分布式能源与低碳建筑的关系
开展基于分布式可再生能源建筑发展路径研究的原因
一、新建绿色建筑的商业模式。我国的绿色建筑尚停留在政府强制推行阶段。通过可再生能源,为我国绿色建筑的发展注入商业活力。
二、既有建筑改造。国内出现房地产产能过剩情况,空置房屋资源浪费。通过屋顶太阳能电站等形式盘活资产,为建筑行业填充活力。
三、推进建筑产业的现代化。未来建筑行业的发展会更加标准化和模数化,可再生能源将直接被建筑集成设计,并进入组装过程。
四、智慧城市。住建部已发展了两百多个智慧城市,在智慧城市里边践行智慧的能源微网系统,更易于形成其商业模式。
五、新农村建设,即绿色农房。在广大的农村地区,有着大面积的空闲屋顶,可将再生能源结合进去建设绿色房子。
可以实现
原标题:专家:高可再生能源比例、高能源效率、煤炭替代和绿色甲醇结合是实现碳中和最优路径
新华财经北京5月20日电(张磊)5月19日,由中国社会科学院数量经济与技术经济研究所和社会科学文献出版社组织的《中国能源转型:走向碳中和》发布会暨碳中和与绿色能源发展研讨会在北京举行。作为中国社会科学院碳中和与能源转型课题组的最新研究成果,《中国能源转型:走向碳中和》一书提出,高可再生能源比例、高能源效率、终端部门煤炭替代和绿色甲醇相结合的能源转型方案是实现我国碳中和的最优路径。
中国社会科学院数量经济与技术经济研究所所长李平介绍,以中国的市场规模和潜力,碳中和将成为一个万亿级的新兴产业,为中国经济的转型升级提供新的增长点。能源转型不是以减缓发展为代价,而是要通过创新能源新技术、创造能源新业态,来推动经济更好、更快、更绿色的发展。需要在满足经济与民生对能源需求的前提下,在经济上合理和安全稳定的前提下,推动从高碳化石能源为主向碳中性能源、低碳能源和高效能源转型。
中国社会科学院数量经济与技术经济研究所能源安全与新能源研究室主任刘强在介绍该书时指出,目前我国实现碳中和目标的难点有三个,一是我国碳基能源比例过高,且其中大半为煤炭。高比例含碳能源的使用意味着高碳排放,因此,加快推进对非碳能源的使用是减碳目标实现的重点。二是使用非碳能源可以实现减碳,但是没有达到碳中和及固碳效果。减少含碳燃料的使用应同时配合各类固碳方法,将二氧化碳重新纳入能源系统循环之中,这样才能更接近碳中和目标的实现。三是实现碳中和的各种技术成本居高不下,有待实现技术突破以降低成本。
针对以上难点问题,该书提出,通过节能实现减排是最经济、最直接的路径。通过节能实现减排可以分为两种方式:一种是提高能源使用效率,尤其是碳基能源的使用效率,如降低煤电的度电煤耗、提高电器等用能设备的能源效率等;另一种是通过减少终端产品的需求、减少建筑建设、减少出行距离等降低对能源的需求。
另一方面,低碳和非碳能源的发展,可以部分取代高碳能源,降低高碳能源尤其是煤炭在总能源消费中的比重,从而有效减少二氧化碳的排放。可再生能源是未来降低高碳能源使用和二氧化碳排放的主力,包括风电、光伏发电、地源热泵、生物质发电等。可再生能源的发展,将通过降低总体碳排放,大大减轻实现碳中和的压力。
再者,碳基能源的循环利用是我国实现碳中和的必由之路。化学碳循环是利用化学工业过程,把工业过程排放的二氧化碳捕集后合成为液体的醇醚化合物,一般为甲醇、乙醇、二甲醚。这三种醇醚化合物都可以作为能源使用。通过这一循环过程,可以实现碳中和或者部分碳中和。
此外,实现碳中和,除了节能、能源转型、工业碳中和之外,生态固碳也是重要的途径之一。
为找到实现碳中和的可行路径,该书利用中国社会科学院数量经济与技术经济研究所开发的中国能源系统模型(CEMS),把各种技术路径和发展情景纳入总体能源系统,并进行情景分析,最后得出高可再生能源比例、高能源效率、终端部门煤炭替代和绿色甲醇相结合的最优推荐路线。
结合以上观点,为实现2060年之前碳中和的目标,该书建议,一要大力发展碳中和技术体系,包括工业、交通、建筑能源碳中和技术,农业、分布式和移动能源技术;二是提高非碳能源和碳中和能源(二氧化碳制绿色醇醚燃料)在能源消费结构中的比重,为此,需加快建设风电,适度发展核电,实现氢能技术、储能技术和绿色醇醚燃料的商业化利用;三是到2060年实现能源结构接近80%非碳,可通过价格手段推动能源转型,如提高煤炭使用成本,加大对非碳能源的支持力度等;四是全面推进生态修复和改善工作。
其一,化石能源消费比重仍然较高,甚至过大,因此造成严重的空气污染问题。近年来,我国第三产业及其它终端能源消费增长较快,但是工业终端能源消费仍占总终端能源消费的较高比例。2016年中国终端能源消费总量达到32.3亿吨标准煤,其中工业部门占61%,交通部门占比21%,建筑部门占比14%。煤炭是中国终端能源消费的主要能源品种。2016年,煤炭消费占总终端能源消费比重的39%,石油27%,电力19%,天然气7%,区域供热5%,生物质能源2%。电力部门中,2016年可再生能源发电量占全国总发电量的比重达到26%,非化石能源发电量占29.5%。全国总发电量中的67%来自煤电,3%来自天然气发电。2016年,中国一次能源总消费量43.6亿吨标准煤。煤炭占比62%,石油占比18.3%,天然气占比6.4%,非化石能源所占比例为13.3%,其中可再生能源的比例为11%。
“我国能源消费结构中化石能源比重过大,这也导致了对能源进口的依赖。显著特征是石油进口依存度持续提高,我国2016年石油对外依存度占全部石油消费总量的三分之二。我国部分区域严重依赖煤炭经济,这些煤炭经济包括煤炭的开采及煤电产业,导致煤炭消费出现‘锁定’,这对降低我国煤炭消费、地方经济转型造成了阻碍。”王仲颖说。
化石能源的消费比重大,造成我国多地空气污染仍然严重。现在已经形成共识,煤炭发电厂、燃煤工业和以化石能源驱动的汽车是造成中国大部分城市严重空气污染的重要原因。“当前,我国政府将解决空气污染问题作为其首要任务之一。此外,水污染和土壤退化等环境问题也同样严重,上述生态环境问题将可能危及中国未来的可持续发展。”王仲颖强调说。
其二,可再生能源的浪费虽在减少,但仍很严重。
“被迫降低水电、风电和太阳能光伏电量——也被称作‘弃用’问题,在我国已存在多年。‘弃用’现象表明当前我国可再生能源尚未被充分优化整合进入能源系统。”王仲颖以弃风为例予以说明。2016年,我国全年弃风率为17%。今年1~9月,全国弃风电量和弃风率实现双降,弃风限电的范围和规模得到缓解,全国总弃风电量298.5亿千瓦时,同比减少25%,累计弃风率13%,同比下降6.8个百分点。由于弃用造成可再生能源资源的浪费,提高了风电等可再生能源电力生产成本。如果考虑由此导致的煤电发电量上升,则进一步增加了大气污染物和二氧化碳等温室气体排放。近年来,太阳能发电和部分重点地区的水力发电也遭到了弃用。
其三,电力系统缺乏灵活性,运行管理制度面临挑战。
王仲颖说,我国自改革开放以来所采用的能源和电力发展战略成功地保障了电力供应,为快速增长的经济提供了动力,目前依然影响着电力系统发展。我国经济进入新常态以来,煤炭发电厂产能过剩明显,在未来的电力系统中,有出现投资搁浅和化石能源技术锁定的风险。此外,电厂和互联电网的调度运行受到传统电力市场交易制度和地方利益壁垒的影响,无法适应大规模风电和太阳能发电等波动性电源的发展。我国的电力体制改革正在进行,这些问题均应得到解决,为电力系统的运行和发展创造一个全新的框架。然而,由于制度障碍以及缺乏针对不同省份的共同目标,目前电力市场改革推进缓慢,区域电力市场在市场设置和计划安排方面的合作往往存在明显的利益冲突。“在电力体制改革不到位的情况下,的的确确会影响不同省市现实的本身利益。可喜的是,十九大的定调,一定会加快电力体制改革的进程,上述问题会在电力体制深化改革的过程中逐步得到解决。”王仲颖说。
其四,可再生能源经济激励制度亟待改革。
王仲颖介绍说,当前,固定电价政策是中国可再生能源发展的主要支持机制,但补贴机制存在的问题,使改革迫在眉睫,以确保政策的有效性。“涉及到三方面的问题。一是电力附加费并不能保证为规模日益增长的可再生能源项目提供资金支持。二是补贴水平调整不平稳,且当补贴下降时产生新增项目的‘抢装潮’。三是固定电价机制并不适用于未来电力市场改革及可再生能源市场化。”“对可再生能源技术的支持主要是为应对化石能源价格不能反映其社会真实成本问题。现在的化石能源价格并没有完全反映出化石能源利用对我国生态环境影响的全部成本。环境成本没有真实呈现,且化石能源的其它支持机制也扭曲了不同能源技术之间的竞争。”王仲颖强调说。
既定战略必须更加坚定地深入实施
“我国的能源体系正在由以煤炭为基础、高环境成本向低碳、环境友好转型。我们的分析显示,尽管我国政府已经制定了正确的政策战略,但能源转型是否成功取决于政策是否得到强有力的执行。”王仲颖说。
记者:我国政府制定并实施了哪些能源转型战略举措?
王仲颖:当前,我国政府已经制定了一揽子政策战略及措施,全面推动能源系统向可持续和低碳方向转变:牢固树立“五大”发展理念、统筹推进“五位一体”总体布局、坚持协调推进“四个全面”战略布局“绿水青山就是金山银山”的发展理念已经植入我国政府的治国理政实践我国政府签署《巴黎协定》,并在全球应对气候变化行动中发挥大国作用的行为,展现了我国政府积极应对人类生存威胁因素的决心。正在进行中的“全国环境行动计划”、电力市场化改革和国家碳排放权交易系统则昭示着我国能源深度转型进程的序幕已经拉开。
记者:如果坚定坚持既定方针政策,那么到2030年、到2050年会出现怎样的结果?
王仲颖:CREO2017的分析表明,如果坚定不移地执行既定政策情景,那么2050年煤炭消费总量将降至2016年消费水平的三分之一,并确保二氧化碳排放于2030年之前达到峰值。2030年后,二氧化碳排放显著降低,直至下降到2050年的50亿吨水平,接近2016年排放水平的50%。2050年,非化石能源占全部一次能源供应的60%。同时,通过投资能源系统转型,未来能源系统的电力成本与当下严重依赖化石能源以及不可持续的能源系统相比将基本一致,而能源系统的可持续和稳定性则将大幅提升。如果那样的话,煤炭消费量被控制,以合理的经济代价实现2050年高比例开再生能源发展目标就可以实现。
记者:如果既定政策执行不坚决或有误,会出现怎样的结果?
王仲颖:政策措施和创新战略的高效实施是确保能源转型平稳实现的关键。反之,如果部分政策措施不能如期施行或方向有误,则将导致我国能源系统将继续被化石能源技术锁定,可再生能源技术的发展及其与能源系统的整体融合将面临严重障碍。因此,政策的执行力是关键,特别是短期战略的强有力地实施是长期能源深度转型取得成功的关键。
记者:能源转型本身、电网基础设施和可再生能源技术都需要大量投资,这可能会导致短期内电力成本上升。如何看待这个问题?
王仲颖:的确,能源转型本身、电网基础设施和可再生能源技术都需要大量投资,这可能会导致短期内电力成本上升,但这些额外的成本也会带来效益,使那些过去依赖低化石能源价格的行业快速向电力和非化石能源转型,同时改善空气质量、降低污染水平。能源转型的大量投资也会创造出代表未来技术方向的新的就业岗位,从而弥补传统煤炭产业链和技术制造业转型所削减的就业机会,这一切都与我国积极的创新战略相符合。在这个角度上看,可以说,可再生能源成本下降、电力市场改革和碳交易价格将是驱动能源转型投资的主要动力。
记者:能源转型成功和煤炭消费总量下降需要哪些客观条件?
王仲颖:能源转型和煤炭消费总量下降是在基于三项重要客观条件下实现的。首先,CREO2017假定在国际大环境和我国创新战略驱动下,可再生能源技术发展将延续近年成本继续降低、效率提升的表现,可再生能源技术以较低的成本实现能源供应。到2050年,非化石能源消费中占比超过60%,煤炭消费占比下降至2016年消费水平的三分之一,电力供应成本基本维持不变,碳排放总量在2030年之前达到峰值。其次,假定碳排放权交易制度能够得到有效实施,碳排放价格将切实影响到能源部门的投资决策,(在CREO2017既定政策情景中,设定了长期执行的碳价格水平,即每吨二氧化碳100元人民币),这将有助于支持可再生能源尽快实现与煤电平价。再次,假定持续推进电力市场化改革,并将其作为确保波动性可再生能源与电力系统融合的重要工具。
要实现“低于2℃”目标,需在既定政策基础上再加码
“CREO2017研究结论显示,即使既定政策情景顺利实施,仍不能支撑全球实现‘巴黎协定’设定的控制未来升温幅度‘低于2℃’目标。我国按既定政策情景发展,将能够实现承诺的国家自主贡献目标,但与大多数国家一样,二氧化碳减排尚显不足。”王仲颖说。
记者:依据CREO2017研究结论,既定政策难以支撑实现温升幅度“低于2℃”目标。那要实现控制温升目标,需要怎样的新目标?
王仲颖:基于考虑我国二氧化碳减排展望和未来实现“低于2℃”目标,CREO2017分析认为,我国要满足《巴黎协定》要求,就必须采取进一步的二氧化碳减排措施。综合分析国际研究成果,CREO2017假定了我国未来能源部门的二氧化碳快速减排的约束预案,即从2016年的100亿吨左右二氧化碳排放水平降到2020年的90亿吨、2030年80亿吨,直至2050年下降至30亿吨。
记者:也就是说,为达到实现“低于2℃”目标,应制定执行更加有利于可再生能源发展的政策?
王仲颖:是的,如果我国未来碳排放足迹遵循“低于2℃”假设,则我国必须加速削减煤炭消费、更为迅捷地发展可再生能源。相比既定政策情景,CREO2017结论表明,2020年,“低于2℃”情景需要额外增加3.05亿千瓦的可再生能源装机容量,2050年需要增加15.18亿千瓦。额外增加的发电装机初期将主要来自风电,后期则更多来自太阳能发电技术。在“低于2℃”情境下,煤炭消费量更为快速地降低。煤电装机到2020年将再削减1600万千瓦、2050年降低2.2亿千瓦。为了促进终端用能部门的减排,在“低于2℃”情景中,CREO2017设定了相比既定政策情景更高的终端电气化率水平,特别是提高了交通部门和工业部门的电气化率。
记者:如果按照“低于2℃”目标,我国可再生能源“十三五”规划中的发展目标已经落后于近期的发展形势。CREO2017展望风能、太阳能和生物质能发电装机总量也显著超出2020年规划目标,这个超出的部分能否实现?
王仲颖:从快速降低电力部门碳排放和提升终端用能部门电气化水平的角度分析,既定政策下的能源转型成就仍有进一步提升的发展空间。从遵守《巴黎协定》的角度看,2020年后的能源转型任务将更加艰巨,因此加码是必然的,只不过是早晚的问题。
记者:总体而言,今年以来,弃风、弃光现象有所好转,但仍比较严重。在这样的情况下如何发展更多的可再生能源?
王仲颖:要保证更多的新增可再生能源发电容量接入电网,要对煤电企业的运行提出严格的灵活性要求,维持提高电力系统灵活运行,要更为灵活地调度输电线路和省间电量交换。这些措施需要地方政府提高接纳和利用区外可再生能源的积极性,支持电网调度合作和联合调度。
记者:“低于2℃”情景下目前的电力系统已不需新增煤电装机。那么对那些已经获得行政许可、并准备开工建设的新的燃煤电厂应作如何对待?
王仲颖:应当在进一步加强开工审核的同时,尽快颁布禁止新建煤电厂的临时禁令,从而避免大额资产搁浅。近中期,随着电力市场化的进程,应逐步取消年度发电计划确定的满发利用小时数,直至最终取消年度发电计划制度。这也就意味着,所有的发电商都需要根据市场的需求来决策自己的发电量。在这种情况下,新建煤电厂的风险会更大,因为它已无法通过行政手段确保电价水平。在可预见的未来,煤电价格预期将会继续上升、可再生能源发电成本则处于下降通道,固定电价的长期购电合约将不复存在。到那时,可再能能源发电无论在成本上、技术上都会比煤电具有竞争性,起码不会比煤电竞争力弱。
从现在到2050年可再生能源逐步成为主导能源
CREO2017展示了我国能源系统到2050年的两条发展路径。一是低于2℃情景发展路径,这条路径由严格的碳预算推动二是既定政策情景发展路径,这一路径由当前实施的能源政策维持。
记者:请结合现实情况,用CREO2017研究结论,分析一下从现在到2035年、到2050年可再生能源如何逐步变成主导能源?
王仲颖:2016年,可再生能源占总终端能源消费的6%。据中电联数据,今年1~9月,全国基建新增发电能力中水电、火电、风电、太阳能发电分别比上年同期多投产35万、197万、146万、1977万千瓦。截止今年9月底,全国可再生能源发电总装机容量达到58655万千瓦,占全国规模以上电厂总发电装机容量的35.2%。从全球看,中国仍然是世界上最大的可再生能源投资国,未来几十年依照中国宏大的可再生能源政策和能源体系去碳化需求,可再生能源份额将大幅增长。
2016年,可再生能源消费量为2.7亿吨标准煤。“低于2℃”情景下,2050年该值增加8倍,达到21.86亿吨标准煤,既定政策下则增至16.63亿吨标准煤。“低于2℃”情景的主要趋势是首先发展风能,2035年前的中阶段发展太阳能。2050年前的长期阶段,将扩大太阳能发展规模,迅速提升生物质能利用率。
由于水资源进一步发展的潜力有限,因此两种情况下均遵循相同的增量增长。“低于2℃”情景下,2050年可再生能源涵盖大部分能源需求。2030年之前的能源转型初期,风能和太阳能发电将快速增加。
两种情景均预测中国能源需求于2030年左右达到顶峰。2050年,“低于2℃”情景的终端能源需求为33.21亿吨标准煤既定政策情景为35.3亿吨标准煤。提升能效措施是两种情景能源需求趋势类似的主要原因。
记者:根据CREO2017,到2050年前后,我国能源需求侧将发生怎样的改变?
王仲颖:到那时,我国能源需求侧将产生重大改变。目前工业领域占据终端能源利用的指导地位,但到2050年,尽管能源需求总量将与现在保持同一水平,但能源需求结构将发生巨变——工业领域的能源消费量大幅下降,交通和建筑能源消费将上涨。终端部门电气化程度提高主要源自可再生能源的贡献。两种情景均是如此,“低于2℃”情景的电气化程度和可再生能源份额更高。2050年,“低于2℃”情景下52%的终端能源需求为电力,既定政策情景该比例为39%。工业用化石能源很大程度被电取代。到那时,中国走上绿色、多样化供能之路,减轻对煤炭的高度依赖,代之以非化石能源。“低于2℃”情景下该发展趋势更为明显,2050年非化石能源占供能的63%,相比之下,既定政策情景则为47%。据此可以说,“低于2℃”情景下非化石能源的快速、决定性发展是我国实现《巴黎协定》目标的关键。
记者:到那时,电网传输将会发生怎样的变化?
王仲颖:两种情景均加大了电网基础设施投资,用以提升电力系统灵活性,促进在区域内外高效传输清洁电力。到2050年,中国电网将在更大的平衡区域实现密切整合,整个中国电网发展为一体化市场。中部和东部省份为主要输入地区,西南和东北则是净输出地区。“低于2℃”情景下的电网扩容总体比既定政策情景高。两个情景均表明,到2050年中国的输电系统继续完善,且依靠价格手段按照市场原则调节电力供需两侧,从而促进新增电网的大规模投资。
记者:依据CREO2017,从目前到2020年这段时期内,对可再生能源的发展要采取怎样的政策?
王仲颖:总体上要注意四方面。
一是2020年前可再生能源仍需延续固定电价政策,其中海上风电、太阳能光热发电需要延续到2020年后实现规模化发展。应更好利用竞争性招标推动价格下降,逐步扩大可再生能源电站竞争性招标的范围和规模。
二是随着2020年后逐步建立竞争性电力市场,在电力市场价格基础上,率先对新增风电、光伏电站建立基于定额补贴的市场溢价机制。初期可按目前固定电价的差价补贴标准确定溢价补贴标准,未来适时合理调整、逐步降低定额补贴标准,或者建立与招标电价结合的差价合约机制。
三是在2017年建立可再生能源电力证书自愿交易市场的基础上,在2020年前建成强制性可再生能源电力配额(发电侧)和绿色证书交易市场(售电侧),逐年提升配额比例要求,形成市场化绿色证书价格形成机制和逐年上升的未履约价格惩罚水平。
四是切实发挥即将正式启动的全国碳交易市场对促进可再生能源与化石能源公平竞争的作用,逐步建立起新建建筑和工业用热的可再生能源用热强制安装或者供热比例要求制度。
记者:近日,《京津冀能源协同发展行动计划(2017~2020)》印发,说明三地能源协同发展进入实质落地阶段。依据CREO2017研究成果,该地区该如何实现能源协同发展?
王仲颖:京津冀是我国重要的能源消费重心之一。同时,京津冀作为我国的“首都圈”,是我国北方经济规模最大、最具活力的区域之一。经济的快速增长、不断优化转型的产业布局和依然严峻的环境污染问题对京津冀的清洁能源保障提出了更高要求。但是,目前京津冀区域的可再生能源利用比重不高,多样化可再生能源利用潜力没有充分挖掘,电网等基础设施发展不同步,急需通过创新驱动京津冀能源协同发展,不断完善能源政策体系和相关体制机制。CREO2017研究显示,京津冀可通过全面协同能源转型实现高比例可再生能源发展。在低于2℃情景下,2030年风电装机容量将达到128165兆瓦,占总装机比重的47.8%太阳能发电总装机将达到83922兆瓦,占全部发电装机的31.3%。雄安作为国家级新区,2030年可实现可再生能源占一次能源消费比重超过50%以上。
记者:具体而言,实现京津冀高比例可再生能源的目标需要哪些保障措施?
王仲颖:针对京津冀高比例可再生能源发展重点任务,京津冀需要加强以下5方面的保障措施。一是加强可再生能源发展的顶层设计二是提高京津冀可再生能源发展的协同性三是加大政策支持力度四是创新市场化机制体制五是加大宣传提高公众认识。
国家可再生能源中心2017~2020年行动建议
依据CREO2017研究结论,并基于过去数年可再生能源产业、技术和政策方面的进步,并展望其近中期发展情况,针对中国可再生能源发展,国家可再生能源中心提出下列建议:
可再生能源和非化石能源目标
“十三五”规划中2020年可再生能源发展目标是应努力超越的底线,通过努力实现更快发展:太阳能光伏装机量从1.1亿千瓦增至2亿千瓦,风电装机量从2.1亿千瓦增至3.5亿千瓦生物质能发电装机量从1500万千瓦增至3000万千瓦,总计增加5亿千瓦。
2020年非化石能源占一次能源消费总量的比例从15%提升到19%。如考虑落实《巴黎协定》提出的“低于2℃”温控目标,则需要进一步提升发展目标要求。
加大削减煤炭力度
即刻停止批准新建燃煤电厂努力实现2030年煤炭消费量占全部能源消费量的比例从现在的64%降至33%左右加快燃煤电厂灵活性改造,逐步取消年度发电计划制度地方经济主要依赖煤炭工业的地区要加紧制定经济发展转型升级计划。
加快电力行业改革
开展批发市场试点和区域协调市场试点市场试点要纳入跨区电网调度,打破省间壁垒预防双边交易合同锁定高碳型电力生产制定中国电力市场下一步发展的清晰路线图。
实施碳排放权交易制度
加强中国碳市场活力制定能够确保碳减排目标实现的最低碳交易价格。
深化经济激励机制改革
提高可再生能源附加水平(2020年后逐步降低直至取消),确保转型期补贴资金需求实施可再生能源发电配额制度,配套实施强制性与自愿性相结合的绿色证书交易制度更大范围的采取竞争性拍卖方式,降低大规模风电和太阳能发电项目的并网价格。
【能源人都在看,点击右上角加'关注'】
文/赵学良 中国石化发展计划部,当代石油石化
1美国氢能及燃料电池产业概况
美国能源局从1970年就开始布局燃料电池研发,并一直处于世界领先地位。燃料电池备用电源和燃料电池叉车已具备市场竞争力,处于商业推广阶段;燃料电池乘用车处于政府补贴商业推广阶段;燃料电池巴士、大型货车、商用车处于行车实验验证阶段。2018年美国被评为国际氢能经济和燃料电池伙伴计划IPHE(International Partnership for Hydrogen and Fuel Cells in the Economy,为2003年由18个国家和欧盟共同发起成立的国际合作组织)主席国。
美国参议院决议确定2018年10月8日为美国国家氢能与燃料电池第四个纪念日,“参议院第664号决议”给出如下13点理由:
1)氢原子质量为1.008,而且是宇宙中含量最丰富的化学物质;
2)美国是燃料电池和氢能技术开发和部署的世界领先者;
3)氢燃料电池在美国太空计划中发挥了重要作用,帮助美国完成了登陆月球的任务;
4)私营企业、联邦和州政府、国家实验室以及高等教育机构持续提高燃料电池和氢能技术,以解决美国最迫切的能源、环境和经济问题;
5)利用氢和富氢燃料发电的燃料电池是清洁、高效的技术,被用于固定电源和备用电源、以及零排放轻型 汽车 、公共 汽车 、工业车辆和便携式电源;
6)固定式燃料电池正投入到连续和备用电源的使用中,以便在电网停电时为商业和能源消费者提供可靠的电力;
7)与传统发电技术相比,固定式燃料电池有助于减少用水量;
8)燃料电池轻型 汽车 和使用氢气的公共 汽车 可以完全复制内燃机车的经验,包括行驶里程和加油时间;
9)氢燃料电池工业车辆正在美国各地的物流中心和仓库部署,并出口到欧洲和亚洲;
10)氢气是一种无毒气体,可以从各种国内可获得的传统和可再生资源中获取,包括太阳能、
风能、沼气以及美国丰富的天然气;
11)氢和燃料电池可以储存能量以帮助增强
电网,并使可再生能源的部署机会最大化;
12)美国每年生产和使用超过1100万吨的氢气;
13)工程和安全人员及标准专业人员就氢气的交付、处理和使用已经达成共识,并已制定出相关协议。
2美国发展氢能及燃料电池的初衷
美国参议院决议的理由充分说明,从国家层面而言,发展氢能及燃料电池具有降低二氧化碳排放、减少空气污染等清洁环保层面的意义,同时还具有降低燃油消耗、提高可再生能源利用率及电网可靠性等增加能源自给率、保障国家能源安全的优点。2014年美国发布《全面能源战略》,将“发展低碳技术、为清洁能源奠基”作为放眼长远的战略支点,并明确提出,氢能作为替代性能源将在交通业转型中起到引领作用。
2.1减少温室气体排放
由于氢燃料电池具有高效率和温室气体近零排放的特性,燃料电池系统能够在很多应用领域实现温室气体减排。美国能源部研究了燃料电池的温室气体减排潜力。燃料电池应用于热电联产系统时,相比传统热电联产系统可减少35%~50%的排放;燃料电池货车相比燃油货车可减少55%~90%的排放;燃料电池叉车相比柴油叉车或动力电池叉车可减少35%的排放;燃料电池巴士比内燃机巴士效率高40%;燃料电池备用电源相比柴油发电机可减少60%的排放。
美国能源部对比测算了不同能源介质运输工具的油井到车轮(WTW)温室气体排放情况。天然气制氢-氢燃料电池路线每英里排放二氧化碳200克,低于美国现有电网取电-电动 汽车 路线230克和传统燃油车450克的排放标准。配有二氧化碳封存的煤气化制氢-氢燃料电池路线每英里排放二氧化碳95克,生物质气化制氢-氢燃料电池路线每英里排放二氧化碳仅37克。
2.2减少燃油消耗
燃料电池提供了一种几乎不消耗石油的提供动力方式,且可覆盖美国大部分的石油消耗,如 汽车 、巴士、备用发电机和辅助发电机等。美国能源部的研究结果表明,氢燃料电池轻型 汽车 相比汽油内燃机 汽车 可降低95%的燃油消耗,相比混合动力车可降低85%的燃油消耗,相比插电式混合动力车可降低80%的燃油消耗。可以看出,相较大规模使用生物燃料、提高内燃机效率(ICEV包括使用混合动力 汽车 ),燃料电池车大规模应用后可以大幅减少国家的石油消费,到2050年燃油消耗量将降到目前的40%左右。
2.3提高电网可靠性、最大程度部署可再生能源
美国能源部预估光伏和风电的建设成本将大幅下降,“太阳计划2030”(SUNSHOT2030)设定的目标是2030年光伏电站成本为3美分/千瓦时,2018年美国陆上风电成本已低至2.9美分/千瓦时。光伏和风电将得到迅速普及,预计到2050年风能装机容量将达到404吉瓦,装机容量占总容量的35%;光伏装机容量将达到632吉瓦,发电量占总发电量的19%。
根据国际能源署发布的研究报告《GettingWindandSunontotheGrid》,当电网中间歇性可再生能源(以风电、光伏为主)的比例超过15%时,就必须配置相应的储能设施。另外由于可再生能源的生产水平在不同时间段、不同季节之间存在显著差异,例如欧洲的太阳能发电在冬季比夏季低60%左右,但电力需求却增加40%,也需要配置大规模、长时间的储能设施才能提高可再生能源的利用小时数,减少“弃风”“弃光”。
丰田、通用、奔驰、林德等企业组成的氢能理事会研究表明,氢能是大规模储存电能的一种重要选择:相比超级电容、压缩空气、电池、飞轮储能、抽水蓄能,氢能更适合长期大量储存能量。当需要大规模储能时可以液氢或者氢化物的形式存储于地下盐穴,估计每个兆瓦时的成本在50~150美元之间,与受地质条件限制较大的抽水蓄能相当,显著低于其他的能量存储方式。
2.4高能源转化效率
燃料电池直接将燃料的化学能转化为电能,效率非常高且不需要燃烧。氢燃料电池 汽车 的能量转化效率约60%,大约是汽油内燃机的两倍。
燃料电池用于固定电源,用天然气或丙烷发电效率大致为45%;如果将透平系统与高温燃料电池组合,发电效率可达到70%,结合热电联产系统效率可达80%,相比传统煤电、天然气发电45%~50%的综合效率提高35%~40%。
2.5降低污染物排放
美国能源部的研究课题表明,燃料电池发电系统比燃煤、燃气发电系统少排放75%~90%的氮氧化物、75%~80%的颗粒物(PM)。
2.6 H2@Scale计划
H2@Scale是美国能源部(DOE)的一项倡议,将利益相关者聚集在一起,促进可负担得起的氢气生产、运输、储存和利用,增加多个能源部门的收入。通过政府资助将国家实验室和工业界以项目形式整合在一起共同合作,以加快适用氢技术的早期研究、开发和示范。H2@Scale联盟促进了工业界和学术界合作,利用国家实验室世界级的研发能力,依赖私营部门进行至关重要的示范。
通过示范使尖端技术集成到现有系统中、验证未来部署的商业可行性,并指导未来的研发计划。美国目前生产超过1100万吨氢气,占全球供应量的1/6,主要用于炼油和化肥工业。大型基础设施包括超过1600英里的氢气管道、不断增长的加氢站和数千吨的地下储存洞穴。H2@Scale计划中氢能的地位与日本的氢能战略类似,把氢能作为一种重要的二次能源,氢能与电能之间可以相互转化。通过利用电解槽在发电量超过负荷时生产氢气,可以减少可再生能源的浪费,并有助于电网的稳定。从现有基本负荷(如核能)中产生的氢气也可以储存、分配,并用作多种用途的燃料。这些应用包括运输、固定动力、工艺或建筑用热,以及工业部门,如钢铁制造、氨生产和石油炼制。
3燃料电池商业化推广现状
截至2017年,在世界范围内共有超过70000台、共计650兆瓦燃料电池处于商业运行状态,其中移动领域应用占比接近70%,非移动领域应用占比30%,相关营收超过20亿美元。
截至2018年10月,美国共出售或者租赁超过6200辆燃料电池乘用车,包括丰田Mirai、本田Clarity、现代Tucson;建成39个加氢站;商业应用超过23000辆燃料电池叉车;商业化普及超过240兆瓦燃料电池备用电源,遍及美国40个州;FedEx、UPS在试用燃料电池快递车;多家公司试验运行共33辆燃料电池巴士,其中最长行驶里程已经超过50万公里。
3.1燃料电池备用电源应用现状
截至2017年底,据美国DOE统计数据显示,全美共销售8400套燃料电池备用电源,其中900套获得美国DOE经费支持,其他7500套未获支持。燃料电池将天然气转换成电能供大型超市、数据中心、生产企业及其他工商设施使用,能源转化效率从传统发电的30%~40%提高到60%~65%,加上热能利用可达90%,极大地减少了污染物排放,同时还减排二氧化碳。相较美国某些州的电网供电电费,使用燃料电池供电可节省一部分费用。
BloomEnergy是美国燃料电池发电的领军企业,其燃料电池成本2016年第一季度为5086美元/千瓦时,2018年第一季度降至3855美元/千瓦时;而其安装成本也从同期的1280美元/千瓦时降至526美元/千瓦时。
家得宝2014年在加利福尼亚试用安装第一套200千瓦的燃料电池备用电源。验证了其经济性后,到2016年底为其140家连锁超市都安装了燃料电池系统,并准备将全部170家店都安装上燃料电池备用电源。家得宝的首席财务官CarolTome曾披露:“使用燃料电池发电比从电网取电节省15%~20%的费用,同时减排大量二氧化碳。”
沃尔玛在加利福尼亚、新泽西的60家超市安装了燃料电池备用电源,用电规模按其单店用电量40%~60%确定,保障在电网断电时冷柜、照明系统、收款机可继续工作,不至于致使食物腐败,并在恶劣天气情况下继续为顾客服务,且使用燃料电池供电价格低于从电网取电价格。
Johnson&Johnson于2015年安装了1台500千瓦BloomEnergy燃料电池电源,经其测算20年的运转周期将总共节省1000万美元的费用,每年减排130万磅二氧化碳;Medtronic公司的报告显示,其安装的400千瓦燃料电池电源每年可节省电费230万美元,每年减排100万磅二氧化碳;Ratkovich公司的报告显示,其安装的500千瓦燃料电池电源每年可节省电费20万美元;JuniperNetworks公司的报告显示,其安装的1兆瓦燃料电池电源配合300千瓦太阳能电池每年可节省电费12万美元,每年减排270万磅二氧化碳。
3.2燃料电池叉车推广情况
据美国能源部2016年5月统计显示,2008年美国氢燃料电池叉车数量在500辆左右,到2016年,美国26个州的氢燃料电池叉车数量已经超过11000辆,年复合增速高达56%。而截至2017年底,统计数据显示全美共销售21838台燃料电池叉车,其中713台获得美国DOE经费支持,其他21125台并未获得DOE经费支持。713台燃料电池叉车共获得DOE970万美元经费支持。
目前在美国使用燃料电池叉车的公司包括但不限于亚马逊、宜家、宝马、可口可乐、奔驰、尼桑、联邦快递及一批食品公司,仅沃尔玛在其北美的19个配送中心就配备了3000辆燃料电池叉车。PlugPower、NuveraFuelCells和OorjaProtonics,Hydrogenics及H2Logic提供了绝大多数的燃料电池叉车。
亚马逊在2014年采购了535辆氢燃料电池叉车,在证明其成本效益的合理性后,于2017年4月收购了美国燃料电池制造商PlugPower23%的股权。除此之外,亚马逊为其11个大型仓库配备氢燃料电池叉车。2021年1月,电池巨头SK集团与旗下天然气子公司SKE&S各出资8000亿韩元,共约合13亿美元,收购PlugPower9.9%的股份。短短几年间PlugPower公司市值升值50倍。
相较内燃机叉车,氢燃料电池叉车没有任何污染物排放,因此广受食品工业青睐,更多被用于室内作业。相较电池叉车,氢燃料电池叉车可节省充电的时间和空间,并在整个轮班期间全功率运行,在冷藏仓库环境中运行时不会出现任何电压骤降的情况,从而提高运营效率和节省成本。
美国国家实验室(NREL)对动力电池叉车和燃料电池叉车的总运行成本进行了评估,包括电池和燃料电池系统的购置成本、支持基础设施的成本、维护成本、仓库空间成本和劳动力成本。考虑到所有这些成本,NREL发现燃料电池叉车的总体拥有成本比同类动力电池叉车要低。
燃料电池叉车的样本约60台,每天工作2~3班,每周6~7天。NREL发现,对于用于多班作业的Ⅰ类和Ⅱ类叉车,燃料电池可将总体拥有成本降低10%,从每辆叉车每年19700美元降至每辆叉车每年17800美元。三级叉车的拥有成本可降低5%,从每年12400美元降至每年11700美元。NREL的评估仅限于考虑电池和燃料电池叉车的拥有和运行成本,未评估燃料电池叉车提高生产力的潜在效益。
通过NRTL的敏感性分析,只要燃料电池叉车车队的数量足够大(敏感性分析中燃料电池叉车台数为30~100台)、多班次工作,燃料电池叉车的总操作费用会低于动力电池叉车。PLUGPOWER公司测算,对于拥有超过90辆二级叉车的客户,5年预计节省成本超过40万美元。
PLUGPOWER公司建设的加氢设施主要配合燃料电池叉车使用,建设在配送中心、工厂等厂房内,加注压力350千克,操作温度0~40 ,加注1台叉车耗时1分钟,与美国、日本通常建设的车用加氢设施有所区别。
3.3燃料电池乘用车及加氢站情况普及情况
美国的加氢站主要集中在加州地区和美国东北部地区,东北部地区项目由美国液化空气集团和丰田公司推动和主导,加州地区参与建设加氢站的企业包括空气产品公司、Shell、Linde、丰田、本田等公司。全美目前已投运加氢站39座,计划到2025年建成200座,2030年建成1000座。
截至2018年底,在美共销售Mirai、Clarity、TucsonFuelCellSUV共计6200辆。除丰田、本田、现代已有燃料电池车商业化推广外,奔驰最新推出了GLCF–Cell燃料电池车,宝马、奥迪、通用等企业也有燃料电池合作研发计划。
3.4燃料电池巴士试验运行结果
DOE于2012年制定的2016年燃料电池巴士技术预期指标及终极目标见表1。33辆试验运行的燃料电池巴士中,ACTransit公司的13辆由UTCPOWER公司提供燃料电池系统,Sunline、UCI、OTCA、MBTA、SARTA公司的12辆由Ballard公司提供燃料电池系统。根据统计,截至2018年2月28日,最好的1辆车运行总时长超过27330小时,超过DOE终极目标;12辆ACTransit运营车辆平均运行时长19000小时,达到了2016年预期目标值。ACTransit公司车辆从2006年开始逐步投入试验,试验结果基本达到预期;Sunline、UCI、OTCA、MBTA、SARTA等公司从2015年逐步投入车辆试验运行,周期较短,未达到验证燃料电池寿命的时限。
3.5燃料电池货车及商用车测试情况
丰田2017年推出第一代燃料电池卡车Alpha,在长滩和洛杉矶港口进行了近1万英里的测试和拖曳操作;2018年8月推出了第二代燃料电池卡车Beta,续航增加50%。Kenworth、Scania、Asko等传统卡车制造商在DOE、挪威政府科研资助下开展了氢燃料电池卡车的研发。PowerCell是一家低温质子交换膜电堆开发、制造及零售商,开发和生产世界顶级能量密度的固定和移动应用的燃料电堆,开发的100千瓦S3燃料电池供欧洲运输企业制造燃料电池卡车。Nikola为美国电动 汽车 制造商,宣称其制造的燃料电池卡车2020年正式上路测试,2022年正式上市销售,单价40万美元;通过其官方推特宣称已获得80亿美元的预订单,并计划与挪威NelHydrogen公司合作,2018年开始在全美陆续建设364个加氢站,并在2019年末陆续向公众开放,到2028年将累计达到700座。FedEx和UPS都在DOE的资助下开展燃料电池快递车辆运行试验。
4结论
1)美国高度重视氢能及燃料电池产业的发展,视氢能为未来不可或缺的、仅次于电能的重要二次能源,在未来的工业、交通运输、电网储能、供热发电等领域都将占有相当的比重。
2)美国在燃料电池领域开展了长期、深入、全面的技术研发以及工业验证实验。美国从20世纪70年代就开展了氢能相关领域的研究工作,在制氢、储氢、输氢、燃料电池、储能、相关安全环保事项、相关标准等领域技术储备雄厚。在燃料电池发电、燃料电池叉车、燃料电池商用车、燃料电池巴士、燃料电池载重货车等领域进行了长期的工业验证实验。
3)美国商业化推广燃料电池态度是积极的,方式是慎重而稳妥的。在有充分的技术储备后,美国政府仅利用少量的补贴进行了市场引导用于商业初期验证实验,实践证明这部分技术已经具备市场竞争力,有望看到未来美国在燃料电池领域取得更长足的进步,获得更多更广泛的应用。
4)燃料电池技术是保障国家能源安全重要的技术手段。氢能可有效整合多种化石能源和可再生能源,加大可再生能源部署、提高能源自给率、有效降低原油消耗,为 社会 提供一种环保、高效的能源,对保障国家能源安全具有重要意义。
5)氢能是可以安全部署和利用的。几万台氢燃料电池叉车十几年的安全运行经验,十几台氢燃料电池巴士上百万公里的运行试验,证明了氢气是可以被安全、高效利用的。
6)固定地点或固定线路、高运营负荷的的燃料电池应用场景更适用于氢能产业的初步推广。对比美国和日本的实践,美国的模式是1个加氢站服务1个物流中心数十台、数百台燃料电池叉车,制氢售氢企业和燃料电池用户的初始投资不高,而数十台满负荷运行的燃料电池叉车就可以平衡1个35兆帕加氢站的投资收益,制氢售氢企业和燃料电池应用企业的投资回报合理,产品在没有补贴的情况下得到迅速推广;而日本在本州岛大量建设加氢站,由于初期氢燃料电池乘用车售价较高、数量不足,平均每个站1天只服务几台车,制氢售氢企业处于全面亏损状态,同时由于加氢站的密度不够、使用不便,用户没有经济收益,一般用户也不愿意选择氢燃料电池乘用车替代燃油乘用车。燃料电池乘用车的继续推广需要制氢售氢企业坚定战略方向,等待燃料电池成本下降,燃料电池乘用车得到普及。
全国能源信息平台联系电话:010-65367702,邮箱:hz@people-energy.com.cn,地址:北京市朝阳区金台西路2号人民日报社
随着我国社会的不断发展进步,人们的生活水平逐渐提高,几乎所有的家庭都拥有汽车,甚至一个家庭会拥有多辆汽车,汽车的数量越来越多,汽车的尾气排放带来的环境污染以及大量的能源消耗问题
已经成为了当前社会亟待解决的一大问题。为了更好的节约能源,保护环境,新能源汽车应运而生。
正是由于新能源电动汽车为人们绿色出行提供了便利条件,所以不仅政府提出了与新能源
电动汽车有关的各种优惠政策,而且国内外很多汽车生产企
业也把重心逐渐转移到了新能源电动汽车开发与生产环节。
石油属于不可再生能源,根据有关研究结果表明,如果按照当前的石油消耗速度来看,在未来几十年内,地球上的石油资源将枯竭。如果我们不能找到一种新的能源代替这些不可再生能源,那么汽车行业将走向灭亡。电不仅是一种可再生能源,而且其清洁卫生的特点受到很多新能源汽车开发研究者的青睐。从目前的情况来看,虽然国内外新能源电动汽车还没有得到普及,而且大部分的人仍然习惯购买燃油汽
车 ,但是与过去相比,新能源电动汽车的生产总量和销售总
量已经得到了极大的提升,这就表明新能源电动汽车具有非常大的潜力市场,在未来一段时间内,新能源电动汽车必然会在汽车市场占据着一个非常重要的位置。
与传统的汽车相比,新能源电动汽车既存在非常明显的竞争优势,同时还存在一个非常致命劣势,那就是其续航能力远远不能与燃油汽车相比。不仅如此,由于新能源电动汽车消费市场较小,所以很多目前用于新能源电动汽车的充电桩数量非常少,根本就不能满足人们的实际需要。正是由于新能源电动汽车续航能力不强、充电不方便,所以才使得很多人不选择新能源电动汽车。
(摘自《新能源电动汽车节能减排效应及发展路径研究》,侵权删)
在11月5日由北极星电力网联合上海电力大学主办的“2020年中国风电产业发展大会中”,多位嘉宾表示:十四五规划建议的发布,意味着在我国低碳发展战略与转型背景下,新能源产业发展正在呈现出清晰的趋势。
·可再生能源产业发展逻辑面临转变
进入风电全面平价发展阶段,业内会发现以往我们热议的电价、补贴、年度建设规模等传统政策机制不再成为新能源行业发展的客观约束。在2030年能源消费和2060年“碳中和”目标下,我国会走一个什么样的碳减排路径?
对于碳减排路径的 探索 ,或者说作为重要支撑的可再生能源应该以哪些总量目标作为指引,首先要对我国的能源消费的目标有一定的认识。考虑新冠疫情给短期经济发展带来冲击,“十四五”我国经济年均增速5.5%,预计到2025年,全 社会 用电量在9 9.5万亿千瓦时之间,年均增速4% 4.5%。到2025年,预期全部非化石能源占一次能源消费比重达到19-20%左右(55-56亿吨标准煤)。
可以说,可再生能源电力已经成为我国碳减排路径上至关重要的支撑性力量,在“30·60碳中和”目标下,可再生能源发展将成为刚性需求,未来新能源行业不再仅是补充和替代,而将成为能源供给侧的主力,在中短期内都是一个具备很大确定性的市场。
在新时期的规划目标下,国家发展和改革委员会能源研究所主任陶冶强调,可再生能源的发展思路应该从以下几个方面随之转变:
从发展理念上,“十三五”能源规划注重环境保护,“十四五”能源规划注重生态保护,重点考虑碳减排问题
从发展思路上,“十三五”注重能源数量保障,“十四五”则更加注重能源的质量提升
在时间维度上,“十三五”注重5年发展,“十四五”注重更长远发展。需要注意的是,“十四五”能源规划是开启能源高质量发展的第一个五年计划,不但要解决“十四五”期间能源如何清洁低碳、安全高效发展的问题,还要为2035年、2050年的长期发展找准方向
从产业空间来看,“十三五”期间注重能源自身发展,“十四五”将注重能源全产业链发展而从发展实质上来看,“十三五”期间产业偏重生产力发展,“十四五”则将偏重生产关系调整。
·综合能源基地模式是重要趋势
在风电平价上网的过程中,主要制约因素在于政策约束、技术进步、消纳空间以及建设成本四个方面。其中,水风光储一体化发展将是未来重要的趋势之一,也是未来降低大基地度电成本的一种有效方式。这一点与发改委《“风光水火储一体化”“源网荷储一体化”发展征求意见稿》相契合。“风光水火储一体化”建设更加侧重电源基地开发,其在强化电源侧灵活调节作用、优化各类电源规模配比、确保电源基地送电可持续性方面更具优势。
电力规划设计总院能源研究所副所长徐东杰也持有同样的观点,他认为,未来大型基地的开发将呈现“综合能源基地”的发展趋势,积极打造水能、可再生能源、储能的一体化互补基地将是未来趋势。
同时,在电力市场中,度电成本将成为决定报价的关键指标,较低的度电成本在电力市场中将具有更大的盈利空间。“十三五”期间,我国风电建设成本快速下降,2019年我国陆上风电单位千瓦建设成本较2011年下降了27%,达到6500元/kW。成本的下降主要在于自身技术水平的不断提升,以及陆上大基地开发模式的发展、大兆瓦风机技术的革新。
徐东杰提出建议表示,后补贴时代风电应以降低度电成本为目标优化全生命周期管控。建议风电企业进一步开展精细化管理,在开发、设计、建设、运行等全生命周期各环节共同发力,以降低度电成本为目标优化管控全生命周期各环节,风电规划更加注重在电力市场背景下进行。
·新能源并网技术仍需创新
高比例新能源是未来电力系统的发展趋势,预计到2030年,新能源装机占比将达38%,超过煤电成为我国装机第一大电源。但近年来,不管国内还是国外均发生过因新能源占比高、系统频率和电压支撑能力不足而引发脱网、停电事故,这些事故暴露出大规模新能源的稳态电压控制系统缺失和风电机组低/高电压穿越能力的不足。
以英国2019年“8.9”大停电为例。英国是典型高比例新能源电网,风电和光伏装机占比40%,事故发生时,机组脱网207万千瓦(占比7%),其中风电和光伏脱网规模占70%,损失负荷93万千瓦。而其新能源机组不具备惯量和一次调频能力是触发低频减载的主要原因。
通过对连锁脱网过程进行深入分析,国网冀北电科院新能源所所长刘辉指出,在稳态调压方面,构建大规模风电汇集系统无功电压多层级控制技术体系、大规模风电汇集系统无功电压协调控制技术与系统,以及开发基于RTDS/RT-Lab的无功设备与AVC系统测试平台,是缓解大规模风电汇集地区无功电压运行存在的问题的有效手段。
在主动调频/调压方面,虚拟同步发电机技术是关键。
虚拟同步发电机技术是使新能源由“被动调节”转为“主动支撑”的新一代新能源发电技术,使之具备惯量支撑、一次调频和主动调压等主动支撑电网的能力。在 探索 过程中,冀北电科院自主研制了世界最大容量的2MW风电虚拟同步机、储能直流升压并联接入的30~500kW系列光伏虚拟同步机,一次调频响应时间分别小于5s和1s,显著优于常规同步机组。同时,还依托国家风光储输示范工程,建成了世界首座百兆瓦级多类型虚拟同步发电机电站。
未来,随着风电机组高电压穿越、风电机组侧次同步谐振抑制等技术的不断完善与普及,再辅以储能装置对输出功率的控制,不断革新发展的技术将对改善发电质量、解决风电并网难题起到愈加重要的作用。