新能源汽车BMS作用是什么
【太平洋汽车网】新能源汽车bms:电池组管理系统,主要作用:保证电池在生命周期内安全、可靠、高效地使用,主要功能:检测电池在充放电等使用过程中的电压、电流、温度、容量、甚至其他环境参数在安全范围内,保证电池使用安全,再提高使用寿命、提高效率等作用。
应用范围:这是一种几乎所有用电池供电的设备中,电池上都需要配备的一种电路系统。比如手机电池、充电宝、电脑电池、手电电池、所有电动车、太阳能电池、汽车、玩具车、电动平衡车及滑板车、电池电源的无人机、无线电设备??太多了。
为什么说是几乎所有?因为有的设备使用的是不需要保护电池的,大多是一次性的,比如有些兵器,或者一次性玩具等,他们往往生命周期短,而使用BMS的成本比较大,在电池大数上可靠的前提下这些设备可以不用BMS。但有时为了安全考虑,一次的电池设备也会用BMS。
所以没有绝对的使用和不使用。
新能源汽车上应用最为广泛,但其他领域面也很广。
BMS企业将面临大洗牌但行业的问题,恰恰是企业的机会。
根据一览众资讯所提供的《新能源汽车行业发展报告》,每辆新能源汽车的BMS价格在3000-20000元,2016年BMS行业的市场规模大约为70亿元,到2020年市场规模将超过150亿元。
众多企业涌入BMS行业,争相分食蛋糕。在中国BMS市场上,玩家主要有三类:第一,动力电池企业。除了利益上的考量之外,由于担心第三方BMS管理系统不到位,会影响其电芯发挥作用,头部的电池企业一般都选择自己做BMS。目前,第一梯队的CATL和BYD都下设BMS企业。
(图/文/摄:太平洋汽车网问答叫兽)
【太平洋汽车网】系统供电后整个系统不工作可能原因供电异常、线束短路或是断路、DCDC无电压输出故障排除检查外部电源给管理系统供电是否正常,是否能达到管理系统要求的最低工作电压,看外部电源是否有限流设置,导致给管理系统的供电功率不足。
2、BMS不能与ECU通信可能原因BMU(主控模块)未工作、CAN信号线断线故障排除检查BMU的电源12V/24V是否正常;检查CAN信号传输线是否退针或插头未插;监听CAN端口数据,是否能够收到BMS或者ECU数据
3、BMS与ECU通信不稳定可能原因外部CAN总线匹配不良、总线分支过长故障排除检测总线匹配电阻是否正确;匹配位置是否正确,分支是否过长。
4、BMS内部通信不稳定可能原因通信线插头松动、CAN走线不规范、BSU地址有重复。故障排除检测接线是否松动;检测总线匹配电阻是否正确,匹配位置是否正确,分支是否过长;检查BSU地址是否重复。
4、绝缘检测报警可能原因电池或驱动器漏电。、绝缘模块检测线接错故障排除使用BDU显示模块查看绝缘检测数据,查看电池母线电压,负母线对地电压是否正常;使用绝缘摇表分别测量母线和驱动器对地绝缘电阻。
5、上电后主继电器不吸合可能原因负载检测线未接、预充继电器开路、预充电阻开路。故障排除使用BDU显示模块查看母线电压数据,查看电池母线电压,负载母线电压是否正常;检查预充过程中负载母线电压是否有.上升。
6、采集模块数据为0可能原因采集模块采集线断开、采集模块损坏。故障排除重新拔插模块接线,在采集线接头处测量电池电压是否正常,在温度传感器线插头处测量阻值是否正常。
7、电池电流数据错误可能原因霍尔信号线插头松动、霍尔传感器损坏、采集模块损坏。故障排除重新拔插电流霍尔传感器信号线;检查霍尔传感器电源是否正常,信号输出是否正常;更换采集模块。
8、电池温差过大可能原因散热风扇插头松动,散热风扇故障。故障排除重新拔插风扇插头线;给风扇单独供电,检查风扇是否正常。
9、电池温度过高或过低可能原因散热风扇插头松动,散热风扇故障,温度探头损坏。.故障排除重新拔插风扇插头线;给风扇单独供电,检查风扇是否正常;检查电池实际温度是否过高或过低;测:量温度探头内阻。
10、继电器动作后系统报错可能原因继电器辅助触点断线,继电器触点粘连故障排除重新拔插线束;用万用表测量辅助触点通断状态是否正确。
11、不能使用充电机充电可能原因充电机与BMS通信不正常故障排除更换一台充电机或BMS,以确认是BMS故障还是充电机故障;检查BMS充电端口的匹配电阻是否正常。
(图/文/摄:太平洋汽车网问答叫兽)
BmS是通过内阻检测预充电流的,内阻分两种:
一种是直流内阻,一般是以某一恒定的电流放电/充电10S/30S等时间,再依据电压变化除以电流值计算得出直流内阻值。
另外一种是交流内阻,通常是采用专用的测试设备,注入一高频交流电流。
而且需要预充过程。主要目的缓冲或减少高电压大电流对高压电路和部件的冲击。当车辆需要上电时。bms控制预充接触器结合。电流经预充电阻及预充接触器对。电容进行预充。待低压接近于动力电池电压时控制主接触器结合。预充接触器断开预充完成。
预充电接触器的作用:
有效保护电容、保险,直流接触器;防止直接上电瞬间,充电电流可能太大,瞬间电流过大可能会造成电容损坏,也会损坏直流接触器等开关器件。预充电阻电阻是起到限流的作用。
现有的预充电路包括预充电阻R′、预充继电器JR′、主继电器J′、主设备和复数个从设备,预充继电器JR′的输入端和主继电器J′的输入端分别与电源E′正极连接。
BMS电池系统俗称之为电池保姆或电池管家,主要就是为了智能化管理及维护各个电池单元,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。BMS电池管理系统单元包括BMS电池管理系统、控制模组、显示模组、无线通信模组、电气设备、用于为电气设备供电的电池组以及用于采集电池组的电池信息的采集模组,所述BMS电池管理系统通过通信接口分别与无线通信模组及显示模组连接,所述采集模组的输出端与BMS电池管理系统的输入端连接,所述BMS电池管理系统的输出端与控制模组的输入端连接,所述控制模组分别与电池组及电气设备连接,所述BMS电池管理系统通过无线通信模块与Server服务器端连接。
整车控制器(VCU)、电机控制器(MCU)和电池管理系统(BMS)是最重要的核心技术,对整车的动力性、经济性、可靠性和安全性等有着重要影响!VCU是实现整车控制决策的核心电子控制单元,一般仅新能源汽车配备、传统燃油车无需该装置。
MCU是新能源汽车特有的核心功率电子单元,通过接收VCU的车辆行驶控制指令,控制电动机输出指定的扭矩和转速,驱动车辆行驶。BMS能够提高电池的利用率,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。
新能源汽车前景
在能源和环保的压力下,新能源汽车无疑将成为未来汽车的发展方向。如果新能源汽车得到快速发展,以2020年中国汽车保有量1.4亿计算,可以节约石油3229万吨,替代石油3110万吨,节约和替代石油共6339万吨,相当于将汽车用油需求削减22.7%。
2020年以前节约和替代石油主要依靠发展先进柴油车、混合动力汽车等实现。到2030年,新能源汽车的发展将节约石油7306万吨、替代石油9100万吨,节约和替代石油共16406万吨,相当于将汽车石油需求削减41%。届时,生物燃料、燃料电池在汽车石油替代中将发挥重要的作用。
检查外部电源给管理系统供电是否正常,是否能达到管理系统要求的最低工作电压,看外部电源是否有限流设置,导致给管理系统的供电功率不足。检查BMU的电源12V/24V是否正常,检查CAN信号传输线是否退针或插头未插,监听CAN端口数据,是否能够收到BMS或者ECU数据。检测接线是否松动,检测总线匹配电阻是否正确,匹配位置是否正确,分支是否过长,检查BSU地址是否重复。
打开百度APP,查看更多高清图片
电桥法重难点解读:
(一)电桥法的检测原理
电桥法的工作原理是BMS通过检测高压正与高压负之间的分压变化来计算正极/车身与负极/车身的绝缘阻值,检测原理如下三步:
1. 闭合开关S1,闭合开关S2:BMS检测到V1,V2的电压
2. 闭合开关S1,断开开关S2:BMS检测到V1’的电压
3. 断开开关S1,闭合开关S2:BMS检测到V2’的电压
4. 根据上述三个步骤,已知电池的总电压U以及正负极桥臂的分压电阻及其比例,可以列出三个方程U=aV1+bV2,
5. 根据这个方程式来解方程可以求得:正极/壳体阻值=Rp,负极/壳体=Rn
两个阻值便是我们平时整车上读取到绝缘值,以上即为电桥法的检测原理。
(二)电桥法的设计难点
电桥法的稳定性及可靠性还需重点考虑如下几点(上述四个电压值V1,V2,V1’,V2’以下统称V1,V2,欢迎补充和探讨):
1. 分压比例及ADC的选取:
绝缘检测为了兼顾成本会牺牲一部分精度(采用12bit ADC采样,甚至直接用单片机内部的ADC采样),这个时候对电阻的分压比例(R1/R2或R4/R3)的选取提出较高的要求,
电阻分压比例太大采样分辨率不够,无法做到较高精度;
电阻分压比例太小采样超出量程,无法做到全电压范围的采样;
2. 寄生电容的影响:
大家都知道,整车上寄生电容的实际存在(一般在几百纳法级,也有远大于这个量级的)。
由于寄生电容会导致V1,V2电压值稳定需要一定时间,这个时候就会出现几个问题:
BMS无法准确判断V1,V2电压的稳定采样点,电容电压未稳定或者电容开始漏电导致V1,V2的电压不是真实分压的值,这样计算出来的绝缘值不准,这也是前几年有些车绝缘不稳定的要因之一,现在好多了;
BMS等待电压稳定的时间,等待的时间过长导致绝缘检测时间偏长,可能不满足功能安全中FTTI的时间要求;
寄生电容值随着天气以及车辆的老化会发生改变,这个时候要确保设计仍然满足前期的采样精度和时间目标就对算法的稳定性及适应性提出了较高的要求,主要硬件电路以及软件滤波要考虑;
3.电压V1,V2的采样同步实时性的影响
理论上V1,V2的实时性越高对绝缘采样精度及稳定性越有利,但是很遗憾这个也只能是理论,显然是无法完全同步的。为了方便理解,我暂且假定一个非常极端实车工况来说明同步实时性的影响:
阶段一:猛踩油门踏板上陡坡,此时BMS恰好为步骤2检测V1’;
阶段二:猛踩制动踏板下陡坡,此时BMS恰好为步骤3检测V2’;
大家可以先想想这个情景以及这个情景对绝缘检测的影响。踩油门踏板的时候电池包对外大电流放电,由于锂电池的DCR+极化内阻等存在,导致电池包的高压会被急剧拉低(由电流的大小决定,一般在50~100V,以一个400V电压来说电池实际输出电压为350V)。踩制动踏板的时候由于制动能量回收整车对电池包大电流充电,同理导致电池包的高压会被瞬间抬高至450V。那么问题就来了,V1’是以350V分压检测得到的,V2’是以450V分压检测得到的,用这一组电压去计算绝缘是不妥的,轻则绝缘值误差较大,最严重的情况下可能出现绝缘误报漏报导致整车做了对应的故障策略。