同西门子控制系统,机组以天然气作为主要燃料。
Astoria项目的SGT-A65(工业Trent 60)航改燃气轮机在简单循环时功率高达76 MW,效率为41.8%。这些机组具有快速的冷启动能力和较高的循环寿命,可以为电网快速增加功率,以补偿波动和可变的可再生能源和其他能源,从而使其成为调峰市场的理想解决方案。SGT-A65燃气轮机已在全球销售超过115台,拥有超过180万小时的工作经验。
西门子和Astoria还签署了一项为期20年的长期服务协议,该协议将有助于支持燃气轮机和发电机的最佳运行效率。该合同包括零件服务、维修、现场服务、程序管理以及西门子Omnivise数字服务产品组合的产品,包括远程监控和诊断。
西门子天然气与电力公司发电首席执行官Karim Amin表示:「作为整体解决方案,新型SeaFloat发电驳将有助于减少纽约市的排放,并为本地电网稳定提供可靠的备用电源。SeaFloat解决方案结合了我们高质量发电技术以及电网控制所需的机动性和灵活性技术。」
Astoria发电公司首席执行官Mark Sudbey表示,「随着纽约的能源市场不断变化,更多地依赖于风能和太阳能等间歇性能源,我们需要保证供电可靠性。西门子先进的燃气发电装置将为纽约人提供可快速启动的发电资源,同时减少排放。更重要的是,由于它们安装在驳船上,有更好的气候适应性,适应海平面上升和风暴潮等气候变化,如果其他地方需要电力,它还也可以将其移动。」
SeaFloat解决方案
多种型式的SeaFloat电厂可以在负荷高峰期或停电期间用作现有电厂的基荷(Base Load)或紧急备用,并在发生人道主义灾难时提供快速供电。SeaFloat电厂甚至与海水淡化联动,以提供有助于预防疾病的清洁饮用水。多种燃气轮机框架以及联合循环配置,可以为客户开发满足特定要求的解决方案。
西门子SeaFloat电厂设备可靠,经过改装,可用于海上漂浮系统。SeaFloat电厂可以部署在海洋或主要河流可到达的任何地点,几乎不需要土地购置投资。
SeaFloat设计为尽可能小,并且事实上定义了功率密度的新标准。由于工厂化建造和大部分调试工作都是在造船厂中严格控制的生产条件下,使用标准化设备进行的,因此可以缩短交货时间。该预装设计也不会干扰任何所需的陆上基础设施,例如变电站、输电线路和线路走廊。这样可以大大减少此类基础设施项目所需的总时间。
典型应用包括岛屿等偏远地区的电源,海岸线或主要河流(例如化工厂和海水淡化厂)的工业区开发以及新的工业区域开发。
有关SeaFloat电厂的更多信息,请访问此处 [1] 。
Floating Power Plants to Support New York's Renewable Energy Strategy
SeaFloat to provide reliable peaking power for New York City's renewable ambitions, boosting power generating efficiency by nearly 50%.
https://www.tdworld.com/renewables/floating-power-plants-support-new-yorks-renewable-energy-strategy
Sep 18, 2019
参考文献:
调峰机组是用来调节负荷高峰的,电力系统的发输用电是同时进行的,而用电负荷是随着时间的变化而变化的,所以发电的功率要随着用电量的变化而变化这样维持一个平衡,一般来说担任调峰任务的发电厂是水力发电厂,因为水电机组开机快,加减负荷只需要通过调节导叶即可。而火电或者核电用于调峰是非常不经济的,燃料的燃烧效率会降低,核电机组短时负荷变化过大甚至会有危险,所以一般核电机组是作为基荷,火电作为腰荷,而水电是作为调峰的负荷运行的。
一、大唐发电融资净买入597.28万元
据大唐发电(601991)融资融券数据显示,10月22日融资买入额2913.58万元,融资偿还额2316.3万元,融资买入净额597.28万元,当期融资余额4.87亿元。证券出借方面,卖出105.67万股,偿还125.74万股,净偿还20.07万股。目前的保证金为1492.29万股。整体来看,10月22日大唐发电融资融券余额较昨日增加298.91万元至5.29亿元。
二、大唐燃气发电项目1号机组成功投产发电。
海南客户端、南海网、南国都市报10月24日报道近日,大唐万宁燃气发电项目1号机组经过168小时满负荷试运行,于10月22日22时58分成功投运。据介绍,大唐万宁燃气电力项目总投资约25亿元,安装2台9F级46万千瓦燃气-蒸汽联合循环纯冷凝发电机。建成后,每年工业产值约17亿元,年税收约1.5亿元。大唐项目以“气电清洁可再生能源”明确了智慧能源发展方向,重点解决海南东部和自贸港区南北两极地区电力供应支撑不足的问题,结合全省燃气供需形势,布局燃气调峰机组,提升电力天然气双调峰能力。项目建成后,预计年消纳天然气约5亿立方米,年发电量约26亿千瓦时,可替代标准煤约80万吨,氮氧化物达到国家最低排放标准,实现废水“零排放”,为海南自贸港建设提供清洁能源保障。
此外,该项目积极围绕创建“绿色智慧示范工程”目标,提前开展创新增效工作。以智慧工地、智慧电厂建设为抓手,建立智能安防体系,确保基础设施建设全过程安全管控;通过“黑启动”、孤岛运行模式,提高电网安全;通过自动燃烧调整,可以实现在线性能分析和自动优化,“两个规则”的效益最大化。
第一,电网调峰能力充足。综观发达国家的电力供应结构,大力发展燃气发电是满足电力可靠供应,应对可再生能源随机性和波动性的重要手段。
到2015年底,英国太阳能发电装机总量970万千瓦,今年英国将继续成为欧洲最大的太阳能发电市场此外,全英陆上风电装机总量1360万千瓦,英国风电贸易机构REnewableUK最新报告显示,今年英国陆上和海上风电也将迎来装机增长高潮,其中在建陆上风电装机将超过450万千瓦。英国燃气发电装机占比36%,发电量占比达到41%,保证了可再生能源高效消纳和发电量稳步增长。
第二,电网互联程度高。欧洲电网是全球电源装机总量最大、互联程度最高的电网,欧洲各国借助互联电网实现发电能源资源的优势互补和电力供应的余缺互济。欧洲互联电网(ENTSO-E)已经覆盖了34个国家的41家输电网运营商,各国间的电量交换规模持续增加,由2013年的3900亿千瓦时增长至2015年的4880亿千瓦时,占总用电量比重由12%提高至15%。
英国电网通过法国、荷兰与欧洲大陆电网相联,为英国电网提供了足够的电力支援能力和备用水平。2015年,英国与周边国家交换电量260亿千瓦时,其中受入电量235亿千瓦时,输出电量25亿千瓦时,占本国总用电量的7.8%。
第三,成熟的电力市场机制。自1989年以来,英国的电力体制进行了四次重大改革。第一次改革中,英国将电力工业私有化,实现厂网分开,打破了电力工业的垄断格局,使电力具备了竞价上网的基础。第二次改革,逐步形成更加成熟的电力交易市场体系,包括远期市场、中期市场、短期双边市场和平衡市场。英国国家电力公司不再进行集中调度,只负责平衡市场的统筹。第三次改革中,为了在更大范围内优化配置资源,增强良性竞争,降低电力供应成本,建立了更加开放的全国统一电力市场。
近年来,英国以推进可再生能源发展为主旨的第四轮电力改革,将差价合约和容量市场逐步引入。差价合约逐步取代可再生能源义务配额制,为低碳电源投资商提供了长期稳定、可预期的收益,以缓解可再生能源投资压力。同时,保障了电价在合理范围内波动,减少了消费者的电力支出。容量市场的建立为调峰机组提供了合理的收益,通过容量价格引导电源结构更加合理,是保障电力供应可靠性,促进可再生能源高效消纳的重要措施。
不矛盾。如果矛盾的话,在未来传统化石能源枯竭之后,岂不是没有能源可用。水电作为传统的可再生能源在应用方面应该没什么可说的,大家争论的一般都是水电对生态环境的影响。 的确,如风电、太阳能确实存在不稳定性,可这不代表一定要发生有能源却完全不能用这种尴尬的事情,毕竟风电的全寿命成本比较高,造出来不发够电基本就是赔了。目前就针对风电,已经有很多新的应用来解决一些问题,可参加这篇文章:神奇的风电:解决电解铝40%成本问题,对于一些区域,可以使用这样非并网的方式加以利用。其次,伴随着未来技术的进步,很有可能高性价比的储能设备设施会出现并得到应用。而核电的成本还请参见核电的成本是多少? 可见普遍核电还是要比煤电成本要低,最需要注意的就是其安全问题,主要是使用过的燃料棒的处理问题。 生物能源其实有着很大的空间,现在我们仍然每天大量浪费着生物能源,比如城市垃圾中的大量有机物质、污水处理厂的剩余污泥等,请参见我在这篇回答里4.1有关厌氧消化(AD)的部分国内城市垃圾处理方式与国外有何区别?国外垃圾处理是否有可以借鉴的地方?这部分生物能源其实和火电相比虽然目前体量小,但是相对清洁而且输出同样稳定,而且有着巨大的发展潜力。他像地热能、潮汐能等目前还没有进入大规模实用阶段,但是就答主所知,很多机构都一直在对潮汐能进行着不懈的研究,希望不久的将来就可以见到其大规模商用。 大幅度提高清洁的可再生能源应用比例已经是全球的共识,其大规模应用乃至逐渐取代传统化石能源在答主看来都是不可避免的,一些技术问题相信都可以解决。
1.汽轮发电机组 与汽轮机配套的发电机组。为了得到较高的效率,汽轮机一般做成高速的,通常为 3000转/分(频率为50赫)或3600转/分(频率为60赫)。核电站中汽轮机转速较低,但也在1500转/分以上。高速汽轮发电机为了减少因离心力而产生的机械应力以及降低风摩耗,转子直径一般做得比较小,长度比较大,即采用细长的转子。特别是在3000转/分以上的大容量高速机组,由于材料强度的关系,转子直径受到严格的限制,一般不能超过 1.2米。而转子本体的长度又受到临界速度的限制。当本体长度达到直径的6倍以上时,转子的第二临界速度将接近于电机的运转速度,运行中可能发生较大的振动。所以大型高速汽轮发电机转子的尺寸受到严格的限制。10万千瓦左右的空冷电机其转子尺寸已达到上述的极限尺寸,要再增大电机容量,只有靠增加电机的电磁负荷来实现。为此必须加强电机的冷却。所以 5~10万千瓦以上的汽轮发电机组都采用了冷却效果较好的氢冷或水冷技术。70年代以来,汽轮发电机组的最大容量已达到130~150万千瓦。从1986年以来,在高临界温度超导电材料研究方面取得了重大突破。超导技术可望在汽轮发电机中得到应用,这将在汽轮发电机组发展史上产生一个新的飞跃。
2.水轮发电机组 由水轮机驱动的发电机组。由于水电站自然条件的不同,水轮发电机组的容量和转速的变化范围很大。通常小型水轮发电机和冲击式水轮机驱动的高速水轮发电机多采用卧式结构,而大、中型代速发电机多采用立式结构。由于水电站多数处在远离城市的地方,通常需要经过较长输电线路向负载供电,因此,电力系统对水轮发电机的运行稳定性提出了较高的要求:电机参数需要仔细选择;对转子的转动惯量要求较大。所以,水轮发电机的外型与汽轮发电机不同,它的转子直径大而长度短。水轮发电机组起动、并网所需时间较短,运行调度灵活,它除了一般发电以外,特别适宜于作为调峰机组和事故备用机组。水轮发电机组的最大容量已达70万千瓦。
3.柴油发电机组
柴油机驱动发电机运转,将柴油的能量转化为电能,根据其用途的不同,可分为陆用柴油发电机组及船用柴油发电机组;如果按品牌的不同,可分为国产柴油发电机组和进口柴油发电机组;按转速不同,可分为低速发电机组和高速发电机组。
3.1基本原理 柴油机驱动发电机运转,将柴油的能量转化为电能。在柴油机汽缸内,经过空气滤清器过滤后的洁净空气与喷油嘴喷射出的高压雾化柴油充分混合,在活塞上行的挤压下,体积缩小,温度迅速升高,达到柴油的燃点。柴油被点燃,混合气体剧烈燃烧,体积迅速膨胀,推动活塞下行,称为‘作功’。各汽缸按一定顺序依次作功,作用在活塞上的推力经过连杆变成了推动曲轴转动的力量,从而带动曲轴旋转。将无刷同步交流发电机与柴油机曲轴同轴安装,就可以利用柴油机的旋转带动发电机的转子,利用‘电磁感应’原理,发电机就会输出感应电动势,经闭合的负载回路就能产生电流。这里只描述发电机组最基本的工作原理。要想得到可使用的、稳定的电力输出,还需要一系列的柴油机和发电机控制、保护器件和回路。
3.2柴油发电机组的结构分析
一台普通型柴油发电机组主要由柴油机、发电机以及控制系统三部分组成,柴油机和发电机有两种连接方式,一为柔性连接,即用连轴器把两部分对接起来,二为刚性连接,用高强度螺栓将发电机钢性连接片和柴油机飞轮盘连接而成,目前市场上的柴油发电机组使用刚性连接的比较多一些,柴油机和发电机连接好之后安装在公共底架上,然后配上各种起保护作用的传感器,如水温传感器,通过这些传感器,直观地把柴油机的运行状态显示给操作员,而且有了这些传感器,就可以设定一个上限,当达到或超过这个限定值的时候控制系统会预先报警,这个时候如果操作员没有采取措施,控制系统会自动将机组停掉,柴油发电机组就是采取这种方式起自我保护作用的。传感器起接收和反馈各种信息的作用,真正显示这些数据和执行保护功能的是柴油发电机组的控制系统,控制屏一般安装在发电机上,称为背包式控制屏,也有部分是独立一个屏放置在操作室内,称为分体式控制屏,控制屏通过电缆和发电机以及传感器连接,分别显示电参数和柴油机运行参数。此外,发电机组还有底盘、联轴器、散热器、燃油箱,有的还装设有消声器和外罩。
4.风力发电机组
风力发电机组是将风能转换为机械功的动力机械,又称风车。广义地说,它是一种以太阳为热源,以大气为工作介质的热能利用发动机。机械连接与功率传递水平轴风机桨叶通过齿轮箱及其高速轴与万能弹性联轴节相连,将转矩传递到发电机的传动轴,此联轴节应按具有很好的吸收阻尼和震动的特性,表现为吸收适量的径向、轴向和一定角度的偏移,并且联轴器可阻止机械装置的过载。另一种为直驱型风机桨叶不通过齿轮箱直接与电机相连风机电机类型。
我找了好半天呢,给点分吧 至于第二个问题,我就不知道了
2、电能不能大量储存,电能的发出和使用是同步的,所以需要多少电量,发电部门就必须同步发出多少电量。电力系统中的用电负荷是经常发生变化的,为了维持用功功率平衡,保持系统频率稳定,需要发电部门相应改变发电机的出力以适应用电负荷的变化,这就叫做调峰。
调峰电厂就是承担电力系统高峰时段调节用电负荷任务的这一类专业化电厂的统称。
城乡用电往往有高峰期和低谷期,用电需求不很平衡,用电负荷也是不均匀的。在用电高峰时段,电网往往超负荷运行。
这个时候就需要启用调峰电厂,并投入在正常运行以外的发电机组以满足需求。这些电厂就称为调峰电厂,发电机组称为调峰机组。
扩展资料:
峰值电厂的应用
1、电力系统全年负荷曲线的满足
电力系统全年负荷曲线通常是由具有不同经济效率的电厂(汽轮发电机组)来满足的。根据总的负荷曲线,系统里总的负荷应分配到系统所属的各个电厂,以便使电力系统作为一个整体达到最高的经济效率。
这个目标可以通过这样的办法来达到:使那些具有较低的燃料和运行费用的电厂在一年中较长时间运行,而使那些燃料和运行费用高的电厂少工作一些时间。
在一年大部分时间以最大可能的负荷运行的电厂,也就是覆盖了电负荷曲线的底部(即图2中的基本负荷)的电厂叫基本负荷电厂;那些在一年中仅仅部分时间用来满足尖峰负荷的电厂叫尖峰负荷电厂(调峰电厂)。
除基本负荷与尖峰负荷电厂外,一个电力系统还可以有一些负担中间负荷的电厂,它们叫做中间(半峰值)负荷电厂。
全日电负荷曲线是由基本、尖峰、中问负荷电厂机组来满足的。基本负荷电厂连续不停地以满功率(额定功率)运行,而调蜂电厂只有当需要覆盖负荷曲线顶部时才投入运行。
而当总的电力负荷下降时,中间负荷的电厂或者是转换到一个降低了的负荷,或者是作为备用电厂。在星期六、星期天和节假日,许多负担中间负荷的电厂也停产。
2、瞬时调整发电量
由于锅炉发电厂不能低成本和高效率储存电能,因此这要求每个公用事业公司都具备瞬时调整发电量以满足电力需求的能力。尽管大型汽轮发电厂运营具有很大的灵活性,但这种发电厂仍可能无法满足突然的峰值需求。
启动另一台锅炉所需的时间长达8小时之久。因此,许多公用事业公司都建有燃气轮机峰值电厂,以便在几秒钟内产出额外需要的电力。这种电厂的功效仅为大型电厂的一半,而且只用于峰值发电。
参考资料来源:百度百科--峰值负荷发电厂
1、热电联产机组的工作效率是比调峰机组的效率更高的,单位时间内干的活更多。
2、热电联产机组的工作时间是没有调峰机组的时间更长,热电联产机组只能连续工作5个小时。
中国成为利用新能源和可再生能源的第一大国。
为减少碳排放,实现2030年碳达峰目标,我国大力发展水电、风电、太阳能发电、核能发电等,2016年我国就成为利用新能源、可再生能源第一大国。
五大挑战亟待突破
一是传统能源产能过剩矛盾加剧。今年1至11月,钢铁、建材行业煤炭消费量同比分别下降3.2%和8.2%,用电量同比分别下降6.4%和8.4%。煤炭可能会面临产能长期过剩的局面,电力过剩的苗头也越来越明显。
原油一次加工能力超过7亿吨,产能利用率不足70%。如不注重把握市场趋势和规律,片面追求产能扩张,今后将造成越来越严重的产能过剩局面。
二是能源系统整体运行效率有待提高。能源系统调峰能力不足,电力系统主要靠火电机组调峰,消纳可再生能源上网能力较差,系统效率低,污染排放大;天然气储气调峰建设滞后。能源需求侧响应机制和能力建设亟待加强。
三是可再生能源发展面临瓶颈制约。“三北”地区弃风弃光、西南地区弃水问题进一步加剧,部分地区弃风率超过30%,西北地区弃光问题开始显现。“十三五”期间,水电、风电和光伏发电装机规模将进一步扩大,可再生能源消纳面临更大压力。
四是终端能源消费清洁替代任务艰巨。实施天然气、电力替代煤炭、石油等化石能源,是实现节能减排和结构优化的重要途径。天然气替代受价格、输气管网等体制机制因素制约,市场出现低水平供应能力富裕现象,开拓市场压力较大;电力替代也面临着成本、基础设施、关键技术等因素制约。
五是资源环境约束问题更加突出。水资源与化石能源呈逆向分布,煤炭和石油的主产区集中在缺水区域,14个大型煤炭基地有11个缺水,水资源已成为能源发展的重要约束。
大气污染和应对气候变化形势严峻,雾霾已经成为影响大众身心健康和社会高度关注的热点问题。加快调整能源结构、增加清洁能源供应迫在眉睫。