可再生能源发展史
人类生存和发展的三要素
物质、能量与信息。
因此,能源的发展史直接影响人类的发展史。
我们人类生存与发展中最具有决定性意义的要素是三个:¾¾ 物质、能量和信息。
组成我们的世界是物质;人类生存活动决定于对信息的认知和反应;而维持生命,从事发展的活动又地要通过消耗能量来进行。
一切能量来自能源,人类离不开能源。能源是人类生存、生活与发展的主要基础。能源科学与技术,能源利用的发展在人类社会进步中一直扮演着及其重要的角色。
能源发展的里程碑可以这么说,每一次能源利用的里程碑式发展,都伴随着人类生存与社会进步的巨大飞跃。几千年来,在人类的能源利用史上,大致经历了这样四个里程碑式的发展阶段:原始社会火的使用,先祖们在火的照耀下迎来了文明社会的曙光;18世纪蒸汽机的发明与利用,大大提高了生产力,导致了欧洲的工业革命;19世纪电能的使用,极大地促进了社会经济的发展,改变了人类生活的面貌;20世纪以核能为代表的新能源的利用,使人类进入原子的微观世界,开始利用原子内部的能量。
未来对能源的要求
有足够满足人类生存和发展所需要的储量,并且不会造成影响人类生存的环境污染问题。
未来对能源的需求 未来的人类社会依然要依赖于能源,依赖于能源的可持续发展。因此,我们须现在就很清楚地了解地球上的能源结构和储量,发展必须开发的能源利用技术,才能使人类的生存得于永久维持。
而我们赖于生存的能源是取之不尽用之不完的吗?回答是:不是,也是。事实上,进入21世纪后,人类目前技术可开发的能源资源已将面临严重不足的危机,当今煤、石油和天然气等矿石燃料资源日益枯竭,甚至不能维持几十年。因此,必须寻找可持续的替代能源。而近半世纪的核能和平利用,已使核能已成为新能源家属中迄今为止能替代有限矿石燃料的唯一现实的大规模能源。而且,未来如能实现核能的彻底利用,人类的能源将是无穷的。
除了物质、能量和信息三大因素外,人类对安全的要求也越来越重要了。安全包括社会安全、健康安全和环境安全等。它们同能源的关系也是非常密切的。现在利用的能源已造成了大量的环境污染问题,严重影响了人类的生存。因此,未来对能源的要求将不仅是储量充足,而且还必须是清洁的能源。相对其它化石能源而言,核能的和平利用已充分证明了核能是清洁的能源之一。
u 能源的定义与源头
究竟什么是“能源”呢?《科学技术百科全书》是这样说的:“能源是可从其获得热、光和动力之类能量的资源”;《大英百科全书》说:“能源是一个包括着所有燃料、流水、阳光和风的术语,人类用适当的转换手段便可让它为自己提供所需的能量”。可见,能源是呈多种形式的、可以相互转换的能量的源泉。简而言之,能源是自然界中能为人类提供能量的物质资源。
能源的源头
来自地球以外天体的能源(如太阳能)、地球本身蕴藏的能源(如地热、核能)、地球与其它天体相互作用产生的能源(如潮汐)。
而能源是产生能量的源头。
人们通常按形态与应用方式对能源进行分类。一般分为:固体燃料、液体燃料、气体燃料、水能、电能、太阳能、生物质能、风能、核能、海洋能和地热能。其中,前三类统称化石燃料或化石能源。已被人类认识的这些能源,在一定条件下可以转换为人们所需的各种形式的能量。比如薪柴和煤炭,加热到一定温度,能和氧气化合并放出大量热能,可以直接用来取暖,也可用来产生蒸汽推动汽轮机,再带动发电机,使热能变成机械能,再变成电能。把电送到工厂、机关和住户,又可以转换成机械能、光能或热能。
在我们生活的地球上,能源形形色色。总起来说有三个初始来源。
太阳能
地球
来自地球外部天体的能源(主要是太阳能)人类所需能量的绝大部分都直接或间接地来自太阳。正是各种植物通过光合作用把太阳能转变成化学能在植物体内贮存下来。煤炭、石油、天然气等化石燃料也是由古代埋在地下的动植物经过漫长的地质年代形成的。它们实质上是由古代生物固定下来的太阳能。此外,水能、风能、波浪能、海流能等也都是由太阳能转换来的。
地球本身蕴藏的能量 通常指与地球内部的热能有关的能源和与原子核反应有关的能源。
与地球内部的热能有关的能源,我们称之为地热能。温泉和火山爆发喷出的岩浆就是地热的表现。地球可分为地壳、地幔和地核三层,它是一个大热库。地壳就是地球表面的一层,一般厚度为几公里至70公里不等。地壳下面是地幔,它大部分是熔融状的岩浆,厚度为2900公里。火山爆发一般是这部分岩浆喷出。地球内部为地核,地核中心温度为2000度。可见,地球上的地热资源贮量也很大。
与原子核反应有关的能源正是本书要介绍的核能。原子核的结构发生变化时能释放出大量的能量,称为原子核能,简称核能,俗称原子能。它则来自于地壳中储存的铀、钚等发生裂变反应时的核裂变能资源,以及海洋中贮藏的氘、氚、锂等发生聚变反应时的核聚变能资源。这些物质在发生原子核反应时释放出能量。目前核能最大的用途是发电。此外,还可以用作其它类型的动力源、热源等。
来自星球引力的能量指由于地球与月球、太阳等天体相互作用的形成的能源。地球、月亮、太阳之间有规律的运动,造成相对位置周期性的变化,它们之间的引力随之变化使海水涨落而形成潮汐能。与上述二类能源相比,潮汐能的数量很小。全世界的潮汐能折合成煤约为每年30亿吨,而实际可用的只是浅海区那一部分,每年约可折合为6000 万吨煤。
u 能源结构与储量
地球上有哪些能量资源可供我们使用?它们还能维持多久?我们该怎么办?
能源的种类
一次能源:煤炭、石油、核能等自然界天然能量资源;
二次能源:汽油、电力、蒸汽等人工制造的能量资源,
一次能源和二次能源能源按其生成方式,分为天然能源(一次能源)和人工能源(二次能源)两大类。天然能源是指自然界中以天然形式存在并没有经过加工或转换的能量资源,如煤炭、石油、天然气、核燃料、风能、水能、太阳能、地热能、海洋能、潮汐能等;人工能源则是指由一次能源直接或间接转换成其他种类和形式的能量资源,如煤气、汽油、煤油、柴油、电力、蒸汽、热水、氢气、激光等。
常规能源和新能源其中,已被人类广泛利用并在人类生活和生产中起过重要作用的能源,称为常规能源,通常是指煤炭、石油、天然气、水能等四种。而新近才被人类开发利用、有待于进一步研究发展的能量资源称为新能源,相对于常规能源而言,在不同的历史时期和科技水平情况下,新能源有不同的内容。当今社会,新能源通常指核能、太阳能、风能、地热能、氢气等。
煤的时代
能源结构的变迁历史上,伴随着新的化石资源的发现和大规模开采与应用,世界的能源消费结构经历了数次变革。18世纪的以煤炭替代柴薪,到19世纪中叶煤炭已经逐渐占主导地位。20世纪20年代,随着石油资源的发现与石油工业的发展,世界能源结构发生了第二次转变,即从煤炭转向石油与天然气,到20世纪60年代,石油与天然气已逐渐称为主导能源,动摇了煤炭的主宰地位。但是,20世纪70年代以来两次石油危机的爆发,开始动摇了石油在能源中的支配地位。以此同时,大部分化学能源的储量日益减少,并伴随着许多环境污染问题。
而人类对能源的需求却在与日俱增。例如主要能源形式 地球能源的储量估计
煤炭:~200年
石油、天然气:~50年
核能:无穷多
之一的电力消耗逐年增加。根据统计,人口若每30年增加一倍,电力的需求量每八年就要增加一倍。
于是,20世纪末,能源结构开始经历第三次转变,即从以石油为中心的能源系统开始向以煤、核能和其它再生能源等多元化的能源结构转变。特别是随着时间的推移,核能的比例将不断增长,并将逐步替代石油和天然气而成为主要的大规模能源之一。
化学能的储存量煤炭、石油、天然气还有多少年可以让人类开采利用?据世界能源会议统计,世界已探明可采煤炭储量共计15980亿吨,预计还可开采200年。探明可采石油储量共计1211亿吨,预计还可开采30~40年。探明可采天然气储量共计119万亿立方米,预计还可开采60年。必须指出的是,煤炭、石油等直接燃烧用来生产电能与热能实在太可惜了,且不说可能带来的环境污染,它们还是很好的化工原料呢!
水能及新能源的潜力那么水能呢?我们知道,水力是可以长期开发利用的。但是,在那些大面积缺水、水力资源不丰富的国家和地区怎么办?再说,水能还有个季节性的问题。这些都使水能无法成为世界能源结构中唯一的主力军。新能源中,太阳能虽然用之不竭,但代价太高,并且就目前的技术发展情况来看,在一代人的时间里不可能迅速发展和广泛使用。其它新能源也是如此。其它一些能源与水能相似,它们的规模受到环境、季节、地理位置等条件的限制,如风能、潮汐能、地热能等等。
易裂变核素
易发生裂变的原子只有铀-235(U235)、钚-239(Pu239)、铀-233(U233)三种。而天然存在的易裂变元素只有铀-235,钚-239可由铀-238生成,铀-233可由钍-232(Th232)生成。
易聚变核反应
氘(D2)-氚(D3)反应。氘和氚都是氢原子的同位素。氘天然存在,而氚极少,必须由人工生成(如由锂制造)。
核能--无穷的能源 核能分为裂变能和聚变能两种。目前人类能正在用于和平利用的只有裂变能。可控聚变能利用技术正在攻克。
天然铀的成份
天然铀中占99.3%为难裂变的铀-238,仅有0.714%为易裂变的铀-235。铀-238可通过吸收一个中子变成易裂变的钚-239。
作为发展核裂变能的主要原料之一的铀,世界上已探明的铀储量约490万吨,钍储量约275万吨。如果利用得好,可用2400~2800年。
聚变反应主要来源于氘-氚的核反应,氘来可大量自海水,氚可来自锂。因此聚变燃料主要是氘和锂,海水中氘的含量为0.03克/升,据估计地球上的海水量约为138亿亿米3,所以世界上氘的储量约40亿万吨;地球上的锂储量虽比氘少得多,也有2000多亿吨,用它来制造氚,足够满足人类对聚变能的需求。这些聚变燃料所释放的能量比全世界现有能源总量放出的能量大千万倍。按目前世界能源消费的水平,地球上可供原子核聚变的氘和氚,能供人类使用上千亿年。如果人类实现了氘-氚的可控核聚变,核燃料就可谓“取之不尽,用之不竭了”,人类就将从根本上解决能源问题,这正是当前核科学家们孜孜以求的所以。聚变能源不仅丰富,而且安全、清洁。聚变产生的放射性比裂变小的多。
专家们预测,核能在未来将成为人类取之不尽的持久能源。
1.2 变脏的地球与干净的核电
本节要点:回答的问题以下问题:现有的能源还能维持多久?能源利用可以不污染环境吗?核能真是可持续能源吗?
u 能源的可持续发展
必须寻找一些既能保证有长期足够的供应量又不会造成环境污染的能源。
而目前人类面临的问题正是:能源资源枯竭;环境污染严重。
能源利用与环境的可持续发展
能源危机
目前世界上常规能源的储量有的只能维持半个世纪(如石油),最多的也能维持一、二百年(如煤)人类生存的需求。
今天,几乎所有的工业化国家都面临着两个关系到可持续发展的紧密相连的挑战:保证令人满意的长期能源供应和减少人类活动带给环境的影响。能源利用与环境的可持续发展已成为关系到人类未来生存与文明延续的一个重要问题。
能源供应危机今天的世界人口已经突破60亿,比上个世纪末期增加了2倍多,而能源消费据统计却增加了16倍多。无论多少人谈论“节约”和“利用太阳能”或“打更多的油井或气井”或者“发现更多更大的煤田”,能源的供应却始终跟不上人类对能源的需求。当前世界能源消费以化石资源为主,其中中国等少数国家是以煤炭为主,其它国家大部分则是以石油与天然气为主。按目前的消耗量,专家预测石油、天然气最多只能维持不到半个世纪,煤炭也只能维持一二百年。所以不管是哪一种常规能源结构,人类面临的能源危机都日趋严重。
浓烟滚滚的火电厂
能源对环境的污染 另一方面,特别是利用化石能源的过程也直接影响地球的环境,使大气和水资源遭受严重污染。大气中主要的五种污染物是:氮氧化物(如NO与NO2)、二氧化硫(SO2)、各种悬浮颗粒物、一氧化碳(CO) 大气污染的主要源头
目前世界上最严重的大气污染来自化石能源燃烧造成的大气中二氧化碳量的增加。带来的主要后果是:酸雨、温室效应和臭氧层破坏。
和碳氢化合物(如CH4、C2H6、C2H4等)。其来源主要有三个方面:① 煤、石油等化石燃料的燃烧;② 汽车排放的废气;③ 工业生产(如各种化工厂、炼焦厂等)产生的废气。而其中燃烧化石燃料的火力发电厂是最大的固定污染源。
1. 多元化
世界能源结构先后经历了以薪柴为主、以煤为主和以石油为主的时代,现在正在向以天然气为主转变,同时,水能、核能、风能、太阳能也正得到更广泛的利用。可持续发展、环境保护、能源供应成本和可供应能源的结构变化决定了全球能源多样化发展的格局。天然气消费量将稳步增加,在某些地区,燃气电站有取代燃煤电站的趋势。未来,在发展常规能源的同时,新能源和可再生能源将受到重视。在欧盟2010年可再生能源发展规划中,风电要达到4000万千瓦,水电要达到1.05亿千瓦。2003年初英国政府公布的《能源白皮书》确定了新能源战略,到2010年,英国的可再生能源发电量占英国发电总量的比例要从目前的 3%提高到10%,到2020年达到20%。
2. 清洁化
随着世界能源新技术的进步及环保标准的日益严格,未来世界能源将进一步向清洁化的方向发展,不仅能源的生产过程要实现清洁化,而且能源工业要不断生产出更多、更好的清洁能源,清洁能源在能源总消费中的比例也将逐步增大。在世界消费能源结构中,煤炭所占的比例将由目前的26.47%下降到2025年的21.72%,而天然气将由目前的23.94%上升到2025年的28.40%,石油的比例将维持在37.60%~37.90%的水平。同时,过去被认为是“脏”能源的煤炭和传统能源薪柴、秸杆、粪便的利用将向清洁化方面发展,洁净煤技术(如煤液化技术、煤气化技术、煤脱硫脱尘技术)、沼气技术、生物柴油技术等等将取得突破并得到广泛应用。一些国家,如法国、奥地利、比利时、荷兰等国家已经关闭其国内的所有煤矿而发展核电,它们认为核电就是高效、清洁的能源,能够解决温室气体的排放问题。
3. 高效化
世界能源加工和消费的效率差别较大,能源利用效率提高的潜力巨大。随着世界能源新技术的进步,未来世界能源利用效率将日趋提高,能源强度将逐步降低。例如,以1997年美元不变价计,1990年世界的能源强度为0.3541吨油当量/千美元,2001年已降低到0.3121吨油当量/千美元,预计 2010年为0.2759吨油当量/千美元,2025年为0.2375吨油当量/千美元。
但是,世界各地区能源强度差异较大,例如,2001年世界发达国家的能源强度仅为0.2109吨油当量/千美元,2001~2025年发展中国家的能源强度预计是发达国家的2.3~3.2倍,可见世界的节能潜力巨大。
4. 全球化
由于世界能源资源分布及需求分布的不均衡性,世界各个国家和地区已经越来越难以依靠本国的资源来满足其国内的需求,越来越需要依靠世界其他国家或地区的资源供应,世界贸易量将越来越大,贸易额呈逐渐增加的趋势。以石油贸易为例,世界石油贸易量由1985年的12.2亿吨增加到2000年的21.2 亿吨和2002年的21.8亿吨,年均增长率约为3.46%,超过同期世界石油消费1.82%的年均增长率。在可预见的未来,世界石油净进口量将逐渐增加,年均增长率达到2.96%。预计2010年将达到2930万桶/日,2020年将达到4080万桶/日,2025年达到4850万桶/。世界能源供应与消费的全球化进程将加快,世界主要能源生产国和能源消费国将积极加入到能源供需市场的全球化进程中。
5. 市场化
由于市场化是实现国际能源资源优化配置和利用的最佳手段,故随着世界经济的发展,特别是世界各国市场化改革进程的加快,世界能源利用的市场化程度越来越高,世界各国政府直接干涉能源利用的行为将越来越少,而政府为能源市场服务的作用则相应增大,特别是在完善各国、各地区的能源法律法规并提供良好的能源市场环境方面,政府将更好地发挥作用。当前,俄罗斯、哈萨克斯坦、利比亚等能源资源丰富的国家,正在不断完善其国家能源投资政策和行政管理措施,这些国家能源生产的市场化程度和规范化程度将得到提高,有利于境外投资者进行投资。
三、启示与建议
1. 依靠科技进步和政策引导,提高能源效率,走高效、清洁化的能源利用道路
中国有自己的国情,中国能源资源储量结构的特点及中国经济结构的特色,决定在可预见的未来,我国以煤炭为主的能源结构将不大可能改变,我国能源消费结构与世界能源消费结构的差异将继续存在,这就要求中国的能源政策,包括在能源基础设施建设、能源勘探生产、能源利用、环境污染控制和利用海外能源等方面的政策应有别于其他国家。鉴于我国人口多、能源资源特别是优质能源资源有限,以及正处于工业化进程中等情况,应特别注意依靠科技进步和政策引导,提高能源效率,寻求能源的清洁化利用,积极倡导能源、环境和经济的可持续发展。
2. 积极借鉴国际先进经验,建立和完善我国能源安全体系
为保障能源安全,我国一方面应借鉴国际先进经验,完善能源法律法规,建立能源市场信息统计体系,建立我国能源安全的预警机制、能源储备机制和能源危机应急机制,积极倡导能源供应在来源、品种、贸易、运输等方式的多元化,提高市场化程度;另一方面应加强与主要能源生产国和消费国的对话,扩大能源供应网络,实现能源生产、运输、采购、贸易及利用的全球化.
生物质能不仅易于存储,且拥有丰富的应用场景,是当今最重要的可再生能源之一,也是未来能源供应的支柱产业。交能网这周起将展开全新的“生物质能”系列,聚焦该领域国内外的热点专题,从不同角度挖掘更多的全新内容。本文作为该系列的首发文章,将从宏观的角度为大家简要介绍生物质能作为可再生能源的诸多优势以及相关技术和设备,并对其中蕴含的商业潜力与发展前景展开叙述。
生物质能概况
生物质指所有来自植物、动物和人类的有机物质,例如木材、玉米和油菜籽等农业和林业产品。这些可再生的原材料可以用于制造建筑材料、生物塑料等。与太阳能、风能一样,生物质能也属于可再生能源,它可以转化为电力与热能,并将在未来的能源供应中发挥巨大作用。与风能和太阳能不同的是,生物质能极易储存,人们可以存储诸如稻草、木材或液态肥料之类的原材料,并在必要时再将其转化为其他能源。
生物质能本质上是被存储的太阳能,植物通过光合作用将二氧化碳和水合成为能量丰富的碳水化合物(糖类)。燃烧植物时这些能量会被释放。
从古代人类使用木材生火烹饪,到如今人们使用现代技术利用木材、玉米、油菜籽、稻草甚至肥料发电和生产燃料,人类利用生物质能的历史已有数千年之久。
现代生物质能最简单和广泛的应用仍是燃烧木材取暖。同时,在沼气厂中发酵肥料、玉米和稻草产生沼气的应用也已普及。这些沼气可以在热电联产厂中发电产热,也可以在公共燃气网络中储存,并运输到其他地方使用。
另外,生物质还可用作汽车发动机的燃料。
那么有没有电动 汽车 的替代方案呢?丰田用氢燃料 汽车 给出了答案。
早在1992年,丰田就开始氢燃料电池 汽车 的研究,直到20年后的2014年,丰田20年磨一剑的氢燃料电池 汽车 第一代“Mirai”在日本全球首发。“Mirai”寓意未来的意思,这表明丰田认为这款车才是代表未来的车型。这款车在全球共售出了1万台。
去年,丰田又推出了第二代的Mirai,这款车与雷克萨斯LS同平台打造,但价格却比LS便宜的多,动力方面可以输出134kW(182PS)的最大功率和300N·m的峰值扭矩,最高时速更是达到了175km/h。这款车分为两种续航版本,高续航版本可以实现充氢三分钟,续航850KM。此外,这款车还可以连接家庭电器输出最高9000W的电源输出,简单来说可以负载2-3台空调。
Mirai目前已经在美国和日本上市,关于氢能源 汽车 ,网络上有很多的质疑和误解,今天我们就来通过丰田Mirai这款车,聊聊氢燃料 汽车 到底是不是未来。
第二代Mirai率先在日本本土和美国地区上市,未来将会全球发售,很多人关心氢燃料 汽车 的价格,第二代的Mirai其实官方售价比较高,在日本是710-805万日元(折合人民币44.5-50.5万元),但是日本政府给这款车提供环保车减税、环保绩效折扣、绿化补贴和CEV补贴,加起来补贴后的价格是36.05-42.06万,在美国的售价为4.95-6.60万美元(折合人民币32.3-43.1万元)。很多人觉得价格依然偏高,但是要知道这款车是和雷克萨斯LS同平台打造的,这款车长宽高分别为4975/1885/1470毫米,轴距2920毫米,是一款中大型车,其售价比雷克萨斯LS还是要低一点。而且从外观内饰来看,Mirai是一款豪华感比较强的车型。
另外,在美国你也可以选择租用这辆车,入门车型月租价格为499美元(3260元)起。并且,购车和租车的用户都可以获得六年免费氢气燃料或1.5万美元(9.8万元)现金补贴。如果你选择现金补贴,相当于以22,5万元的裸车价格买到这样一款中大型的氢燃料 汽车 ,这个价格可以说是相当良心了。
那么很多人就要问了,我买了这款车到哪去加氢呢?其实在日本的全境,和美国的西海岸,加氢都是比较方便的。日本本土有超过133座加氢站,全国各个主要大城市都有,数量位居全球第一,而美国有87座加氢站,而截至今年11月,中国共建有加氢站104座,超越德国,位居全球第二。按照《中国氢能源及燃料电池产业白皮书》预测,2025年中国将建成200座加氢站,2050年,加氢站数量将超过1万座。
氢燃料 汽车 使用成本高不高呢?丰田Mirai有三个储氢罐,一共可装载5.6kg氢气,根据最新的数据,日本的氢燃料目前每千克的售价是71元人民币,每公里的成本大约是0.46元,基本上和国内的汽油车差不多了。而且比日本的汽油车使用起来要便宜点,因为日本的汽油价格目前高达130.8日元,相当于8.2元人民币,比国内的油价贵了差不多50%,在日本开氢燃料 汽车 ,是比开汽油车更便宜的。
另外,丰田对于美国的Mirai提供三年免费保养,和10年24万公里的免费保修,对日本国内的Mirai提供5年10万公里的免费保修,非常类似于雷克萨斯,从使用成本来说,在日本开Mirai要比燃油车更划算。
氢气的安全性问题,也是一个争议非常大的问题,很多人说氢燃料 汽车 就是小型氢弹,还有人说氢气不稳定非常容易爆炸,其实都是反智言论而已。氢弹要是这么简单,为什么印度至今还在苦苦研究?
实际上,如果在开阔地带,氢气要比汽油更安全,第一点是因为Mirai上的氢气都是储存在由碳纤维和凯夫拉材质制成的储氢罐里,这种储氢罐可以抵挡手枪的子弹,里面的氢气很难外泄。第二点是这款车有着比较完善的安全措施,车辆着火的情况下,有止逆阀式的易熔塞泄压阀会迅速排出氢气。第三点是氢气的密度低 逸散速度更快,不会沉积,不易形成可爆炸的气雾,一旦泄露马上会上升,只要通风良好,一般不会爆炸。且其泄露能量和爆炸当量较低,氢气的爆炸能量是常见燃气中最低的,仅为汽油气的1/22。
日本曾有实验室进行过一次“着火”实验,测试了汽油车在漏油和氢燃料电池车在漏气的情况下的安全性,汽油车很快就猛烈燃烧,而氢气则是在车顶上方燃烧,不会烧到车辆,而且一分半钟以后,火焰就熄灭了,足以可见氢气的安全性。
丰田的氢燃料 汽车 已经在美国上市,要知道美国人是最惜命的,别克GL8禁售、大众在美国根本不敢减配,如果安全性很差,Mirai有可能获得上市许可吗?
那么这些氢气从哪里来呢?是不是要花费电能制氢,再把氢气转化为电能,是不是脱裤子放屁多此一举呢?其实氢气的来源有很多种。
第一种是工业副产品,我国炼焦企业、钢铁厂和氯碱工业每年都会副产数百万吨氢气。第二种是可再生能源制氢,比如说用太阳能、风电、水电制氢,因为低谷期的电能是用不完的,如果不用也是白白流失了,不如用来制氢把这些能量保存下来。第三是利用化学能源制氢,比如说煤和天然气裂解制氢,这种制氢方式的成本并不高。
目前在研发氢燃料 汽车 的只有丰田、本田、现代以及宝马,为什么其他车企不跟进呢?
原本就是这玩意研发太难了,丰田搞了20年,才能做出如今的Mirai,研发氢燃料 汽车 相当于换了一个赛道,之前在燃油车和电动车上的技术积累基本上成为了废纸,对于很多车企来说一是资金成本太高,二是大企业往往就是转身较慢。
而日本则非常有忧患意识,因为日本90%的石油需求依赖进口,在这样的情况下,发展新能源成为了必然,而日本四面环海,最不缺的就是水资源。也就是在这样的情况下,日本在近30年前就开始了氢燃料 汽车 的研究。
目前,组织氢燃料 汽车 普及最大的障碍,其实不是安全、不是制氢成本、也不是使用成本,而是氢气的运输和存储,这才是氢燃料未能大规模普及的最重要的原因。
目前主要是高压气罐、液态罐以及固体罐三种方式运输氢气,但是这种方式要么运输的数量有限,要么运输成本比较高,都难以大规模普及,因此日本的加氢站很多都是采取现场制氢、储氢,不存在运输过程。但是这样做也会存在建造加氢站成本过高的问题,建造一座于200公斤的加氢站往往成本都在1000万元以上。
但是一旦氢气的储存和运输问题解决,氢气的发展将会顺利的多,至于氢气的制取成本和氢燃料 汽车 的制造成本,都会因为规模化而不断降低。根据预测,到2025年,氢气售价要降低到28元/kg。
而很多人担心的,氢气需要使用贵金属铂作为催化剂的问题,目前铂金催化剂发展趋势是低铂和无铂路线,本田的Clarity单车催化剂所需的铂已经降至10g左右,未来氢燃料 汽车 将只需要3-8克的铂,和柴油车尾气净化催化剂的使用量相当。
尽管目前,氢燃料 汽车 依然存在制造成本较高、加氢站较少等这样那样的问题,但是氢燃料 汽车 无疑将会为我们提供一种替代方案,相比将全部的鸡蛋都放在电动 汽车 的篮子里要强得多,并且,氢燃料技术一旦突破,其发展潜力要远高于电动 汽车 。未来的一段时间,电动 汽车 和氢燃料 汽车 将会处于互补状态,电动 汽车 用在乘用车,燃料电池用于商用车。
我国目前也在悄然布局氢燃料电池领域,按照《中国氢能源及燃料电池产业白皮书》和《“十三五”国家 科技 创新规划》,2030年,我国要建成1000座加氢站,燃料电池车辆保有量要达到200万辆,2050年,要建成超过1万座加氢站,氢能和电能究竟谁才是属于未来的能源,不出20年便能见分晓,我们不妨拭目以待。
能源数字杂志涵盖能源 4.0、全球能源投资、创新、自动化和人工智能、智能技术和可持续性——连接世界上最大的可再生能源高管社区。能源数字杂志专注于能源新闻、关键能源采访、能源视频、“能源播客”系列,以及不断扩大的重点能源白皮书和网络研讨会。
1、生物科技、人工智能、可再生能源、网络接入技术、智能家电是五大种现代科技。
2、互联网作为第三次科技革命的产物,对我们的社会生活产生了颠覆性的变革。
3、互联网的产生是要比五大类现代科技要早的,甚至五大类中的个别科技类发展还是要建立在互联网的基础上才得以取得成功。