智能新能源飞机来了!它的出现可能带来的最大好处是什么?
新能源汽车已经在市场上吸引了一批批购买者,而未来,飞机也将用上新能源。
从未来科学城获悉,未来科学城再度诞生重磅成果。中国商飞北京民用飞机技术研究中心在该中心多电航电综合实验大厅举行智能新能源飞机ET480全尺寸样机总装下线仪式,在新能源飞机领域迈出坚定的探索步伐。
智能新能源飞机ET480是中国商飞北研中心联合国家电投氢能公司共同研制的飞行验证机,主要面向未来城市立体交通这一应用领域。该验证机创新采用了复合翼构型,实现了垂直起降能力,从而较好地解决了传统多旋翼飞机起降与巡航之间的矛盾。
在能源方面,该飞机应用了全新的“燃料电池+锂电池”电电混合动力系统,有效地改善了传统锂电池续航里程短的瓶颈,为新能源飞机下一阶段突破航时、低温等技术瓶颈奠定了基础。“采用‘燃料电池+锂电池’混合动力系统,初步估计续航里程可比传统锂电池提升一倍左右。”商飞北研中心相关负责人介绍。
值得一提的是,此次下线的智能新能源飞机采用的燃料电池核心元器件依托国家电投氢能公司实现了自主知识产权,并在性能上达到了国内领先,结构上应用的碳纤维复合材料超过90%。
此外,在智能化方面,该飞机探索了基于5G的智能无人驾驶技术,着力打造未来新能源跨界创新平台、新技术验证平台和产业化示范平台。
据悉,该项目自2019年立项研制以来,先后获得了北京市科技协作中心体制机制创新研究课题支持,并入选北京市科技冬奥智慧北京示范项目,还被列为未来科学城跨界创新的标志性工程。本次新能源飞机样机的下线标志着中国商飞新能源飞机项目进入了全尺寸试验验证新阶段。
另据了解,作为智能新能源飞机ET480全尺寸样机的同款缩比验证机的ET120飞机,已于1月8日在江西吉安机场,进行了超过30个架次的测试飞行,顺利完成了垂直起飞-固定翼飞行-垂直着陆等全任务剖面飞行。ET120飞机控制状态良好,测试飞行取得圆满成功。相关测试飞行数据及模型将为全尺寸样机ET480即将进行的首飞及飞行测试奠定坚实基础。
新能源一直是大众非常重视的一个发展能源,许多传统能源因为在使用过程当中都会产生对大气及环境造成污染的气体,在如今已经不提倡使用。于是现在很多人就将目光放到了新能源,新能源在提出之后,有很多人都十分期待新能源在日常生活中的使用。如今我们可以看到,目前有新能源汽车在推广,对于新能源飞机也有官方消息表示智能新能源飞机也即将量产。其中有不少人认为,新能源飞机不仅可以运用到载人方面,在许多喜欢飞机的爱好者当中,也可以使用这种新能源飞机进行体育竞技。同样这种新能源飞机,在一定程度上也可以完成许多拍摄任务。不仅如此,这种飞机也得到不少国家航校的关注,很多飞行学校都试图购买这种飞机来完成教学。
如今很多人对于新能源并不是非常了解,新能源包括许多种能源,其中有太阳能,风能,地热能等。与传统能源相比,新能源具有非常多的优点,特别是在环境保护方面,许多新能源在使用过程当中所产生的气体对于环境保护影响要比传统能源小得多。不仅如此,新能源在储能方面也比传统能源要好。很多传统能源在燃烧过程当中所释放的能量相比自身有很大一部分能量都被流失掉。然而新能源却并不会,新能源的能量利用率达到最高,比传统能源要高得多。污染少,并且储能量非常大,是新能源的特点。同样正是因为这种特点,很多人都非常注重新能源的发展。
在未来,有很多人都希望新能源能够给我们的日常生活带来非常好的便利,特别是在如今很多传统能源在使用过程当中,不仅对环境有威胁,对人类安全也有危险。如今有越来越多的人都十分重视心灵的发展,相信如果新能源技术达到非常成熟的地步,人们生活水平也会有很大的提升。不仅如此,无论是新能源汽车还是新能源飞机,在我们日常生活当中都会给我们带来便利。
同样作为新时代新青年,在时代发展过程当中,我们也应该十分重视我国科技前沿的科研成果。特别是这系列对于国家发展有重大影响的研究技术,十分贴近我们生活,我们更应该去积极了解,并且向自己周围人推广。
飞机是个耗油大户,大家买一张机票,寄件人邮的费用不少。一个飞机正常来说,300多人加在一起,这个基建燃油的费用其实也只是勉强够个成本而已,甚至有时候连成本都不够,有一部分还要从票价里面出。既然他这么费油,能不能开发出一个新能源飞机呢?理论上可以呀。
说理论上可以,就是因为新能源飞机他也不是做不了,以电机为驱动吗,这个可以实现的,但是无论是续航还是安全性,还是动力可能都还不足够成熟。短途飞行是没有太大影响的,但是一个民航客机。成本控制这一方面它最重要做到的是要稳妥安全性要好,不能出问题,一个飞机上300多号普通乘客,他根本没有在空中自救的能力。真出了意外,谁也承担不了这个责任,航空公司更不可能冒这个险。
现在很多产业之所以没有去使用新能源,并不是说这个新能源在这个产业真的是毫无用武之地,而是说考虑到安全稳定成本可控等方面的因素没有去实行。就比如现在的工业煤炭天然气这些对于工业的发展作用挺大的,那换成电能行不行它也可以呀,只不过它在运输保存使用等各方面没有传统能源,方便,成本没有那么低。对于一个行业来说安全稳定。成本可控这个才是最重要的,不在于这个能源是不是新的。
现在新能源汽车都没普及呢,想普及新能源,飞机不可能啊,因为理论上技术上是可行的。现有的这个技术做出一款新能源飞机,不用传统的燃油的,在空中飞行一段时间也没有问题,只是他还不太适合做大规模的推广,成本比较高,安全性也不足够好,大部分乘客不乐于接受这个事情,真的不太安全,航空公司就没生意了,他肯定不会贸然做这样的推广。
空中客车公司公布了全球首架零排放商用飞机的三个概念,这款飞机将于2035年投入使用。
每个概念都代表了实现零排放飞行的不同方法,探索了不同的技术路径和空气动力学配置,以引领航空业的脱碳之路。所有这些概念都依赖于氢作为主要动力来源,空客认为这是航空业和其他行业实现气候中性目标的最佳解决方案。
涡轮发动机设计空客的第一款设计可容纳120-200名乘客,航程可达2000多海里。它将由一个改装的以氢为动力的燃气涡轮发动机通过燃烧提供动力。液态氢将通过位于后压力舱壁后面的储罐进行储存和分配。
就大小和航程而言,这款机型最能与空客A320系列媲美。
涡轮螺旋桨设计空客的下一款设计可容纳100名乘客,航程可达1000多海里。它还将由一个改装的以氢为动力的燃气涡轮发动机通过燃烧提供动力。
考虑到空客目前并不生产涡轮螺旋桨商用飞机,这款飞机的大小和航程将不同于该公司现有的任何一款飞机。
混翼机身设计空客的最后一款设计无疑是最具未来感的。混合翼机身设计可容纳200名乘客,航程可达2000多海里。这样,机翼就与机身合并了。
宽大的机身为氢的储存和分配以及舱室布局提供了多种选择。
不用说,从外观上看,这和我们以前在商业航空中看到的任何东西都不一样,而且看起来不会有很多窗口。
这个项目最大的挑战为了使这些概念成为现实,机场将需要大量的氢运输和燃料补给基础设施来满足日常运营。
这将需要政府的支持,包括增加对研究和技术、数字化以及鼓励使用可持续燃料和可再生飞机机群的机制的资助,从而让航空公司更早淘汰老化、不太环保的飞机。
一想到我们能在15年内看到这些飞机出现在天空中,就令人兴奋。听起来这项技术是可行的,但最大的障碍将是获得足够的全球协调,以便各国政府支持对可持续燃料的投资。
我认为另一个大问题是这些飞机会有多贵。它们的价格最终会与目前的商用飞机类似吗?还是会有巨大的溢价?最后,值得注意的是,目前还没有长期的零排放概念,所以我想这离我们还有很长的路要走。
1957年7月27日,美国一家报纸发表一篇题为“希特勒曾研制过飞碟”的文章。文章披露,一个叫弗·绍贝格尔的奥地利人发明了一种新型“爆炸”能源,这种能源只需使用空气和水就能制造出光能、热能和动能。1945年2月19日,在捷克斯洛伐克的布拉格附近进行了无人驾驶飞碟的首次试飞实验。试飞的飞碟仅用3分钟的时间就飞到了1500米高度。其水平飞行速度达2200千米/小时。这架试飞的飞碟既能悬停在半空中,又能向前或向后飞行。它的直径为50米。然而,这种飞碟及其研制者的未来和命运如何呢?
“飞轮-1”型飞碟
这种原始型飞碟的设计者是什利维尔和哈贝尔默利。1941年2月试飞,是当时时间上第一个垂直起降飞行器。它的外形结果跟今天发现的某些外星人驾驶的飞碟十分相似,是由一个固定不动的中心驾驶舱室旋转的宽面圆环构成的,采用德国制造的标准喷气发动机。这种飞碟虽已研制成功,但它却给设计者提出了一系列问题:由于不平衡度较大从而引起强烈振动,特别是高速飞行时。设计师曾试图加大外轮圈的重量,但设计方案最终还是没能达到完美的程度。
垂直起降-2”型飞碟
这种飞碟是在“飞轮-1”型基础上的改型,飞碟的外形尺寸有所加大,发动机马力也有所增大,采用类似飞机上保持平稳的舵盘操纵机械,速度约为1200千米/小时。这种飞碟同前一种一样,仍停留在实验室水平上,就在德国飞碟研究史上出现重大飞跃的关键时刻,由于纳粹德国的覆灭,这项飞碟研制事业宣告破产。尤·斯特罗加诺夫认为,由于同第13飞行探测器设计局卓有成效的合作,从而使从事这项飞碟研制事业的设计思想获得新生,受到鼓舞,进而使对飞碟的研制工作能继续下去,这不仅为以后的战时需要留下了飞行器,而且还为后人制造现代飞行器奠定了基础。
“柏罗湟女战神-3”型飞碟
这是研制的最后一种型号的飞碟,它分为两种类型:一种直径38米,另一种直径68米。它们都采用奥地利设计师弗·绍贝格尔发明的无烟无火焰爆炸式“绍贝格尔”型发动机驱 动(如下图),这种新能源发动机只需用水和空气作燃料。发动机本身具有反磁力性能,它借助反磁力漂浮升腾法使飞碟飞行和悬空。这种飞碟上装有12台喷气发动机,发动机全部采用“爆炸式”冷却法进行冷却。发动机靠吸入惊人的大量空气使其周围空间形成真空,飞碟便能在这一真空区内不费吹灰之力地任意运动。飞碟驾驶舱的内外性状是根据飞碟的机动性能和飞行速度而改变的。
女武神不需要装甲。当年这个速度以及先进的武器系统可以在敌人猝不及防的瞬间给对方致命打击。它的武器系统是电磁炮。它的动力系统是来自古代印度的神秘配方。当它达到最大平飞速度时,可以2600公里/小时飞行,在1945年这个速度是没有任何人类飞行器可以匹敌的。
在即将过去的20世纪中,人类使用的能源主要有三种,就是原油、天然气和煤炭。而根据国际能源机构的统计,假使按目前的势头发展下去,不加节制,那么,地球上这三种能源能供人类开采的年限,分别只有40年、50年和240年了。四五十年。从人类历史的角度来看,实在是非常非常的短促;试想一下,对于今于20来岁的年轻人来说,到他们六七十岁的时候,如果地球上已经没有原油和天然气可用,我们能不为此感到惊愕吗?所以,开发新能源,替代上述三种传统能源,迅速地逐年降低它们的消耗量,已经成为人类发展中的紧迫课题,核能在今后一段时期内还将有所发展,但是核电站的最大使用期只有25-30年,核电站的建造、拆除和安全防护费用也相对不低,过多地建设核电站是否明智可取,还有待今后实践和历史来检验。那么,人类将向何处寻找新能源呢?先进国家的能源专家认为,太阳能、风能、地热能、波浪能和氢能这五种新能源,在今后将肯定会优先获得开发利用。
太阳能 太阳能利用的形式很多,例如太阳能集热为建筑供暖、供热水,用太阳能电池驱动交通工具和其它动力装置,等等,这些都属于太阳能小型、分散的利用形式。太阳能大型、集中和利用形式,则是太空发电。在距地面三万多公里高空的同步卫星上,太阳能电池每天24小时均可发电,而且效率高达地面的10倍。太空电能可以通知过对人体无害的微波向地面输送。
风能 风能利用技术的不断革新,使这种丰富的无污染能源正重放异彩。据估计,二三十年内,风力发电量将要占欧共体电占全国总电力的30%左右。
地热能 目前世界上已有近二百座地热发电站投入了运行,装机容量数百万千瓦。研究表明,地热能的蕴藏量相当于地球煤炭储量热能的1.7亿倍,可供人类消耗几百亿年,真可谓取之不尽、用之不竭,今后将优先利用开发。
波浪能 主要的开发形式是海洋潮汐发电。80年代中期挪威成功地建成一座小型潮汐发电站,让涨潮的海小冲进有一定高度的贮水池,池水下溢即可发电。已经在设计的单座潮汐电站,其它发电量可供一个30万人口的城市使用。
氢能 氢是宇宙中含量最丰富的元素之一,就可经提取出无穷无尽的氢。氢运输方便,用作燃料不会污染环境,重量又轻,优点很多。前苏联试用氢为“图-155”型飞机的燃料已经初步得成功,各国正积极试验用氢作为汽车的燃料。氢无疑也是人类未来要优先利用的能源之一。
据世界断言,石油,煤矿等资源将加速减少。核能,太阳能即将成为主要能源。
一、定义与分类
新能源是指传统能源之外的各种能源形式。它的各种形式都是直接或者间接地来自于太阳或地球内部伸出所产生的热能。包括了太阳能、风能、生物质能、地热能、水能和海洋能以及由可再生能源衍生出来的生物燃料和氢所产生的能量。
联合国开发计划署(UNDP)把新能源分为以下三大类:大中型水电;新可再生能源,包括小水电、太阳能、风能、现代生物质能、地热能、海洋能;穿透生物质能。
一般地说,常规能源是指技术上比较成熟且已被大规模利用的能源,而新能源通常是指尚未大规模利用、正在积极研究开发的能源。因此,煤、石油、天然气以及大中型水电都被看作常规能源,而把太阳能、风能、现代生物质能、地热能、海洋能以及核能、氢能等作为新能源。随着技术的进步和可持续发展观念的树立,过去一直被是做垃圾的工业与生活有机废弃物被重新认识,作为一种能源资源化利用的物质而受到深入的研究和开发利用,因此,废弃物的资源化利用也可看作是新能源技术的一种形式。
新近才被人类开发利用、有待于进一步研究发展的能量资源称为新能源,相对于常规能源而言,在不同的历史时期和科技水平情况下,新能源有不同的内容。当今社会,新能源通常指核能、太阳能、风能、地热能、氢气等。
二、常见新能源形式概述
(具体内容详见各能源形式所对应的词条)
太阳能
太阳能一般指太阳光的辐射能量。太阳能的主要利用形式有太阳能的光热转换、光电转换以及光化学转换三种主要方式
广义上的太阳能是地球上许多能量的来源,如风能,化学能,水的势能等由太阳能导致或转化成的能量形式。
利用太阳能的方法主要有:太阳电能池,通过光电转换把太阳光中包含的能量转化为电能;太阳能热水器,利用太阳光的热量加热水,并利用热水发电等。
太阳能可分为2种:
1.太阳能光伏 光伏板组件是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成。由于没有活动的部分,故可以长时间操作而不会导致任何损耗。简单的光伏电池可为手表及计算机提供能源,较复杂的光伏系统可为房屋照明,并为电网供电。 光伏板组件可以制成不同形状,而组件又可连接,以产生更多电力。近年,天台及建筑物表面均会使用光伏板组件,甚至被用作窗户、天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统。
2.太阳热能 现代的太阳热能科技将阳光聚合,并运用其能量产生热水、蒸气和电力。除了运用适当的科技来收集太阳能外,建筑物亦可利用太阳的光和热能,方法是在设计时加入合适的装备,例如巨型的向南窗户或使用能吸收及慢慢释放太阳热力的建筑材料。
核能
核能是通过转化其质量从原子核释放的能量,符合阿尔伯特·爱因斯坦的方程E=mc^2,其中E=能量,m=质量,c=光速常量。核能的释放主要有三种形式:
A.核裂变能
所谓核裂变能是通过一些重原子核(如铀-235、铀-238、钚-239等)的裂变释放出的能量
B.核聚变能
由两个或两个以上氢原子核(如氢的同位素—氘和氚)结合成一个较重的原子核,同时发生质量亏损释放出巨大能量的反应叫做核聚变反应,其释放出的能量称为核聚变能。
C.核衰变
和衰变是一种自然的慢得多的裂变形式,因其能量释放缓慢而难以加以利用
核能的利用存在的主要问题:
(1)资源利用率低
(2)反应后产生的核废料成为危害生物圈的潜在因素,其最终处理技术尚未完全解决
(3)反应堆的安全问题尚需不断监控及改进
(4)核不扩散要求的约束,即核电站反应堆中生成的钚-239受控制
(5)核电建设投资费用仍然比常规能源发电高,投资风险较大
海洋能
海洋能指蕴藏于海水中的各种可再生能源,包括潮汐能、波浪能、海流能、海水温差能、海水盐度差能等。这些能源都具有可再生性和不污染环境等优点,是一项亟待开发利用的具有战略意义的新能源。
波浪发电,据科学家推算,地球上波浪蕴藏的电能高达90万亿度。目前,海上导航浮标和灯塔已经用上了波浪发电机发出的电来照明。大型波浪发电机组也已问世。我国在也对波浪发电进行研究和试验,并制成了供航标灯使用的发电装置。
潮汐发电,据世界动力会议估计,到2020年,全世界潮汐发电量将达到1000-3000亿千瓦。世界上最大的潮汐发电站是法国北部英吉利海峡上的朗斯河口电站,发电能力24万千瓦,已经工作了30多年。我国在浙江省建造了江厦潮汐电站,总容量达到3000千瓦。
风能
风能是太阳辐射下流动所形成的。风能与其他能源相比,具有明显的优势,它蕴藏量大,是水能的10倍,分布广泛,永不枯竭,对交通不便、远离主干电网的岛屿及边远地区尤为重要。
风力发电,是当代人利用风能最常见的形式,自19世纪末,丹麦研制成风力发电机以来,人们认识到石油等能源会枯竭,才重视风能的发展。
1977年,联邦德国在著名的风谷--石勒苏益格-荷尔斯泰因州的布隆坡特尔建造了一个世界上最大的发电风车。该风车高150米,每个浆叶长40米,重18吨,用玻璃钢制成。到1994年,全世界的风力发电机装机容量已达到300万千瓦左右,每年发电约50亿千瓦时。
生物质能
生物质能来源于生物质,也是太阳能以化学能形式贮存于生物中的一种能量形式,它直接或间接地来源于植物的光合作用。生物质能是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态或气态的燃料。地球上的生物质能资源较为丰富,而且是一种无害的能源。地球每年经光合作用产生的物质有1730亿吨,其中蕴含的能量相当于全世界能源消耗总量的10-20倍,但目前的利用率不到3%。
地热能
地球内部热源可来自重力分异、潮汐磨擦、化学反应和放射性元素衰变释放的能量等。放射性热能是地球主要热源。我国地热资源丰富,分布广泛,已有5500处地热点,地热田45个,地热资源总量约320万兆瓦。
氢能
在众多新能源中,氢能以其重量轻、无污染、热值高、应用面广等独特优点脱颖而出,将成为21世纪的理想能源。氢能可以作飞机、汽车的燃料,可以用作推动火箭动力。
三、新能源的发展现状和趋势
部分可再生能源利用技术已经取得了长足的发展,并在世界各地形成了一定的规模。目前,生物质能、太阳能、风能以及水力发电、地热能等的利用技术已经得到了应用。
国际能源署(IEA)对2000~2030年国际电力的需求进行了研究,研究表明,来自可再生能源的发电总量年平均增长速度将最快。IEA的研究认为,在未来30年内非水利的可再生能源发电将比其他任何燃料的发电都要增长得快,年增长速度近6%在2000~2030年间其总发电量将增加5倍,到2030年,它将提供世界总电力的4.4%,其中生物质能将占其中的80%。
目前可再生能源在一次能源中的比例总体上偏低,一方面是与不同国家的重视程度与政策有关,另一方面与可再生能源技术的成本偏高有关,尤其是技术含量较高的太阳能、生物质能、风能等据IEA的预测研究,在未来30年可再生能源发电的成本将大幅度下降,从而增加它的竞争力。可再生能源利用的成本与多种因素有关,因而成本预测的结果具有一定的不确定性。但这些预测结果表明了可再生能源利用技术成本将呈不断下降的趋势。
我国政府高度重视可再生能源的研究与开发。国家经贸委制定了新能源和可再生能源产业发展的“十五”规划,并制定颁布了《中华人民共和国可再生能源法》,重点发展太阳能光热利用、风力发电、生物质能高效利用和地热能的利用。近年来在国家的大力扶持下,我国在风力发电、海洋能潮汐发电以及太阳能利用等领域已经取得了很大的进展。
四、新能源的环境意义和能源安全战略意义
我国能源需求的急剧增长打破了我国长期以来自给自足的能源供应格局,自1993年起我国成为石油净进口国,且石油进口量逐年增加,使得我国接入世界能源市场的竞争。由于我国化石能源尤其是石油和天然气生产量的相对不足,未来我国能源供给对国际市场的依赖程度将越来越高。
国际贸易存在着很多的不确定因素,国际能源价格有可能随着国际和平环境的改善而趋于稳定,但也有可能随着国际局势的动荡而波动。今后国际石油市场的不稳定以及油价波动都将严重影响我国的石油供给,对经济社会造成很大的冲击。大力发展可再生能源可相对减少我国能源需求中化石能源的比例和对进口能源的以来程度,提高我国能源、经济安全。
此外,可再生能源与化石能源相比最直接的好处就是其环境污染少。
随着能源危机日益临近,新能源已经成为今后世界上的主要能源之一。其中太阳能已经逐渐走入我们寻常的生活,风力发电偶尔可以看到或听到,可是它们作为新能源如何在实际中去应用?新能源的发展究竟会是怎样的格局?这些问题将是我们在今后很长时间里需要探索的。
新能源(或称可再生能源更贴切)主要有:太阳能、风能、地热能、生物质能等。生物质能在经过了几十年的探索后,国内外许多专家都表示这种能源方式不能大力发展,它不但会抢夺人类赖以生存的土地资源,更将会导致社会不健康发展;地热能的开发和空调的使用具有同样特性,如大规模开发必将导致区域地面表层土壤环境遭到破坏,必将引起再一次生态环境变化;而风能和太阳能对于地球来讲是取之不尽、用之不竭的健康能源,他们必将成为今后替代能源主流。
太阳能发电具有布置简便以及维护方便等特点,应用面较广,现在全球装机总容量已经开始追赶传统风力发电,在德国甚至接近全国发电总量的5%-8%,随之而来的问题令我们意想不到,太阳能发电的时间局限性导致了对电网的冲击,如何解决这一问题成为能源界的一大困惑。
风力发电在19世纪末就开始登上历史的舞台,在一百多年的发展中,一直是新能源领域的独孤求败,由于它造价相对低廉,成了各个国家争相发展的新能源首选,然而,随着大型风电场的不断增多,占用的土地也日益扩大,产生的社会矛盾日益突出,如何解决这一难题,成了我们又一困惑。
早在2001年,MUCE就为了开拓稳定的海岛通信电源而开展一项研究,经过六年多研究和实践,终于将一种成熟的新型应用方式MUCE风光互补系统向社会推广,这种系统采用了我国自主研制的新型垂直轴风力发电机(H型)和太阳能发电进行10:3地结合,形成了相对稳定的电力输出。在建筑上、野外、通信基站、路灯、海岛均进行了实际应用,获得了大量可靠的使用数据。这一系统的研究成果将为我国乃至世界的新能源发展带来了新的动力。
新型垂直轴风力发电机(H型)突破了传统的水平轴风力发电机启动风速高、噪音大、抗风能力差、受风向影响等缺点,采取了完全不同的设计理论,采用了新型结构和材料,达到微风启动、无噪音、抗12级以上台风、不受风向影响等性能,可大量用于别墅、多层及高层建筑、路灯等中小型应用场合。以它为主建立的风光互补发电系统,具有电力输出稳定、经济性高、对环境影响小等优点,也解决了太阳能发展中对电网冲击等影响。
太阳能一般指太阳光的辐射能量.太阳能的主要利用形式有太阳能的光热转换、光电转换以及光化学转换三种主要方式
广义上的太阳能是地球上许多能量的来源,如风能,化学能,水的势能等由太阳能导致或转化成的能量形式.
利用太阳能的方法主要有:太阳电能池,通过光电转换把太阳光中包含的能量转化为电能;太阳能热水器,利用太阳光的热量加热水,并利用热水发电等.
太阳能可分为2种:
1.太阳能光伏 光伏板组件是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成.由于没有活动的部分,故可以长时间操作而不会导致任何损耗.简单的光伏电池可为手表及计算机提供能源,较复杂的光伏系统可为房屋照明,并为电网供电. 光伏板组件可以制成不同形状,而组件又可连接,以产生更多电力.近年,天台及建筑物表面均会使用光伏板组件,甚至被用作窗户、天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统.
2.太阳热能 现代的太阳热能科技将阳光聚合,并运用其能量产生热水、蒸气和电力.除了运用适当的科技来收集太阳能外,建筑物亦可利用太阳的光和热能,方法是在设计时加入合适的装备,例如巨型的向南窗户或使用能吸收及慢慢释放太阳热力的建筑材料.
核能
核能是通过转化其质量从原子核释放的能量,符合阿尔伯特·爱因斯坦的方程E=mc^2,其中E=能量,m=质量,c=光速常量.核能的释放主要有三种形式:
A.核裂变能
所谓核裂变能是通过一些重原子核(如铀-235、铀-238、钚-239等)的裂变释放出的能量
B.核聚变能
由两个或两个以上氢原子核(如氢的同位素—氘和氚)结合成一个较重的原子核,同时发生质量亏损释放出巨大能量的反应叫做核聚变反应,其释放出的能量称为核聚变能.
C.核衰变
核衰变是一种自然的慢得多的裂变形式,因其能量释放缓慢而难以加以利用
核能的利用存在的主要问题:
(1)资源利用率低
(2)反应后产生的核废料成为危害生物圈的潜在因素,其最终处理技术尚未完全解决
(3)反应堆的安全问题尚需不断监控及改进
(4)核不扩散要求的约束,即核电站反应堆中生成的钚-239受控制
(5)核电建设投资费用仍然比常规能源发电高,投资风险较大
海洋能
海洋能指蕴藏于海水中的各种可再生能源,包括潮汐能、波浪能、海流能、海水温差能、海水盐度差能等.这些能源都具有可再生性和不污染环境等优点,是一项亟待开发利用的具有战略意义的新能源.
波浪发电,据科学家推算,地球上波浪蕴藏的电能高达90万亿度.目前,海上导航浮标和灯塔已经用上了波浪发电机发出的电来照明.大型波浪发电机组也已问世.我国在也对波浪发电进行研究和试验,并制成了供航标灯使用的发电装置.
潮汐发电,据世界动力会议估计,到2020年,全世界潮汐发电量将达到1000-3000亿千瓦.世界上最大的潮汐发电站是法国北部英吉利海峡上的朗斯河口电站,发电能力24万千瓦,已经工作了30多年.我国在浙江省建造了江厦潮汐电站,总容量达到3000千瓦.
风能
风能是太阳辐射下流动所形成的.风能与其他能源相比,具有明显的优势,它蕴藏量大,是水能的10倍,分布广泛,永不枯竭,对交通不便、远离主干电网的岛屿及边远地区尤为重要.
风力发电,是当代人利用风能最常见的形式,自19世纪末,丹麦研制成风力发电机以来,人们认识到石油等能源会枯竭,才重视风能的发展.
1977年,联邦德国在著名的风谷--石勒苏益格-荷尔斯泰因州的布隆坡特尔建造了一个世界上最大的发电风车.该风车高150米,每个浆叶长40米,重18吨,用玻璃钢制成.到1994年,全世界的风力发电机装机容量已达到300万千瓦左右,每年发电约50亿千瓦时.
生物质能
生物质能来源于生物质,也是太阳能以化学能形式贮存于生物中的一种能量形式,它直接或间接地来源于植物的光合作用.生物质能是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态或气态的燃料.地球上的生物质能资源较为丰富,而且是一种无害的能源.地球每年经光合作用产生的物质有1730亿吨,其中蕴含的能量相当于全世界能源消耗总量的10-20倍,但目前的利用率不到3%.
地热能
地球内部热源可来自重力分异、潮汐磨擦、化学反应和放射性元素衰变释放的能量等.放射性热能是地球主要热源.我国地热资源丰富,分布广泛,已有5500处地热点,地热田45个,地热资源总量约320万兆瓦.
氢能
在众多新能源中,氢能以其重量轻、无污染、热值高、应用面广等独特优点脱颖而出,将成为21世纪的理想能源.氢能可以作飞机、汽车的燃料,可以用作推动火箭动力.
海洋渗透能
如果有两种盐溶液,一种溶液中盐的浓度高,一种溶液的浓度低,那么把两种溶液放在一起并用一种渗透膜隔离后,会产生渗透压,水会从浓度低的溶液流向浓度高的溶液.江河里流动的是淡水,而海洋中存在的是咸水,两者也存在一定的浓度差.在江河的入海口,淡水的水压比海水的水压高,如果在入海口放置一个涡轮发电机,淡水和海水之间的渗透压就可以推动涡轮机来发电.
海洋渗透能是一种十分环保的绿色能源,它既不产生垃圾,也没有二氧化碳的排放,更不依赖天气的状况,可以说是取之不尽,用之不竭.而在盐分浓度更大的水域里,渗透发电厂的发电效能会更好,比如地中海、死海、我国盐城市的大盐湖、美国的大盐湖.当然发电厂附近必须有淡水的供给.据挪威能源集团的负责人巴德·米克尔森估计,利用海洋渗透能发电,全球范围内年度发电量可以达到16000亿度.