建材秒知道
登录
建材号 > 能源科技 > 正文

林业生物质能源产业迎来巨大发展机遇

高大的鼠标
天真的期待
2023-02-01 04:53:57

林业生物质能源产业迎来巨大发展机遇

最佳答案
悲凉的冬瓜
机智的蛋挞
2025-05-18 23:34:24

文/段劼 李海英 贾黎明

近期,国家发改委连续发布了《“十四五”生物经济发展规划》(以下简称《生物经济规划》)和《“十四五”可再生能源发展规划》(以下简称《可再生能源规划》)。《生物经济规划》是我国首部生物经济五年规划,也是“生物经济”概念的首次提出,聚焦面向人民群众在医疗 健康 、食品消费、绿色低碳、生物安全等领域更高层次需求和大力发展生物经济的目标。生物能源是《生物经济规划》中的战略性新兴产业,与生物医药、生物农业、生物安全一起被列为生物经济的四大重点发展领域。《生物经济规划》中提到,发展生物能源对维护国家能源安全、粮食安全、生态安全,实现乡村振兴与绿色发展具有重要意义。《可再生能源规划》中指出发展生物质能源对于碳达峰和应对气候变化具有重要作用,是保障国家能源安全的重要选择,是我国生态文明建设、可持续清洁能源发展、建设生态宜居美丽乡村的客观要求。林业生物质能源发展正处于大有可为的战略机遇期。

林业生物质能源产业是生物经济与可再生能源的重要组成部分

《生物经济规划》中将生物能源定位为生物经济的支柱产业,目标是推动化石能源向绿色低碳可再生能源转型。《可再生能源规划》明确提出了将推动林业生物质能源多元化开发,包括生物质发电、生物质能清洁供暖、生物天然气和非粮生物质液体燃料四种类型,与《生物经济规划》中提到的生物能源领域产业发展类型一脉相承。此外,《生物经济规划》还明确了林业生物能源领域产业发展可采取的工程路径,包括:定向选育、推广和应用高产、高抗、速生的油料和能源林新品种,因地制宜开展生物能源基地建设,加强热化学技术创新,推动高效低成本生物能源应用在有条件的区域开展纤维素乙醇、生物柴油、生物天然气产业示范,打通生物质原料收集等重要环节,提高生物燃料生产规模建设以生物质热电联产、生物质成型燃料及其他可再生能源为主要能源的产业园区支持有条件的县域开展生物质能清洁供暖替代燃煤,稳步发展城镇生活垃圾热电联产,推进生物质成型燃料、沼气等生物质能清洁取暖在有条件的地区开展生物柴油推广试点,推进生物航空燃料示范应用。

我国国情特殊,富煤贫油少气,当前原油对外依存度超过70%,能源安全问题突出。同时,我国人口基数大,18亿亩耕地的红线不能突破,发展生物质能源不可能像国外一样使用粮食原料,必须以“不与人争粮、不与粮争地”为原则。依托我国46亿亩林地发展林业生物质能源是最佳选择,可以促进对化石能源的加速替代,保障国家能源向低碳、零碳方向发展,同时兼顾生态、粮食、能源和 社会 多重效益。

林业生物质能源具有可再生、储备量大、能值高、绿色低碳、能源转化类型多、安全等特点,是生物经济产业和可再生能源的重要组成部分,是绿色低碳能源银行。林业生物质能源不仅能促进实现碳中和,部分产业还可实现负碳排放。两个《规划》是在我国迈向“双碳”目标和第二个百年目标的背景下提出的,为我国林业生物质能源提供了巨大的发展机遇。

北林能源中心致力林业生物质能源产业发展

自2013年以来,依托于北京林业大学“国家能源非粮生物质原料研发中心”和“林业生物质能源国家国际 科技 合作基地”等科研平台,在国家自然科学基金、 科技 部 科技 基础资源调查专项和国家国际 科技 合作项目等支持下,北林林业生物质能源研发团队经过10年多系统研究,助力“能源林”写入新版《森林法》,牵头编制了《能源林培育技术规程》《油料能源林培育技术规程》和《纤维素乙醇能源林培育技术规程》等3项林业行业标准,协助国家林草局生物质能源办起草发布了刺槐、灌木、文冠果、元宝枫、欧李、山桐子等7项能源原料林可持续培育指南。在高能效先进生物质原料林可持续经营技术和“林油一体化”产业可持续发展模式等方面取得了重要标志性科研成果,为落实两个规划奠定了雄厚的技术基础。

(1)高能效先进生物质原料林可持续经营技术

为解决限制我国林业生物质能源产业发展原料短缺这一瓶颈问题,在 科技 部国家国际 科技 合作项目和教育部重大项目培育项目等的支持下,北林团队以刺槐、柠条、沙棘、沙枣、胡枝子、紫穗槐、三倍体毛白杨B301、欧美107杨、文冠果、无患子、黄连木等11个主要能源原料树种为研究对象,创新形成了高能效先进生物质原料林可持续经营技术。团队基于雄厚的前期研究基础,依托 科技 部“林业生物质能源国家国际 科技 合作基地”,与德国哈尔博格学院、西班牙马德里理工大学等一流高校的相关机构,围绕燃料型、燃油型能源原料林可持续经营技术开展了务实合作,形成了刺槐和杨树能源林高密度超短轮伐培育技术体系,生物质收获量比原有培育模式提高20%以上;形成了立地-树种(品种)适配、合理密度确定、平茬复壮等灌木能源林培育技术体系,生物量提高35%,还可形成能-饲联产产业体系;建立了我国主要燃油树种高含油率、高皂苷含量优良种质资源筛选技术,可实现多目标利用最优种质精确选择,并形成了系列新品种;形成了无患子、文冠果等主要燃油树种种质资源经济性状与立地适配、冠形及花果精准调控等原料林高效标准化培育技术,果实原料产量比现有措施分别提高47.4%和51.0%提出了国际接轨的能源原料林培育经济、环境、能耗可持续评价指标体系和评价技术。以上技术为保障林业生物质能源产业原料稳定供应奠定了坚实基础。

文冠果高产单株

刺槐高密度超短轮伐原料林

杨树高密度超短轮伐原料林

柠条饲能兼用原料林

(2)“林油一体化”产业可持续发展模式

为解决我国林业生物质能源产业原料供应不足、原料林培育技术体系不完善、产品单一、企业投资回报期长等问题,北京林业大学团队牵头,联合我国林业生物质能源龙头企业开展了“林油一体化”产业可持续发展模式及相关因素研究。以无患子、小桐子、光皮树等油料能源树种为研究对象,创新提出了“优良无性系种植园原料林培育模式+多联产产业链可持续发展模式”。研究表明:无患子无性系种植园的果实产量是实生林的2.3倍,经济效益是实生林的3.3倍,林油-皂-碳多联产产业链扭转了仅生产生物柴油的亏损局面1吨无患子干果的净收益可达3.5万元;1吨无患子生物柴油的碳足迹为-11.5t CO2eq,相比石化柴油,温室气体减排量达15.2 t CO2eq/t。除此之外,研究还形成了我国自主创新的“林油一体化”生产工艺及多联产路线图提出了符合我国国情的优先享受营造林普惠财政补贴政策、国家种业和良种优惠政策、财税优惠政策等7条产业可持续发展扶持政策建议。该模式为我国乃至世界林业生物质能源“林油一体化”产业发展提供了一条优化路径,对推进我国林业生物质能源产业高质量发展具有重要现实意义。

林业生物质能源生物产业发展展望

十多年来,北林林业生物质能源研发团队已基本摸清了适合各主要气候区的各类型最优能源原料发展树种,并围绕这些树种构建了原料高产稳产培育技术体系,在各能源林树种主要发展区域建立了优良种质资源收集与种植试验基地,作为技术支撑单位有效带动了一大批坚定开展林业生物质能源相关领域研发与推广应用的企业。同时,在国家林业和草原局的带领下,建立了“无患子产业国家创新联盟”“国家林草刺槐工程技术研究中心”等。这些平台的建立打通了 科技 成果转化通道,形成了林业生物质能源产业的良性合作和推广转化机制,在我国林业生物质能源原料树种良种选育和原料林培育、应用开发、绿色精深加工等方面实现了“政产学研用”的有机结合,为逐步形成有效的林业生物质能源市场化开发机制奠定了重要基础。

两个《规划》的发布为我国林业生物质能源的发展提出了纲领,也为“能源中心”的 科技 创新指明了方向。“十四五”期间,“能源中心”制定了8大专项计划共27条具体措施,将重点在油料能源林、固体燃料能源林及纤维素能源林等方面开展理论和技术突破,并开创淀粉能源林、新型林草生物质能源等新领域,在行业标准化建设方面继续发挥积极作用,扩大在生物质能源领域的国内外影响力,助力我国生物经济与林草生物质能源事业高质量可持续发展,最终为服务国家“双碳”战略和维护我国能源安全发挥重要作用。(作者单位系北京林业大学国家能源非粮生物质原料研发中心)

最新回答
谨慎的彩虹
欢喜的彩虹
2025-05-18 23:34:24

1.分布广泛,种类繁多,生长快速,富含油脂。

2.作比较,列数字。作比较使微藻的优点更突出,列数字使说明更准确,增强了文章的科学性。

3.①提供适合在我国不同地方、不同气候条件下生长的藻株;

   ②深入研究微藻产品的机理,提高产油的效率,降低成本;

   ③综合利用研究,建立一套中试系统。

4.①微藻的生长周期短,油脂产率高,不会与农作物争地、争水。

   ②培养微藻可以固定大量二氧化碳,减少二氧化碳排放。降低水体的富营养化,还可以净化废水和污水。

(意对即可)

飘逸的火龙果
糊涂的豌豆
2025-05-18 23:34:24
全文 1940 字,阅读大约需要 5 分钟 未经许可严禁以任何形式转载 南方能源观察 欢迎投稿,投稿邮箱: eomagazine@126.com 编辑 黄燕华 审核 冯洁 6月1日下午,国家发改委等九部委联合发布了《“十四五”可再生能源发展规划》(以下简称《规划》,明确了“十四五”可再生能源发展的主要目标,同时更加注重可再生能源的大规模开发、高水平消纳以及市场化发展。 大规模开发 中国已经承诺二氧化碳排放力争于2030年前达到峰值、努力争取2060年前实现碳中和,明确2030年风电和太阳能发电总装机容量达到12亿千瓦以上。截至2020年底,全国风电和光伏发电装机达到5.3...全文

悲凉的大侠
紧张的导师
2025-05-18 23:34:24

从销售额的角度看,2012年精细化工产品占到行业总体销售额的70%以上,能源产品不足30%,造成两种产品比例悬殊的主要原因在于生物柴油原材料价格高涨且销售渠道不畅,生产企业很难从能源产品上获得利润,而精细化工产品因为其附加值较高、环保等特点明显以及销售渠道成熟等原因,获得生产企业和市场的青睐,逐渐成为生物柴油行业的主要细分产品。

与同属清洁车用替代燃料的生物燃料乙醇相比,我国生物柴油生产相对发展缓慢。从我国成品油需求来看,柴油相对汽油更加短缺,在我国发展生物柴油不仅有助于降低车辆尾气污染物排放,也具有缓解柴油资源短缺的现实意义。考虑到废弃油脂是生物柴油的主要原料之一,其产业化发展还能解决废弃油脂再次进入食品领域从而危害大众健康的问题。但目前,我国生物柴油产业化受到生产成本较高、政策扶持不足、相关管理不规范等因素的制约。针对这些问题展开分析讨论,有助于明确产业定位、理清发展思路,从而为决策者提供参考。

我国生物柴油生产与示范我国2010年生物柴油产能约300万t/a,产量约20万t,主要原料为餐饮废油、榨油废渣等,产品主要用于农用动力机械及公路、水路和铁路运输动力机械方面。与发达国家相比,我国生物柴油产业起步较晚,发展进程也比较缓慢。自“十五”开始,政府加大对生物柴油研发的投入,但由于后期相关产业政策扶持力度不大,尽管在建和规划的产能已有一定规模,但产能利用率不高。目前,我国生物柴油生产主体为民营企业,国企和外企也有涉足。2008年7月,国家发改委正式批准了中国石油、中国石化、中国海油三大公司以麻风树为原料的示范装置建设。其中,中国海油在海南的6万t/a装置于2010年底建成投产,是目前已建成的我国最大的生物柴油示范项目。

国内相关政策“十五”期间,生物柴油相关研究课题进入国家科技攻关计划。2006年《可再生能源法》的生效在一定程度上促进了生物柴油的发展。2007年9月国家发改委发布的《可再生能源中长期发展规划》提出要“重点发展以小桐子、黄连木、油桐、棉籽等油料作物为原料的生物柴油生产技术,逐步建立餐饮等行业的废油回收体系”,并提出生物柴油发展目标为:生物柴油年利用量到2010年达到20万t,2020年达到200万t。

国家发改委和财政部等部门对国家批准的工业示范装置已制订一系列政策,包括工业装置建设的贷款,增值税、所得税减免,建成运转后达到合同指标的奖励等。但从总体上看,相关政策对产业化发展的推动作用尚不显著,政策连续性不强,甚至出现反复。例如,2006年国家税务总局发文规定:“以动植物油为原料,经提纯、精炼、合成等工艺生产的生物柴油,不属于消费税征税范围”,但在2008年《国务院关于实施成品油价格和税费改革的通知》又将生物柴油纳入消费税征收范围。直至2011年6月,国家财政部与税务总局再次发布通知对以利用废弃的动植物油生产纯生物柴油免征消费税。

总部设在德国汉堡的行业期刊《油世界》发布的最新报告显示,全球生物柴油产量在经过数年的持续增加之后,目前已经开始下滑。

中国政府为解决能源节约、替代和绿色环保问题制定了一些政策和措施,早有一些学者和专家己致力于生物柴油的研究、倡导工作。中国生物柴油的研究与开发虽起步较晚,但发展速度很快,一部分科研成果已达到国际先进水平。研究内容涉及到油脂植物的分布、选择、培育、遗传改良及其加工工艺和设备。目前各方面的研究都取得了阶段性成果,这无疑将有助于中国生物柴油的进一步研究与开发。可以预计,在2-3年内,中国在该领域的研究将会有突破性进展并达到实用水平。

著名学者闵恩泽院士在《绿色化学与化工》一书中首先明确提出发展清洁燃料生物柴油的课题:原机械工业部和原中国石化总公司在上世纪80年代就拨出专款立项,由上海内燃机研究所和贵外I山地农机所承担课题,联合研究长达10 年之久,并邀请中国石化科学院的专家詹永厚做了大量基础试验探索;中国农业工程研究设计院的施德路先生也曾于1985 年进行了生物柴油的试验工作;辽宁省能源研究所承担的中国——欧共体合作研究项目也涉及到生物柴油;中国科技大学、河南科学陆军化学所等单位也都对生物柴油作了不同程度的研究。

系统研究始于中国科学院的“八五”重点科研项目:“燃料油植物的研究与应用技术”,完成了金沙江流域燃料油植物资源的调查及栽培技术研究,建立了30公顷的小桐子栽培示范片。自20世纪90年代初开始,长沙市新技术研究所与湖南省林业科学院对能源植物和生物柴油进行了长达10年的合作研究,“八五”期间完成了光皮树油制取甲脂燃料油的工艺及其燃烧特性的研究;“九五”期间完成了国家重点科研攻关项目“植物油能源利用技术”。

1999-2002年,湖南省林业科学院承担并主持了国家林业局引进国外先进林业技术(948项目)—— 《能源树种绿王树及其利用技术的引进》,从南非、美国和巴西引进了能源树种绿玉树(Euphorbiatim-cal li)优良无性系;研制完成了绿玉树乳汁榨取设备;进行了绿玉树乳汁成份和燃料特性的研究:绿玉树乳汁催化裂解研究有阶段性成果。

但是与国外相比,中国在发展生物柴油方面还有相当大的差距,长期徘徊在初级研究阶段,未能形成生物柴油的产业化:政府尚未针对生物柴油提出一套扶植、优惠和鼓励的政策办法,更没有制定生物柴油统一的标准和实施产业化发展战略。因此,中国进入了WTO之后,在如何面对经济高速发展和环境保护和双重压力这种背景下,加快高效清洁的生物柴油产业化进程就显得更为迫切了。 发展生物柴油,中国有十分丰富的原料资源。中国幅员辽阔,地域跨度大,水热资源分布各异,能源植物资源种类丰富多样,主要的科有大戟科、樟科、桃金娘科、夹竹桃科、菊科、豆科、山茱萸科、大风子科和萝摩科等。目前中国生物柴油的开发利用还处于发展初期,要从总体上降低生物柴油成本,使其在中国能源结构转变中发挥更大的作用,只有向基地化和规模化方向发展,实行集约经营,形成产业化,才能走符合中国国情的生物柴油发展之路。随着改革开放的不断深入,在全球经济一体化的进程中,在中国加入WTO的大好形势下,中国的经济水平将进一步提高,对能源的需求会有增无减,只要把关于生物柴油的研究成果转化为生产力,形成产业化,则其在柴油引擎、柴油发电厂、空调设备和农村燃料等方面的应用是非常广阔的。

中国是一个石油净进口国,石油储量又很有限,大量进口石油对中国的能源安全造成威胁。因此,提高油品质量对中国来说就更有现实意义。而生物柴油具有可再生、清洁和安全三大优势。专家认为,生物柴油对中国农业结构调整、能源安全和生态环境综合治理有十分重大的战略意义。目前,汽车柴油化已成为汽车工业的一个发展方向,据专家预测,到201 0年,世界柴油需求量将从38%增加到45%,而柴油的供应量严重不足,这都为油菜制造生物柴油提供了广阔的发展空间。发展生物柴油产业还可促进中国农村和经济社会发展。如发展油料植物生产生物柴油,可以走出一条农林产品向工业品转化的富农强农之路,有利于调整农业结构,增加农民收入。

柴油的供需平衡问题也将是中国未来较长时间石油市场发展的焦点问题。业内人士指出,到2005年,随着中国原由加工量的上升,汽油和煤油拥有一定数量的出口余地,而柴油的供应缺口仍然较大。预计到2010年柴油的需求量将突破1亿吨,与2005年相比,将增长24%;至2015年市场需求量将会达到1.3亿吨左右。近几年来,尽管炼化企业通过持续的技术改造,生产柴汽比不断提高,但仍不能满足消费柴汽比的要求。目前,生产柴汽比约为1.8,而市场的消费柴汽比均在2.0以上,云南、广西、贵州等省区的消费柴汽比甚至在2.5以上。随着西部开发进程的加快,随着国民经济重大基础项目的相继启动,柴汽比的矛盾比以往更为突出。因此,开发生物柴油不仅与目前石化行业调整油品结构、提高柴汽比的方向相契合,而且意义深远。

目前中国生物柴油技术已取得重大成果:海南正和生物能源公司、四川古杉油脂化工公司和福建卓越新能源发展公司都已开发出拥有自主知识产权的技术,相继建成了规模超过万吨的生产厂,这标志着生物柴油这一高新技术产业已在中国大地上诞生。

中国工程院有关负责人介绍,中国“十五”计划发展纲要提出发展各种石油替代品,将发展生物液体燃料确定为国家产业发展方向。生物柴油产业得到了国务院领导和国家计委、国家经贸委、科技部等政府部门的支持,并已列入有关国家计划。

▲《财税[2010]118号》经国务院批准,对利用废弃的动物油和植物油为原料生产的纯生物柴油免征消费税。现将有关政策通知如下:从2009年1月1日起,对同时符合下列条件的纯生物柴油免征消费税:(一)生产原料中废弃的动物油和植物油用量所占比重不低于70%。(二)生产的纯生物柴油符合国家《柴油机燃料调合生物柴油(BD100)》标准。从2009年1月1日至本通知下发前,生物柴油生产企业已经缴纳的消费税,符合本通知第一条免税规定的予以退还。 我国在生物柴油的标准制定方面取得了一定的进展。2007年首个柴油机燃料调和用生物柴油的国家标准B100开始正式实施。2010年国家质检总局、国家标准委公布了《生物柴油调和燃料(B5)》标准。该标准于2011年2月1日开始实施。

由上述发展趋势可看出,出于成品油来源多样化、杜绝“地沟油”进入餐饮行业等多方面因素的考虑,政府对生物柴油领域的重视度在日趋增加。

我国生物柴油技术路线评价生物柴油的原料来源十分广泛,包括菜籽、大豆、工业和餐饮废油脂等,而一些木本油料作物例如麻风树、黄连木、文冠果和光皮树等也表现出较大的应用开发潜力。这些技术路线在经济、环境和能效方面表现不一,因此如何根据区域特点发展合适的技术,成为生物柴油相关研究中的一个热点。经济性评价生产成本比较高是我国生物柴油产业化的最大障碍。

《油世界》称,欧盟地区今年的生物柴油产量料自上年的913万吨下滑至900万吨,从而终结很长一段时间的增长趋势。

报告还称,美国今年的生物柴油产量料自上年的329万吨增加至348万吨,但今年7月至12月期间的生物柴油产出料减少36万吨,但美国明年的生物燃料产出前景依然光明。

“鉴于美国2012/13年度豆油供应紧俏,令该国的生物柴油产出达到规定的水平还是具有一定困难的。”

报告指出,预计今年,阿根廷的生物柴油产出料自上年的243万吨小幅增加至245万吨,而2011年,该国的生物柴油产出增加了60万吨。

报告称,“阿根廷的生物柴油产商目前正面临出口销售大幅下滑和国内消费大幅缩减的困扰。”

低迷的大豆产出导致豆油价格走高,这也令巴西今年的生物柴油产量料自上年的235万吨下滑至229万吨。

但巴西上调了明年生物柴油混合比率方面的要求,这会令该国明年的生物柴油产出前景光明。

称心的大米
漂亮的小笼包
2025-05-18 23:34:24
生物柴油(Biodiesel)是指以油料作物、野生油料植物和工程微藻等水生植物油脂以及动物油脂、餐饮垃圾油等为原料油通过酯交换工艺制成的可代替石化柴油的再生性柴油燃料。生物柴油是生物质能的一种,它是生物质利用热裂解等技术得到的一种长链脂肪酸的单烷基酯。生物柴油是含氧量极高的复杂有机成分的混合物,这些混合物主要是一些分子量大的有机物,几乎包括所有种类的含氧有机物,如:醚、酯、醛、酮、酚、有机酸、醇等。生物柴油是一种优质清洁柴油,可从各种生物质提炼,因此可以说是取之不尽,用之不竭的能源,在资源日益枯竭的今天,有望取代石油成为替代燃料。

[编辑本段]特点:

1)含水率较高,最大可达30%-45%。水分有利于降低油的黏度、提高稳定性,但降低了油的热值;

2)pH值低,故贮存装置最好是抗酸腐蚀的材料;

3)密度比水大,与水的比值约为1.2;

4)具有“老化”倾向,加热不宜超过80℃,宜避光、避免与空气接触保存;

5)润滑性能好。

6)优良的环保特性:硫含量低,二氧化硫和硫化物的排放低、生物柴油的生物降解性高达98%,降解速率是普通柴油的2倍,可大大减轻意外泄漏时对环境的污染;

7)较好的低温发动机启动性能;

8)较好的安全性能:闪点高,运输、储存、使用方面安全;

[编辑本段]生物柴油行业现状

生物柴油是清洁的可再生能源,它以大豆和油菜籽等油料作物、油棕和黄连木等油料林木果实、工程微藻等油料水生植物以及动物油脂、废餐饮油等为原料制成的液体燃料,是优质的石油柴油代用品。生物柴油是典型“绿色能源”,大力发展生物柴油对经济可持续发展,推进能源替代,减轻环境压力,控制城市大气污染具有重要的战略意义。

综观国际上的发达国家如美国、德国、日本,到次发达的南非、巴西、韩国,到发展中的印度、泰国等,均在发展石油替代产业的国际政策制度、技术完善、装置建设和车辆制造等方面提供了良好的借鉴,为我国走中国特色石油替代之路铺平了道路。特别是巴西经验,更具实际意义。

生物柴油在中国是一个新兴的行业,表现出新兴行业在产业化初期所共有的许多市场特征。许多企业被绿色能源和支农产业双重“概念”凸现的商机所吸引,纷纷进入该行业,有人以“雨后春笋”形容生物柴油目前的状态。截止2007年,中国有大小生物柴油生产厂2000多家,而且,各地相同项目的立项、审批还在继续。还有更大的威胁来自于国外。一些外国公司资金实力雄厚,生产技术成熟,产业化程度高,可以借规模经济效应获取成本优势,抢占原料基地和市场份额的综合能力更强

从未来的发展看,生物柴油的购买商主要有石油的炼油厂、发电厂、轮船航运公司以及流通领域的中间商。生物柴油的需求量在不断增加,预计到2010年,中国生物柴油的需求量将达到2000万吨/年,按国家再生能源中长期规划,那时的产能是20万吨/年。需求与产量的反差,将会是形成产品供不应求的局面。当人们更多地了解生物柴油优良的性能,接受的程度会更大,市场需求也会不断提高。强大的市场需求与有限的生产能力,使购买者的议价能力降低。同时,也对生物柴油生产企业提出了更高的要求,应加大对技术创新的投入,不断提高油品的质量,以保持生物柴油良好的品质形象。

随着改革开放的不断深入,在全球经济一体化的进程中,中国的经济水平将进一步提高,对能源的需求会有增无减,只要把关于生物柴油的研究成果转化为生产力,形成产业化,则其在柴油引擎、柴油发电厂、空调设备和农村燃料等方面的应用前景是非常广阔的。

[编辑本段]生产方法

利用油脂原料合成生物柴油的方法;用动物油制取的生物柴油及制取方法;生物柴油和生物燃料油的添加剂;废动植物油脂生产的轻柴油乳化剂及其应用;低成本无污染的生物质液化工艺及装置;低能耗生物质热裂解的工艺及装置;利用微藻快速热解制备生物柴油的方法;用废塑料、废油、废植物油脚提取汽、柴油用的解聚釜,生物质气化制备燃料气的方法及气化反应装置;以植物油脚中提取石油制品的工艺方法;用等离子体热解气化生物质制取合成气的方法,用淀粉酶解培养异养藻制备生物柴油的方法;用生物质生产液体燃料的方法;用植物油下脚料生产燃油的工艺方法,由生物质水解残渣制备生物油的方法,植物油脚提取汽油柴油的生产方法;废油再生燃料油的装置和方法;脱除催化裂化柴油中胶质的方法;废橡胶(废塑料、废机油)提炼燃料油的环保型新工艺,脱除柴油中氧化总不溶物及胶质的化学精制方法;阻止柴油、汽油变色和胶凝的助剂;废润滑油的絮凝分离处理方法。

简单工艺流程:

生物柴油是由从植物油或动物脂的脂肪酸烷基单酯组成的一种可替代柴油燃料。目前,大多数生物柴油是由大豆油、甲醇和一种碱性催化剂生产而成的。然而还有大多数的不易被人体消化的廉价油脂能够转化为生物柴油。

工艺流程简介:

(1)物理精炼:首先将油脂水化或磷酸处理,除去其中的磷脂,胶质等物质)。再将油脂预热、脱水、脱气进入脱酸塔,维持残压,通入过量蒸汽,在蒸汽温度下,游离酸与蒸汽共同蒸出,经冷凝析出,除去游离脂肪酸以外的净损失,油脂中的游离酸可降到极低量,色素也能被分解,使颜色变浅。各种废动植物油在自主研发的DYD催化剂作用下,采用酯化、醇解同时反应工艺生成粗脂肪酸甲酯。 (2)甲醇预酯化:首先将油脂水化脱胶,用离心机除去磷脂和胶等水化时形成的絮状物,然后将油脂脱水。原料油脂加入过量甲醇,在酸性催化剂存在下,进行预酯化,使游离酸转变成甲酯。蒸出甲醇水,经分馏后,无游离酸的分出C12-16棕榈酸甲酯和C18油酸甲酯。

(3)酯交换反应:经预处理的油脂与甲醇一起,加入少量NaOH做催化剂,在一定温度与常压下进行酯交换反应,即能生成甲酯,采用二步反应,通过一个特殊设计的分离器连续地除去初反应中生成的甘油,使酯交换反应继续进行。

(4)重力沉淀、水洗与分层。

(5)甘油的分离与粗制甲酯的获得。

(6)水份的脱出、甲醇的释出、催化剂的脱出与精制生物柴油的获得。

整个工艺流程实现闭路循环,原料全部综合利用,实现清洁生产。大致描述如下:原料预处理(脱水、脱臭、净化)------反应釜(加醇+催化剂+70℃)------搅拌反应1小时-------沉淀分离排杂-------回收醇------过滤--------成品

[编辑本段]应用

生物柴油可用作锅炉、涡轮机、柴油机等的燃料,工业上应用的主要是脂肪酸甲酯。

生物柴油是一种优质清洁柴油,可从各种生物质提炼,因此可以说是取之不尽,用之不竭的能源,在资源日益枯竭的今天,有望取代石油成为替代燃料。

柴油是许多大型车辆如卡车及内燃机车及发电机等的主要动力燃料,其具有动力大,价格便宜的优点,我国柴油需求量很大,柴油应用的主要问题“冒黑烟”, 我们经常在马路上看到冒黑烟的卡车。冒黑烟的主要原因是燃烧不完全,对空气污染严重,如产生大量的颗粒粉尘,CO2排放量高等。据美国燃料学会报道,发动机燃料燃烧产生的空气污染已成为空气污染的主要问题,如氮氧化物为其他工业部门排放的一半,一氧化碳为其他工业排放量的三分之二,有毒碳氢化合物为其他工业排放的一半。尾气中排出的氮氧化物和硫化物和空气中的水可以结合形成酸雨, 尾气中的二氧化碳和一氧化碳太多会使大气温度升高, 也就是人们常说的“温室效应”。为解决燃油的尾气污染问题及日益恶化的环境压力,人们开始研究采用其他燃料如燃料酒精代替汽油,目前燃料酒精在北美洲如美国及加拿大等和南美国家如巴西、阿根廷等已占有相当比例,装备有燃料酒精发动机的汽车已投放市场。对大多数需要柴油为燃料的大动力车辆如公共汽车、内燃机车及农用汽车如拖拉机等主要以柴油为燃料的发动机而言,燃料酒精并不适合。而且柴油造成的尾气污染比汽油大的多, 因此人们开发了柴油的代用品--生物柴油。

其实发动机的发明家狄色尔早在1912年美国密苏里工程大会报告中说,“用菜籽油作发动机燃料在今天看起来并没有太大意义,但将来会成为和石油及煤一样重要的燃料”。1983年美国科学家首先将菜籽油甲酯用于发动机,燃烧了1000个小时。并将以可再生的脂肪酸单酯定义为生物柴油.。1984年美国和德国等国的科学家研究了采用脂肪酸甲酯或乙酯代替柴油作燃料,即采用来自动物或植物脂肪酸单酯包括脂肪酸甲酯,脂肪酸乙酯及脂肪酸丙酯等代替柴油燃烧。生物柴油和传统的石油柴油相比,具有以下优点:

以可再生的动物及植物脂肪酸单酯为原料,可减少对石化燃料石油的需求量和进口量;环境友好,采用生物柴油尾气中有毒有机物排放量仅为十分之一,颗粒物为普通柴油的20%,一氧化碳和二氧化碳排放量仅为石油柴油的10%,无硫化物和铅及有毒物的排放混合生物柴油可将排放含硫物浓度从500PPM(PPM百万分之一)降低到5PPM。

不用更换发动机,而且对发动机有保护作用。

[编辑本段]世界各国对生物柴油的应用

目前,世界各国,尤其是发达国家,都在致力于开发高效、无污染的生物质能利用技术。欧洲已成为全球生化柴油的主要生产地。美国、意大利、法国已相继建成生物柴油生产装置数十座。

美国是最早研究生物柴油的国家。总生产能力1300,000吨。对生物柴油的税率为0%。美国在黄石公园进行的60万公里的行车实验,没有任何结焦现象,空气污染物排放降低了80%以上。而且使用生物柴油还吸引了附近300公里外的棕熊来到公园。美国B20是采用20%生物柴油的柴油,尾气污染物排放可降低50%以上。1992年美国能源署及环保署都提出生物柴油作为清洁燃料,美国总统克林顿1999年专门签署了开发生物质能的法令,其中生物柴油被列为重点发展的清洁能源之一,国家对生物柴油不收税。日本1995年开始研究用饭店剩余的煎炸油生产生物柴油,在1999年建立了259 升/ 天用煎炸油为原料生产生物柴油的工业化实验装置,可降低原料成本。目前日本生物柴油年产量可达400,000吨。

德国目前已拥有8个生物柴油的工厂,德国拥有300多个生物柴油加油站,并且制定了生物柴油的标准,对生物柴油不收税,2006年生物柴油产量达100万吨。

法国、意大利等欧洲国家都建立生物柴油的企业。法国雪铁龙集团进行了生物柴油的试验,通过10万公里的燃烧试验,证明生物柴油是可以用于普通柴油发动机的。其使用的标准是在普通石油柴油中添加5%的生物柴油。

可以预见生物柴油作为一种重要的清洁燃料将在大型汽车行驶中发挥重要作用。

[编辑本段]■我国生物柴油发展状况及产业化前景分析

我国生物柴油的发展状况:

我国政府为解决能源节约、替代和绿色环保问题制定了一些政策和措施,早有一些学者和专家己致力于生物柴油的研究、倡导工作。我国生物柴油的研究与开发虽起步较晚,但发展速度很快,一部分科研成果已达到国际先进水平。研究内容涉及到油脂植物的分布、选择、培育、遗传改良及其加工工艺和设备。目前各方面的研究都取得了阶段性成果,这无疑将有助于我国生物柴油的进一步研究与开发。可以预计,在2-3年内,我国在该领域的研究将会有突破性进展并达到实用水平。

著名学者闵恩泽院士在《绿色化学与化工》一书中首先明确提出发展清洁燃料生物柴油的课题:原机械工业部和原中国石化总公司在上世纪80年代就拨出专款立项,由上海内燃机研究所和贵外I山地农机所承担课题,联合研究长达10 年之久,并邀请中国石化科学院的专家詹永厚做了大量基础试验探索;中国农业工程研究设计院的施德路先生也曾于1985 年进行了生物柴油的试验工作;辽宁省能源研究所承担的中国——欧共体合作研究项目也涉及到生物柴油;中国科技大学、河南科学陆军化学所等单位也都对生物柴油作了不同程度的研究。

系统研究始于中国科学院的“八五”重点科研项目:“燃料油植物的研究与应用技术”,完成了金沙江流域燃料油植物资源的调查及栽培技术研究,建立了30公顷的小桐子栽培示范片。自20世纪90年代初开始,长沙市新技术研究所与湖南省林业科学院对能源植物和生物柴油进行了长达10年的合作研究,“八五”期间完成了光皮树油制取甲脂燃料油的工艺及其燃烧特性的研究;“九五”期间完成了国家重点科研攻关项目“植物油能源利用技术”。

1999-2002年,湖南省林业科学院承担并主持了国家林业局引进国外先进林业技术(948项目)—— 《能源树种绿王树及其利用技术的引进》,从南非、美国和巴西引进了能源树种绿玉树(Euphorbiatim-cal li)优良无性系;研制完成了绿玉树乳汁榨取设备;进行了绿玉树乳汁成份和燃料特性的研究:绿玉树乳汁催化裂解研究有阶段性成果。 http://www.chinajnjpw.com

但是,与国外相比,我国在发展生物柴油方面还有相当大的差距,长期徘徊在初级研究阶段,未能形成生物柴油的产业化:政府尚未针对生物柴油提出一套扶植、优惠和鼓励的政策办法,更没有制定生物柴油统一的标准和实施产业化发展战略。因此,我国进入了WTO之后,在如何面对经济高速发展和环境保护和双重压力这种背景下,加快高效清洁的生物柴油产业化进程就显得更为迫切了。

我国生物柴油的产业化前景:

2003年,受国民经济持续快速增长的拉动,中国石油市场需求增势强劲,石油产品需求总量增长幅度达到两位数,为11.4%,比上年提高了7.4个百分点,这促进了石油进口量的大幅攀升,使我国成为石油消费和进口大国。石油市场资源供应出现紧缺,价格全面上涨。据中国物流信息中心统计,2003年我国石油及制品累计平均价格比上年提高11.8%。初步分析2004年中国石油市场供需形势与2003年情况基本相似,将继续保持消费需求旺盛,供需基本平衡的格局,但不排除受季节、运输等因素影响而出现局部性和结构性的供应紧张。预计2004年中国原油消费量为2.7 亿吨,净进口量有可能超过1亿吨。

我国是一个石油净进口国,石油储量又很有限,大量进口石油对我国的能源安全造成威胁。因此,提高油品质量对中国来说就更有现实意义。而生物柴油具有可再生、清洁和安全三大优势。专家认为,生物柴油对我国农业结构调整、能源安全和生态环境综合治理有十分重大的战略意义。目前,汽车柴油化已成为汽车工业的一个发展方向,据专家预测,到201 0年,世界柴油需求量将从38%增加到45%,而柴油的供应量严重不足,这都为油菜制造生物柴油提供了广阔的发展空间。发展生物柴油产业还可促进中国农村和经济社会发展。如发展油料植物生产生物柴油,可以走出一条农林产品向工业品转化的富农强农之路,有利于调整农业结构,增加农民收入。

柴油的供需平衡问题也将是我国未来较长时间石油市场发展的焦点问题。业内人士指出,到2005年,随着我国原由加工量的上升,汽油和煤油拥有一定数量的出口余地,而柴油的供应缺口仍然较大。预计到2010年柴油的需求量将突破1亿吨,与2005年相比,将增长24%;至2015年市场需求量将会达到1.3亿吨左右。近几年来,尽管炼化企业通过持续的技术改造,生产柴汽比不断提高,但仍不能满足消费柴汽比的要求。目前,生产柴汽比约为1.8,而市场的消费柴汽比均在2.0以上,云南、广西、贵州1等省区的消费柴汽比甚至在2.5以上。随着西部开发进程的加快,随着国民经济重大基础项目的相继启动,柴汽比的矛盾比以往更为突出。因此,开发生物柴油不仅与目前石化行业调整油品结构、提高柴汽比的方向相契合,而且意义深远。

目前我国生物柴油技术已取得重大成果:海南正和生物能源公司、四川古杉油脂化工公司和福建卓越新能源发展公司都已开发出拥有自主知识产权的技术,相继建成了规模超过万吨的生产厂,这标志着生物柴油这一高新技术产业已在中国大地上诞生。

中国工程院有关负责人介绍,中国“十五”计划发展纲要提出发展各种石油替代品,将发展生物液体燃料确定为国家产业发展方向。生物柴油产业得到了国务院领导和国家计委、国家经贸委、科技部等政府部门的支持,并已列入有关国家计划。

发展生物柴油,我国有十分丰富的原料资源。我国幅员辽阔,地域跨度大,水热资源分布各异,能源植物资源种类丰富多样,主要的科有大戟科、樟科、桃金娘科、夹竹桃科、菊科、豆科、山茱萸科、大风子科和萝摩科等。目前我国生物柴油的开发利用还处于发展初期,要从总体上降低生物柴油成本,使其在我国能源结构转变中发挥更大的作用,只有向基地化和规模化方向发展,实行集约经营,形成产业化,才能走符合中国国情的生物柴油发展之路。随着改革开放的不断深入,在全球经济一体化的进程中,在中国加入WTO的大好形势下,中国的经济水平将进一步提高,对能源的需求会有增无减,只要把关于生物柴油的研究成果转化为生产力,形成产业化,则其在柴油引擎、柴油发电厂、空调设备和农村燃料等方面的应用是非常广阔的。

[编辑本段]■生物柴油的化学法生产

生物柴油的化学法生产是采用生物油脂与甲醇或乙醇等低碳醇,并使用氢氧化钠 (占油脂重量的1%) 或甲醇钠 (Sodium methoxide) 做为触媒,在酸性或者碱性催化剂和高温(230~250℃)下发生酯交换反应(transesterification),生成相应的脂肪酸甲酯或乙酯,再经洗涤干燥即得生物柴油。甲醇或乙醇在生产过程中可循环使用,生产设备与一般制油设备相同,生产过程中产生10%左右的副产品甘油。

但化学法合成生物柴油有以下缺点:反应温度较高、工艺复杂;反应过程中使用过量的甲醇,后续工艺必须有相应的醇回收装置,处理过程繁复、能耗高;油脂原料中的水和游离脂肪酸会严重影响生物柴油得率及质量;产品纯化复杂,酯化产物难于回收;反应生成的副产物难于去除,而且使用酸碱催化剂产生大量的废水,废碱(酸)液排放容易对环境造成二次污染等。

化学法生产还有一个不容忽视的成本问题:生产过程中使用碱性催化剂要求原料必须是毛油,比如未经提炼的菜籽油和豆油,原料成本就占总成本的75%。因此采用廉价原料及提高转化从而降低成本是生物柴油能否实用化的关键,因此美国己开始通过基因工程方法研究高油含量的植物(见下文“工程微藻”法),日本采用工业废油和废煎炸油,欧洲是在不适合种植粮食的土地上种植富油脂的农作物。

[编辑本段]■生物柴油的生物酶合成法

为解决上述问题,人们开始研究用生物酶法合成生物柴油,即用动物油脂和低碳醇通过脂肪酶进行转酯化反应,制备相应的脂肪酸甲酯及乙酯。酶法合成生物柴油具有条件温和、醇用量小、无污染排放的优点。2001年日本采用固定化Rhizopus oryzae细胞生产生物柴油,转化率在80%左右,微生物细胞可连续使用430小时。

2005年6月4日,《中国环境报》报道:清华大学生物酶法制生物柴油中试成功,采用新工艺在中试装置上生物柴油产率达90%以上。中试产品技术指标符合美国及德国的生物柴油标准,并满足我国0号优等柴油标准。中试产品经发动机台架对比试验表明,与市售石化柴油相比,采用含20%生物柴油的混配柴油作燃料,发动机排放尾气中一氧化碳、碳氢化合物、烟度等主要有毒成分的浓度显著下降,发动机动力特性等基本不变。

由于利用物酶法合成生物柴油具有反应条件温和、醇用量小、无污染物排放等优点,具有环境友好性,因而日益受到人们的重视。但利用生物酶法制备生物柴油目前存在着一些亟待解决的问题:脂肪酶对长链脂肪醇的酯化或转酯化有效,而对短链脂肪醇(如甲醇或乙醇等)转化率低,一般仅为40%-60%;甲醇和乙醇对酶有一定的毒性,容易使酶失活;副产物甘油和水难以回收,不但对产物形成一致,而且甘油也对酶有毒性;短链脂肪醇和甘油的存在都影响酶的反应活性及稳定性,使固化酶的使用寿命大大缩短。这些问题是生物酶法工业化生产生物柴油的主要瓶颈。

[编辑本段]■生物柴油的“工程微藻”法

“工程微藻”生产柴油,为柴油生产开辟了一条新的技术途径。美国国家可更新实验室(NREL)通过现代生物技术建成“工程微藻”,即硅藻类的一种“工程小环藻”。在实验室条件下可使“工程微藻”中脂质含量增加到60%以上,户外生产也可增加到40%以上,而一般自然状态下微藻的脂质含量为5%-20%。“工程微藻”中脂质含量的提高主要由于乙酰辅酶A羧化酶(ACC)基因在微藻细胞中的高效表达,在控制脂质积累水平方面起到了重要作用。目前,正在研究选择合适的分子载体,使ACC基因在细菌、酵母和植物中充分表达,还进一步将修饰的ACC基因引入微藻中以获得更高效表达。利用“工程微藻”生产柴油具有重要经济意义和生态意义,其优越性在于:微藻生产能力高、用海水作为天然培养基可节约农业资源;比陆生植物单产油脂高出几十倍;生产的生物柴油不含硫,燃烧时不排放有毒害气体,排入环境中也可被微生物降解,不污染环境,发展富含油质的微藻或者“工程微藻”是生产生物柴油的一大趋势。

[编辑本段]■现行生物柴油标准

世界上很多国家已经拟定了生物柴油标准,从而保证柴油的质量,保证使用者更加放心的使用生物柴油。

生物柴油的国际标准是ISO 14214A另一个是ASTM国际标准ASTM D 6751,这一标准是美国所采用的标准,该标准由美国环保局1996年在“清洁空气法”的211(b)部分加以了法律确认。另一被广泛认同的是德国的DIN生物柴油系列标准,是迄今为止最为详细系统的生物柴油标准,该标准体系针对不同的制造原料有不同的DIN标准:以油菜籽和纯粹以蔬菜籽为原料的RME(rapeseed methyl ester)、PME(vegetable methyl ester)生物柴油DIN E 51606 标准,以蔬菜油脂和动物脂肪为混合原料FME (fat methyl ester)的生物柴油DIN V 51606标准。欧盟也在2003年11月颁布了EN14241生物柴油燃料标准。此外奥地利、澳大利亚、捷克共和国、法国、意大利、瑞典等国家也拟订了生物柴油燃油规范。

[编辑本段]■德国DIN V 51606生物柴油标准

生物柴油的标准主要对以下成份进行考评:生产制造的整个反映过程,甘油的去除情况,催化剂的去除情况,酒精的去除情况,以及确保不含游离脂肪酸。生物柴油的生产标准评定指针包括比重、动态粘度、闪火点、硫含量、残留量、十六烷值、灰份、水份、总杂质、三酸甘油脂、游离甘油等。生物柴油标准的规范,正在极大的推动生物柴油在这些国家的汽车工业中正式应用和合法化,同时,大量国家对生物柴油的认可也正在推动生物柴油作为一种新型可再生生物能源的国际化。

由于目前生物柴油在商用上主要以生物柴油和石化柴油的混合油的形式供应,因此,对于混合油也有标准推出。例如5%的生物柴油加95%的常规柴油的混合油需要达到2000年颁布的EN590(EN590:2000)的标准,凡是符合这一标准的混合油,都可以安全地应用于所有柴油机发动机,虽然这一混合油不需要添加任何稳定剂,但是国外也有提议称需要在EN 590:2000标准中增加这样一条:混合油中的生物柴油自身必须符合EN 14214的标准。

斯文的哈密瓜
积极的毛巾
2025-05-18 23:34:24
1、生物柴油是指植物油(如菜籽油、大豆油、花生油、玉米油、棉籽油等)、动物油(如鱼油、猪油、牛油、羊油等)、废弃油脂或微生物油脂与甲醇或乙醇经酯转化而形成的脂肪酸甲酯或乙酯。

2、生物柴油是典型的“绿色能源”,具有环保性能好、发动机启动性能好、燃料性能好,原料来源广泛、可再生等特性。大力发展生物柴油对经济可持续发展、推进能源替代、减轻环境压力、控制城市大气污染具有重要的战略意义。

呆萌的铃铛
轻松的小蘑菇
2025-05-18 23:34:24

一、前言

能源技术的迭代创新推动了全球能源产业的转型发展。作为世界上最大的发展中国家、第一人口大国和第二大经济体,我国还是最大的能源生产国和消费国,能源工业的 健康 发展攸关我国资源、环境和 社会 经济可持续发展。当前,我国能源工业发展尽管已取得显著成就,但面临的问题同样突出:①能源消费总量规模巨大,能源生产和消费结构仍以化石能源为主。2018 年,我国煤炭消费总量约为2.74 109 tce,同比增长 1.0%,占能源消费总量的比例高达 59.0% [1] ,但所占比重持续下降。可再生能源和核能发电量保持增长,但规模化水平依然不足。②油气安全供应形势严峻,2017 年我国首次成为全球最大的原油进口国,2018 年石油对外依存度为 72%、天然气对外依存度为 43% [2] 。③化石能源尚未实现优质化利用,尤其是煤炭清洁高效利用水平仍需大幅提升。发电用煤占比远低于发达国家,大规模煤炭开发利用带来的生态环境问题较为突出 [3] 。④能源系统效率整体仍然偏低。我国单位国内生产总值(GDP)能耗是世界平均水平的 1.4 倍,2018 年火电利用小时平均数仅为 4361 h, “三弃”(弃风、弃光、弃水)电量为 1.023 1011 kW·h。⑤温室气体减排与应对气候变化压力巨大,我国CO2 排放量约占世界总量的 30%,CH4 排放量同样位居世界第一。

在保障国家能源安全的同时,保护生态环境并有效应对气候变化将是我国能源发展面临的长期重大问题。随着未来经济 社会 的发展,传统产业升级和基础设施建设对能源资源的需求依然强劲,我国能源消费总量可能持续上涨,新增能源需求集中在与可再生能源、天然气、核能等相关的新兴产业领域。能源领域新兴产业发展与国家战略需求紧密关联,有助于推动能源生产与消费革命、优化能源结构、助力能源安全、实现温室气体减排和生态环境保护,同时提升国家工业装备制造技术水平、培育经济发展新动能、服务经济 社会 可持续发展 [4] 。

今后 10~15 年以及更长时期,既是我国加快培育和发展战略性新兴产业的关键时期,也是发展绿色低碳产业的重要机遇期。促进能源新技术新兴产业发展,已经成为符合我国发展需求和资源特色的必然选择。现有研究 [5,6] 对我国战略性新兴产业总体发展规律、新能源产业或某一细分能源领域的发展动向与路径选择、战略性新兴产业政策规制等课题进行了探讨,在区域产业集群、战略布局、创新特征、发展模式等方向完成了深入分析。然而对于我国能源领域新兴产业未来发展,特别是产业定位、发展路径与具体举措的战略层面研究,相关内容尚属空白。

本文在界定我国能源新技术特点与产业内涵的基础上,梳理全球能源新技术新兴产业竞争格局的变化趋势与发展态势,研究面向 2035 年的我国能源新技术新兴产业发展方向,特别是“十四五”时期的发展目标与重点任务;明确具体的技术创新发展方向,提出工程 科技 攻关项目、重大工程和示范区建设以及相关政策的建议。

二、能源新技术的特点与产业内涵

(一)能源新技术的特点

能源新技术具有共性特征 [4] :①通过技术原理上的创新,解决所在技术领域发展的制约性问题;②具有优良的技术竞争力或技术优势;③ 以相关成熟技术为发展基础,具有较好的技术可行性;④ 具有较大的降低成本潜力,能结合较高的技术学习率,在技术发展规模迅速扩张的同时使成本随之急剧下降,从而具备与传统技术竞争而占据大量市场份额的能力。基于已有研究的定义 [7] ,本文进一步将能源新技术明确为:不仅涉及可再生能源和核能领域,而且涵括非常规油气资源开发、传统化石能源的清洁高效转化与利用、能源的传输以及终端用能等领域,是具有突破性或颠覆性的能源开发利用技术。

(二)能源新技术新兴产业范畴与定位

作为新兴产业,能源新技术产业的定位需准确反映能源发展的客观规律,符合“推进能源生产和消费革命,构建清洁低碳、安全高效的能源体系”的国家重大需求,且充分体现能源产业新趋势、新活力和新业态,有效促进绿色低碳成为经济增长新动能。《国务院关于加快培育和发展战略性新兴产业的决定》将战略性新兴产业划分为 7 个大类,其中涉及能源领域的主要有“新能源产业”和“节能环保产业”,其中“节能环保产业”仅涉及传统工业利用过程的高效节能。《“十三五”国家战略性新兴产业发展规划》将新能源产业、节能环保产业和新能源 汽车 产业统称为“绿色低碳产业”。因而,能源领域新兴产业以往主要由“新能源产业”所指代。

能源本身并不涉及新的能源和旧的能源,只是能源技术存在先进程度的差异 [7~9]。仅用“新能源产业”一词,不能直接反映智能电网、储能、分布式能源和微电网等产业,同时可再生能源产业发展也需要重视技术的先进性问题。“新能源产业”的定位由于聚焦于核能、太阳能、风能和生物质能等产业,容易忽视化石能源新技术的颠覆性作用(如页岩油气规模化开发技术、先进洁净煤技术),而且将化石能源与非化石能源新技术的系统联合与协同发展排除在外。国家能源局等一些政府部门的政策文件将页岩气开发、智能电网纳入战略性新兴产业,但关于能源领域新兴产业的具体范畴仍不清晰。“新能源产业”定位过于狭窄,所统计的范围不能充分体现能源新技术发展所带来的能源转型与产业变革。现有产业划分与定位的局限性在一定程度上阻碍了能源新技术的集成创新以及不同能源产业的协同发展,不利于全面推动能源生产和消费革命。

针对于此,本文提出宜拓展以往“新能源产业”所涵盖的范围与内涵 [7] ,同等重视化石能源的清洁高效利用以及核能与可再生能源的规模化发展,将能源领域新兴产业统称为“能源新技术产业”。与新兴产业发展相关联的能源新技术包括节能与提高能源效率技术,化石能源清洁高效开发与利用新技术,智能电网和储能技术,非常规油气资源、可再生能源规模化开发利用技术,自主创新的核电技术和核废料处理技术,以及氢能和燃料电池、核聚变能、干热岩、天然气水合物等相关前沿技术。

能源新技术新兴产业主要涵盖了煤炭清洁高效转化与利用产业(以先进燃煤发电产业为重点)、非常规油气开发利用产业(以非常规天然气产业为重点,涉及页岩气、煤层气、天然气水合物产业)、能源互联网与综合能源服务产业(以能源互联网、先进输电、储能、综合能源服务产业为重点)、核能产业和可再生能源产业(以风力发电、太阳能光伏和光热发电、生物质能、地热能、氢能源与燃料电池产业为重点)。

三、能源新技术新兴产业发展动态

(一)发展现状

1. 全球能源新技术新兴产业

全球能源形势正在发生深刻变化,非常规油气资源的大规模开发支撑了美国“能源独立”,部分国家核电供应能力不断削减,以风力发电和太阳能发电为代表的可再生能源产业快速发展以及非常规油气资源生产成为全球性趋势,不断改变着全球能源供需格局 [10] 。世界能源发展向绿色、低碳转型,以“能源结构的低碳化转变、能源发展方式向气候和生态适应型转变、从保障能源供应到实现能源服务的智能化转变”为主要特征。各国致力于能源技术创新,推动能源低碳化和绿色可持续化发展。高度活跃的技术创新活动引发了能源开发利用方式的变革:全球能源供应能力随着技术水平提升而得到显著提高;清洁高效的化石能源开发利用技术赋予了化石能源新的竞争力,但减排尤其是减碳压力仍然巨大;可再生能源技术已得到广泛应用且成本不断下降,实现可再生能源的大比例消纳将是未来能源系统面临的挑战 [11] ;值得注意的是,氢能应用已经成为新兴产业,涉及电力、供热和燃料 3 个领域。

2. 我国能源新技术新兴产业

当前,我国能源发展已转向着力提升质量阶段 [11] 。国内能源消费结构不断优化,2018 年煤炭和石油以外的清洁能源占比已达 22.1%。能源供应结构朝着多元化方向发展。作为世界最大的可再生能源生产国,我国可再生能源产业发展迅速,相应新增发电装机已经超过化石能源,2018 年可再生能源发电量在电能结构中的占比达到 26% [2] ,替代作用日益显现。风力发电(占比 5.2%)、太阳能光伏发电(占比 2.5%)规模均达世界第一,弃风限电形势明显好转,光伏弃光电量和弃光率均有所降低。核电规模(占比 4.1%)稳定增长,核能多用途利用前景看好。能源互联网和综合能源服务产业蓬勃发展,能源基础设施建设提速,保障了“一带一路”倡议实施,促进了区域融合发展。

在技术层面,我国能源 科技 水平和创新能力持续提升,部分领域达到国际领先水平 [12] 。化石能源开发和利用效率进一步提高,燃煤发电超低排放技术开始全面推广。非常规天然气开发利用技术不断取得突破。电网与储能工程技术水平持续提升,能源互联网与储能产业处于国际领先水平。核能和可再生能源产业技术创新能力也有所增强。

与此同时,我国能源新技术新兴产业发展存在的问题也较为突出 [13] 。煤炭清洁高效转化和利用整体水平有待提升,先进煤炭利用技术亟需进一步研发突破与示范推广;油气供应安全问题突出,非常规油气仍未实现大规模商业化开发,关键技术和体制机制方面的制约因素仍然存在;核电产业仍需进一步规模化以保障安全高效发展;能源互联网与综合能源服务产业发展仍受制于技术、市场等多方面因素;可再生能源产业发展面临的核心技术不足、并网消纳困难等诸多问题仍有所体现。

(二)发展趋势

1. 全球能源新技术新兴产业

面向 2035 年,全球能源发展的主流仍是化石能源与非化石能源的协同发展 [13] 。在稳定性、经济性和可获得性方面,可再生能源存在明显不足,全球一次能源供应的主体在较长时期内仍将是技术稳定的化石能源。绿色、低碳能源在较长时期内是能源技术创新的主要方向,同时能源与信息、材料的深度融合,有望催生智慧能源网络。能源领域的技术创新将为传统产业的转型升级注入新动力,推动智能制造、智能建筑、智慧交通等新兴领域的快速发展 [11] 。

2. 我国能源新技术新兴产业

未来 10~15 年,我国能源生产和消费结构将继续优化,但鉴于现有规模基础,传统化石能源在保障能源安全方面仍将持续发挥基础性作用。页岩气、煤层气等非常规油气资源有望成为我国油气工业的战略性接替资源。核能产业是我国具有全球竞争力的高新技术领域,核能技术的研发与多用途利用将持续升温。可再生能源产业作为化石能源的清洁替代方案,在增进能源供应能力、满足对可持续性能源的需求、维护环境和气候安全等方面意义重大,将持续处于快速上升期。能源互联网为现代电力工业和综合能源系统的变革指引了发展路径。

四、 面向 2035 年的能源新技术新兴产业发展战略对策

(一)能源新技术新兴产业发展战略思路

基于我国国情现实、能源发展客观规律以及能源技术创新趋势,能源新技术新兴产业的发展需要同等重视化石能源和非化石能源新技术的颠覆性作用,持续优化能源生产和消费结构,着力提升能源利用效率和非化石能源的消费比重。加强能源 科技 基础研究,大力开展前沿性技术创新,特别是交叉学科创新和颠覆性技术创新研究。推动能源与材料、信息的深度融合以及智能电网、智慧能源发展,构建清洁、低碳、高效、智能的现代综合能源体系 [7,11]。

(二)“十四五”时期产业发展目标与任务

根据能源新技术新兴产业所涵盖的9个子产业,在“十三五”时期各产业发展的基础上,进一步分析“十四五”时期各产业应着力实现的具体发展目标和重点任务。

1. 煤炭清洁高效利用产业

发展目标:燃煤发电机组平均供电煤耗低于300 gce/(kW·h),碳排放强度力争下降到 825 g/(kW·h)左右;实现 5~10 MW 煤气化燃料电池系统(IGFC)电站工程示范;建设 600 MW 等级的 700 超超临界工程示范项目;建成百万吨级 CO2 捕集、驱油与封存示范项目。

重点任务:①全面提升燃煤发电机组效率与污染物排放控制水平,开发高效低成本的碳捕集、利用和封存技术;②开发高灵活性燃煤发电技术,研发煤与可再生能源耦合发电技术;③研发数字化、自学习、自适应、互动化特征显著的智能发电技术;④加快实施“煤炭清洁高效利用”重大项目,加大IGCC/IGFC(整体煤气化联合循环发电系统,简称IGCC)研发投入。

2. 非常规天然气开发利用产业

发展目标:页岩气产量达到 3 1010 ~5 1010 m3 ,地面煤层气抽采产量达到 1.3 1010 m3 ;前瞻性布局天然气水合物产业,加强天然气水合物资源勘探,开采试验技术力争取得新突破。

重点任务:①加快川渝页岩气商业开发基地建设,实现页岩气产量快速增长;②加快常压、深层、陆相等新类型页岩气示范区建设,推动页岩气产业向多地区、多领域拓展;③继续推进沁水盆地、鄂尔多斯盆地东缘两个煤层气产业化基地建设;④加快南方二叠系、鄂尔多斯盆地低阶煤等新区和新层系开发试验,形成新的煤层气产业化基地;⑤海陆并举,前瞻性布局天然气水合物产业,加快资源评价和技术研发力度。

3. 能源互联网与综合能源服务产业

发展目标:建成泛在电力物联网,初步形成共建、共治、共赢的能源互联网生态圈,引领能源生产、消费变革,实现涉电业务线上率达到 90%。

重点任务:①研究适应全球能源互联网发展特点的智慧城市新基础设施体系;②输电线路升级改造逐步采用超导输电技术;③全面深度感知源网荷储设备运行、状态和环境信息,重点通过虚拟电厂和多能互补方式提高分布式能源的友好并网水平和电网可调控容量占比;④采用优化调度实现跨区域送受端协调控制,基于电力市场实现集中式省间交易和分布式省内交易,促进清洁能源消纳;⑤开发多类型、大容量、低成本、高效率、长寿命的先进储能系统。

4. 核能产业

发展目标:建成核电装机容量9.4 107 ~1 108 kW;建成压水堆投运容量 7.2 106 ~9.6 106 kW;建成先进堆投运容量 6 106 kW。

重点任务:①自主三代压水堆核电技术实现型谱化开发、批量化建设;②小型多用途核反应堆技术开拓核能应用范围与应用领域;③第四代先进核能技术与压水堆协调发展,打造可持续发展模式;④发展稳态、高效、安全、实用的核聚变技术。

5. 风电产业

发展目标:累计装机容量达到 3.5 108 kW,其中海上风电为 2 107 kW;陆上风电项目全面实现竞价上网,海上风电项目平准化度电成本显著下降。

重点任务:①优化产业空间布局,加快发展陆上分散式风电;②积极有序推进海上风电建设;③加强就地就近利用,落实解决消纳难题;④加强基础共性技术研究,形成产业发展的完整研发制造体系;⑤强化市场竞争机制,积极促进风电产业与金融体系的融合。

6. 太阳能光电产业

发展目标:太阳能光伏发电累计装机容量接近400 GW,太阳能光热发电装机容量累计为 5 GW。

重点任务:①大力发展分布式光伏发电;②完善消纳保障机制,保消纳、保装机;③进一步提高太阳电池及组件效率,降低度电成本;④规模化发展长储热小时数的融盐塔式技术,进一步降低导热油槽式电站的成本电价;⑤发展太阳能跨季节储热采暖技术;⑥积极参与全球市场。

7. 生物质能产业

发展目标:垃圾焚烧发电实现清洁运行并在生物质发电中占据主导地位;生物质成型燃料年利用量为 4 107 t,生物质发电和供热成本逼近燃煤发电和供热成本。

重点任务:①建立生物质资源分布及其物化特性数据库;②研发生物质高效热电联产、热电多产品联产和垃圾清洁焚烧发电联合多产品生产技术;③生物质成型燃料重点研发成型燃料工业化生产关键技术和高效清洁化利用;④生物质交通燃料重点推进纤维乙醇产业化,建立生物柴油成熟的商业运营模式,研发生物质高效转化技术。

8. 地热能产业

发展目标:新增地热能供暖(制冷)面积为1 109 m2 ;新增地热发电装机容量 500 MW;地热能年利用量折合 1 108 tce。

重点任务:①优先开展地热资源潜力勘查与选区评价;②积极推进地热供热(制冷),改善供热结构,满足清洁用能需求;③针对不同热储类型加强技术攻关,突破共性关键技术;④加强地热发电技术攻关,推动地热高效利用;⑤大力发展梯级利用和“地热 +”,增强地热能的市场竞争力。

9. 氢能源与燃料电池产业

发展目标:完善制氢、加氢等配套基础设施,累积建成加氢站 300 座以上,实现氢气供需基本平衡;关键核心零部件批量化技术大幅提高,基本掌握氢能产业链核心技术;实现城市氢能应用场景多元化。

重点任务:①氢能基础设施全局规划、合理布局,规范化建设、规模化推进;②加强燃料电池系统集成;③在大型工业园区开展副产氢 + CO2 捕获和封存技术(CCS)、加氢站及燃料电池货运车示范;④在沿海城市开展可再生能源电解制氢、加氢站及燃料电池公交车、大巴示范应用;⑤特殊交通运输工具用燃料电池示范应用;⑥在边缘城市和工矿企业开展百千瓦级燃料电池分布式电站应用。

(三)面向 2035 年的创新方向与工程 科技 支撑

1. 关键技术方向

综合研判,面向 2035 年的我国能源新技术新兴产业关键技术发展方向见表 1,共有 41 项具体技术。

表 1 我国能源新技术新兴产业关键技术发展方向

(续表)

2. 设立工程 科技 攻关项目

从国家层面支持和推动设立工程 科技 攻关项目(见表 2),对能源领域具有前瞻性、先导性和 探索 性的重大关键技术开展集中攻关,提升技术水平和自主创新能力,进而有效支撑中长期能源新技术及产业的发展。

表 2 能源新技术新兴产业发展相关工程 科技 攻关项目

3. 设立多能互补分布式能源重大工程

国内对单一能源技术及其控制研究已经比较成熟,但缺乏对多种能源技术的集成应用技术,以及以分布式能源为基础的微电网基础理论和工程实践问题研究 [13] 。分布式供能系统是未来能源系统的重要发展方向,具有环保、经济、分散、可靠和灵活等特点,可满足高耗能行业以及工业园区、公共、商业和民用建筑的多能源联供需求,具有巨大的技术提升空间和市场潜力。设立重大工程,以示范为基础,建设多能互补分布式供能系统,这是构建“互联网 +”智慧能源系统的重要任务,有利于提高能源供需协调能力,推动能源清洁生产和可再生能源就近消纳,提高能源系统综合效率。

工程任务:①优化布局建设分布式供能系统基础设施;②开展分布式供能基础理论、核心技术和系统集成研究;③研制高水平独立微网变流器、控制器等关键设备;④通过独立微网系统集成和能效管理关键技术,实现多能协同供应和能源梯级利用;⑤形成适合终端用户和大型能源基地的多能互补分布式供能系统;⑥为城镇、海岛(礁)、极区及边远地区提供整体能源解决方案。

重点任务:①中东部终端多能互补分布式供能系统;②大型能源基地多能互补分布式供能系统。

4. 设立能源新技术集成创新示范区

(1)河北雄安新区能源新技术集成创新示范区

河北雄安新区及其周边地区现有开发程度较低,发展空间充裕,具备高起点、高标准开发建设的基本条件。以河北雄安新区为主建设能源新技术集成创新示范区,助力建设绿色智慧新城,打造生态城市,发展高端高新产业,带动河北南部地区乃至华北腹地的发展,建成与生态文明发展要求相适应的绿色低碳发展模式。

工程任务:①建设河北雄安新区智慧能源综合服务平台;②完成新建核电厂的供热总体规划方案及泳池式低温供热堆;③加快推进风电开发与配套电网建设协调发展;④加速推动区域太阳能全产业链的协调发展;⑤推进高效清洁的垃圾发电项目、建设玉米 / 小麦整株燃料乙醇和沼气生物炼制工程;⑥发展规模化分布式可再生能源并网技术与装备;⑦加大勘查力度,重点开展雄安新区多层水热型热储综合利用 [14] ;⑧布局包括制氢、运氢、加氢储氢、用氢在内的全产业链建设。

(2)华南沿海地区能源新技术集成创新示范区《粤港澳大湾区发展规划纲要》《国家生态文明试验区(海南)实施方案》《关于支持深圳建设中国特色 社会 主义先行示范区的意见》均提出了发展绿色低碳产业的要求。基于良好的区域优势、政策优势和能源产业基础,以粤西南地区(包括海南)为主建设华南沿海地区能源新技术集成创新示范区,为沿海区域低碳经济发展提供参考范例。

工程任务:①建设跨区域“互联网 +”能源综合运营服务平台;②完成现有核电机组建设,同时选址新建核电项目;③积极有序推进陆 / 海上风电开发建设,促进风电就地就近消纳利用;④光伏产业与其他产业互为补充,多种形式发展太阳能光电;⑤推进高效清洁的垃圾发电项目,开发蔗渣 / 稻秆燃料乙醇和多原料沼气生物炼制工程;⑥勘探地热资源及分布特点,建成地热利用示范工程;⑦重点突破规模化分布式可再生能源并网技术与装备 [14] ;⑧构建智慧能源体系,实现不同能源形式相互转化,提高能源的整体利用效率;⑨建设能源(氢能、电能)与交通融合的“绿色海南”,打造零排放智能交通海南岛自贸示范区。

五、对策建议

我国能源新技术新兴产业发展已经具备良好的基础,但作为战略性新兴产业,其发展壮大仍然面临成本、市场、政策等多重因素的制约 [15] 。为促进我国能源新技术新兴产业的高质量发展,亟待加强面向 2035 年的顶层设计与规划。

(1)重新明确能源领域新兴产业范畴与定位,在各级政府出台的战略性新兴产业发展规划中,将“新能源产业”调整为“能源新技术产业”,将节能产业从“节能环保产业”中独立并整合到“能源新技术产业”,精准布局能源新技术及产业的发展方向。

(2)理顺能源产业管理的体制机制,加强能源新技术新兴产业的统计体系建设,保持能源规划目标与政策的一致性、延续性和有效性,避免产业政策“令出多门”以及规划目标调整过于频繁,确保能源新技术产业相关规划的权威性,完善能源市场准入政策 [7] 。

(3)高度重视并准确评估能源领域 科技 攻关项目或重大工程“落地方案”,确保项目实施的可行性和可操作性。强化企业在能源技术创新决策、研发投入、科研组织和成果应用中的主体作用。大幅度提高能源新技术研发投入,强化关键核心技术攻关与项目立项,精准布局重大工程与示范区建设。

鲤鱼火车
重要的鸵鸟
2025-05-18 23:34:24
(1)资源丰富 生物柴油作为一种可再生能源,其资源不会枯竭,将其作为化石燃料的替代品对缓解石油供需矛盾,促进我国家石油安全,保障国家经济安全和长远发展的都具有重大的现实和战略意义。

(2)减少温室效应 生物柴油的生产、加工、消费是碳的一个有机的循环过程。生物柴油的原料植物通过光合作用(吸收CO?)把太阳能转化为能储存的生物能,通过加工制成生物柴油,生物柴油经过消费,其中的碳以CO?的形式回到大气中去,作为下次光合作用的原料。

(3)减少发动机尾气排放 生物柴油不含对环境造染的硫化物和芳香烃,加上含有10%的氧,其燃烧更加完全

整齐的猎豹
懵懂的太阳
2025-05-18 23:34:24
国家税务总局表示生物柴油不征消费税

国家税务总局日前表示,以动植物油为原料,经提炼、精炼、合成等工艺生产的生物柴油,不属于消费税征税范围。

国税总局是在《关于生物柴油征收消费税问题的批复(2006)》中作上述表示的。在此前由财政部、国家发改委等五部委日前联合下发《关于发展生物能源和生物化工财税扶持政策的实施意见》提出,要重点支持直接替代石油的生物能源及生物化工产业,包括生物燃料乙醇、生物柴油等。

2006年1月1日 ,国家颁布《中华人民共和国可再生资源法》,以法律的形式确立了生物柴油的合法地位,鼓励企业和个人投资生产生物柴油,明确规定了石油销售企业将符合国家标准的生物柴油纳入其燃料销售体系。