到2050年,139个国家如何能获得100%的可再生能源
根据最近的一项研究,Eviart/Shutterstock的科学家们公布了一份详细的路线图,到2050年将139个国家的可再生能源转移到100%。斯坦福大学的
能源专家报告说,使用风能、太阳能、地热和水(水力发电,(潮汐和波浪)为所有需要电力运作的经济部门供电的能源,包括电网本身、运输、供暖和制冷、工业以及农业、林业和渔业,将大大减少能源消耗,减少空气污染造成的死亡,创造数以百万计的就业机会,斯坦福大学大气与能源项目主任马克·雅各布森在接受《生活科学》杂志采访时说:“稳定能源价格,节省数万亿美元的医疗保健和气候相关费用。我们为139个国家中的每一个制定了各自的计划,这些计划占全球排放总量的99%以上。”。[十大最疯狂的环保理念]
这项研究着眼于世界能源需求,从2012年开始,预测到2050年。2012年,世界用电量为12.105万亿瓦,相当于12.105万亿瓦。研究人员在研究报告中写道,到2050年,如果不发生任何变化,世界将需要20.604tw,而且每个国家都继续采用其目前用于满足能源需求的相同方法。
,但如果这些相同的商业部门转向可再生能源来满足其所有电力需求,世界将需要研究显示,仅需11.804TW就能满足全球电力需求。研究人员称,这是因为电比燃烧更有效。在解释研究要点的视频中,雅各布森举了一个例子:他说,在电动汽车中,80%到82%的电被用于移动汽车;其余的则被浪费为热量。另一方面,在以汽油为动力的汽车中,燃料中只有17%到20%的能量用于移动汽车,其余的能量被浪费为热量,他说,
能源也需要用于开采、提炼和运输化石燃料。因此,转向100%的可再生能源将消除这些能源密集型和环境破坏性的过程,报告作者说,在他们的研究中,雅各布森和他的同事展示了风、水、地热和太阳能如何满足全球对11.804太瓦能源的需求避免到2050年全球气温预计将比工业化前高出2.7华氏度(1.5摄氏度)。研究人员概述了这样做将如何拯救400万至700万人的生命,否则这些人可能死于由空气污染引起的疾病,为各国节省超过20万亿美元的健康和气候成本,雅各布森在接受《生活科学》采访时说:
“对我来说,这似乎是一件不费吹灰之力的事。
”这项研究建立在雅各布森之前的工作基础上,雅各布森开始了他的研究科学家生涯,试图了解空气污染是如何影响气候的。”。他说,在最初的几年里,他专注于解决问题,但到了1999年左右,他开始寻找解决方案。
在2009年,雅各布森和马克·德鲁奇,加州大学伯克利分校交通研究所的研究科学家,雅各布森和德鲁奇在《科学美国人》杂志上发表了一份研究报告,概述了一项为全世界提供100%可再生能源的计划。
在接下来的几年里,致力于在州一级研究这些问题的后续研究,目前研究人员已将这项研究扩展到139个国家。世界上其余59个国家的详细能源数据并不存在,因此无法纳入该研究,科学家们说,“KDSPE”“KDSPs”是向100%可再生能源基础设施过渡的总成本——一个计划将国家首次移至80%可再生能源的计划。到2030年5月,乍一看,le energy似乎有些令人望而却步,但雅各布森和他的团队也计算出了这些数字。
雅各布森说,在所有国家平均起来,建设可再生能源系统(包括储存和传输)的成本是8.9%千瓦时。在一个没有过渡和保持现有化石燃料系统的世界里,成本是9.8美分/千瓦时。
不包括社会成本。
气候变化的价格化石燃料能源伴随着健康和气候相关的成本。作者估计,到2050年,各国每年将在与全球变暖有关的环境、财产和人类健康问题上花费28万亿美元,包括洪水、房地产破坏、农业损失、干旱、野火、热应激和中风、空气污染、流感、疟疾、登革热、饥荒,海洋酸化等等。[气候变化将影响你健康的5种方式]
,如果世界不采取行动应对气候变化,地球两极的冰继续以目前的速度融化,世界7%的海岸线将被淹没,雅各布森说:
雅各布森说,可再生能源的社会总成本——包括健康和气候问题的成本,以及风能、水和太阳能的直接成本——约为化石燃料的四分之一。
“在其他世界,你可以将社会总成本降低约75%,“他说。”研究显示,这项技术的成本效益是巨大的。
几个国家已经开始转向可再生能源组合,以满足所有商业部门100%的电力需求。名单中包括塔吉克斯坦(76.0%)、巴拉圭(58.9%)、挪威(35.8%)、瑞典(20.7%)、哥斯达黎加(19.1%)、瑞士(19.0%)、格鲁吉亚(18.7%)、黑山(18.4%)和冰岛(17.3%)。
到目前为止,美国的可再生能源发电量仅占其总发电量的4.2%。但研究人员称,中国有优势。这项研究发现,像美国这样的国家,每人口拥有更多的土地,将有最容易的时间进行过渡。预计最困难的国家是那些地理位置小但人口众多的国家。据雅各布森说,新加坡、直布罗陀和香港等国家将面临100个可再生能源面临的最大挑战。“KDSPE”“KDSPS”仍有解决问题的方法。他补充说,这些地区可以转向海上风能,也可以与邻国交换能源。
“有了这些信息,我们给各国带来了信心,相信它们能够自给自足,”雅各布森说我希望不同的国家能在2050年和2030年分别承诺100%和80%的可再生能源。
这项研究于8月23日在线发表在《焦耳》杂志上。
最初发表在《生命科学》上。
全文 1940 字,阅读大约需要 5 分钟 未经许可严禁以任何形式转载 南方能源观察 欢迎投稿,投稿邮箱: eomagazine@126.com 编辑 黄燕华 审核 冯洁 6月1日下午,国家发改委等九部委联合发布了《“十四五”可再生能源发展规划》(以下简称《规划》,明确了“十四五”可再生能源发展的主要目标,同时更加注重可再生能源的大规模开发、高水平消纳以及市场化发展。 大规模开发 中国已经承诺二氧化碳排放力争于2030年前达到峰值、努力争取2060年前实现碳中和,明确2030年风电和太阳能发电总装机容量达到12亿千瓦以上。截至2020年底,全国风电和光伏发电装机达到5.3...全文
投资开办发电站可以,但是想卖钱还是要经过审批才能并入国家电网的。不然你发电了,缺卖不出去,除非用在自己开办的企业。
标准质量情况下,并网发电系统一般可以用20年以上,离网发电系统太阳能电池板也可以使用20年以上,但是蓄电池(3-5年)、控制器(5-10年)、逆变器(5-10年)等部件需要定期更换;总的来说,如果手续办全,并网是可以并的,多出来的电也是可以卖给电力公司的,这些都有先例。
未来趋势
太阳能光伏发电在不远的将来会占据世界能源消费的重要席位,不但要替代部分常规能源,而且将成为世界能源供应的主体。
预计到2030年,可再生能源在总能源结构中将占到30%以上,而太阳能光伏发电在世界总电力供应中的占比也将达到10%以上;到2040年,可再生能源将占总能耗的50%以上,太阳能光伏发电将占总电力的20%以上。
到21世纪末,可再生能源在能源结构中将占到80%以上,太阳能发电将占到60%以上。这些数字足以显示出太阳能光伏产业的发展前景及其在能源领域重要的战略地位。
根据《可再生能源中长期发展规划》,到2020年,我国力争使太阳能发电装机容量达到1.8GW(百万千瓦),到2050年将达到600GW(百万千瓦)。
预计,到2050年,中国可再生能源的电力装机将占全国电力装机的25%,其中光伏发电装机将占到5%。未来十几年,我国太阳能装机容量的复合增长率将高达25%以上。
以上内容参考 百度百科-太阳能光伏发电
光伏是太阳能光伏发电系统的简称,是一种利用太阳电池半导体材料的光伏效应,将太阳光辐射能直接转换为电能的一种新型发电系统,有独立运行和并网运行两种方式。
同时,太阳能光伏发电系统分类,一种是集中式,如大型西北地面光伏发电系统一种是分布式(以>6MW为分界),如工商企业厂房屋顶光伏发电系统,民居屋顶光伏发电系统 。
拓展资料:
到2007年年底,全国光伏系统的累计装机容量达到10万千瓦(100MW),从事太阳能电池生产的企业达到50余家,太阳能电池生产能力达到290万千瓦(2900MW),太阳能电池年产量达到1188MW,超过日本和欧洲,并已初步建立起从原材料生产到光伏系统建设等多个环节组成的完整产业链,特别是多晶硅材料生产取得了重大进展,突破了年产千吨大关,冲破了太阳能电池原材料生产的瓶颈制约,为我国光伏发电的规模化发展奠定了基础。2007年是我国太阳能光伏产业快速发展的一年。
受益于太阳能产业的长期利好,整个光伏产业出现了前所未有的投资热潮。太阳能光伏发电在不远的将来会占据世界能源消费的重要席位,不但要替代部分常规能源,而且将成为世界能源供应的主体。预计到2030年,可再生能源在总能源结构中将占到30%以上,而太阳能光伏发电在世界总电力供应中的占比也将达到10%以上;到2040年,可再生能源将占总能耗的50%以上,太阳能光伏发电将占总电力的20%以上;到21世纪末,可再生能源在能源结构中将占到80%以上,太阳能发电将占到60%以上。这些数字足以显示出太阳能光伏产业的发展前景及其在能源领域重要的战略地位。
根据《可再生能源发展“十二五”规划》,到2015年,我国力争使太阳能发电装机容量达到21GW(百万千瓦)预计,到2050年,中国可再生能源的电力装机将占全国电力装机的25%,其中光伏发电装机将占到5%。未来十几年,我国太阳能装机容量的复合增长率将高达25%以上。
太阳能简介
摘要
太阳能作为一种取之不尽用之不竭的能源,受到世界各国的重视。太阳能广泛用于发电、制冷、制热等方面,已经和世界的经济生活联系在一起
关键词
太阳能污染硅电池
1. 前言
太阳能(Solar Energy),一般是指太阳光的辐射能量,在现代一般用作发电,是太阳内部或者表面的黑子连续不断的核聚变反应过程产生的能量。广义太阳能包括:地球上的风能、水能、海洋温差能、波浪能和生物质能以及部分潮汐能,化石燃料(如煤、石油、天然气等)。狭义太阳能则限于太阳辐射能的光热、光电和光化学的直接转换。
太阳能源自太阳。太阳是一个炽热的气态球体,它的直径约为1.39×106km,质量约为2.2×l027t,为地球质量的3.32×105倍,体积是地球的1.3×106倍,平均密度为地球的1/4。太阳作为一个巨大、久远、无尽的能源。尽管太阳辐射到地球大气层的能量仅为其总辐射能量(3.75×10^26KW)的22亿分之一,但已高达173,000TW,也就是说太阳每秒钟照射到地球上的能量就相当于500万吨煤。
总的说来太阳能具有能量十分巨大、供应时间长、分布广阔、获取方便、安全、干净、不污染环境的优点。但也存在问题:1)能量分散,能量密度低;2)稳定性差,受日夜季候、地理纬度等影响,太阳能不断地生变化;3)装置成本过高;4)制造过程中污染严重,使用中可能有视觉污染。
我国的太阳能资源和分布广泛,有着十分丰富的太阳能资源。根据中国气象科学研究院的研究,有2/3以上国土面积,年日照在2000小时以上,年平均辐射量超过0.6GJ/cm2,各地太阳年辐射量大致在930~2330kW·h/m2之间。
从全国太阳年辐射总量的分布来看,西藏、青海、新疆、内蒙古南部、山西、陕西北部、河北、山东、辽宁、吉林西部、云南中部和西南部、广东东南部、福建东南部、海南岛东部和西部以及台湾省的西南部等广大地区的太阳辐射总量很大。
2. 太阳能利用历史
人类利用太阳能已有3000多年的历史。将太阳能作为一种能源和动力加以利用,只有300多年的历史。近代太阳能利用历史可以从1615年法国工程师所罗门·德·考克斯在世界上发明第一台太阳能驱动的发动机算起。该发明是一台利用太阳能加热空气使其膨胀作功而抽水的机器。在1615年~1900年之间,世界上又研制成多台太阳能动力装置和一些其它太阳能装置。这些动力装置几乎全部采用聚光方式采集阳光,发动机功率 不大,工质主要是水蒸汽,价格昂贵,实用价值不大,大部分为太阳能爱好者个人研究制造。
20世纪太阳能科技发展历史大体可分为七个阶段 :
第一阶段(1900-1920)
太阳能研究的重点仍是太阳能动力装置,但采用的聚光方式多样化,且开始采用平板集热器,装置逐渐扩大,最大输出功率达73.64kW,实用目的比较明确,造价仍然很高。建造的典型装置有:
1. 1901年,在美国加州建成一台太阳能抽水装置
2. 1902 -1908年,在美国建造了五套双循环太阳能发动机,采用平板集热器和低沸点工质;
3. 1913年,在埃及开罗以南建成一台由5个抛物槽镜组成的太阳能水泵,每个长62.5m,宽4m,总采光面积达1250m2。
第二阶段(1920-1945)
在这20多年中,太阳能研究工作处于低潮,参加研究工作的人数和研究项目大为减少,其原因与矿物燃料的大量开发利用和发生第二次世界大战(1935-1945)有关,太阳能又不能解决当时对能源的急需,因此使太阳能研究工作逐渐受到冷落。
第三阶段(1945-1965)
二战结束后的20年中,一些有远见的人士注意到石油和天然气资源正在迅速减少,呼吁人们重视这一问题,从而逐渐推动了太阳能研究工作的恢复和开展。比较突出的研究进展有:
1955年,以色列泰伯等在第一次国际太阳热科学会议上提出选择性涂层的基础理论,并研制成实用的黑镍等选择性涂层,为高效集热器的发展创造了条件;
1954年,美国贝尔实验室研制成实用型硅太阳电池,为光伏发电大规模应用奠定了基础。
这一阶段里还有其它一些重要成果,比较突出的有:
1952年,法国国家研究中心在比利牛斯山东部建成一座功率为50kW的太阳炉。
1960年,在美国佛罗里达建成世界上第一套用平板集热器供热的氨-水吸收式空调系统,制冷能力为5冷吨。
1961年,一台带有石英窗的斯特林发动机问世。在这一阶段里,加强了太阳能基础理论和基础材料的研究,取得了如太阳选择性涂层和硅太阳电池等技术上的重大突破。平板集热器有了很大的发展,技术上逐渐成熟。太阳能吸收式空调的研究取得进展,建成一批实验性太阳房。对难度较大的斯特林发动机和塔式太阳能热发电技术进行了初步研究。
第四阶段(1965-1973)
这一阶段,太阳能的研究工作停滞不前,主要原因是太阳能利用技术处于成长阶段,尚不成熟,并且投资大,效果不理想,难以与常规能源竞争,因而得不到公众、企业和政府的重视和支持。
第五阶段(1973-1980)
“能源危机”(有的称“石油危机”)在客观上使人们认识到:现有的能源结构必须彻底改变,应加速向未来能源结构过渡。从而使许多国家,尤其是工业发达国家,重新加强了对太阳能及其它可再生能源技术发展的支持,在世界上再次兴起了开发利用太阳能热潮。
1973年,美国制定了政府级阳光发电计划,太阳能研究经费大幅度增长,并且成立太阳能开发银行,促进太阳能产品的商业化。
日本在1974年公布了政府制定的“阳光计划”,其中太阳能的研究开发项目有:太阳房 、工业太阳能系统、太阳热发电、太阳电池生产系统、分散型和大型光伏发电系统等。
这一时间太阳能研究领域不断扩大,研究工作日益深入,取得一批较大成果,如CPC、真空集热管、非晶硅太阳电池、 光解水制氢、太阳能热发电等。
太阳热水器、太阳电他等产品开始实现商业化,太阳能产业初步建立,但规模较小,经济效益尚不理想。
第六阶段(1980-1992)
开发利用太阳能热潮,进入80年代后逐渐进入低谷。世界上许多国家相继大幅度削减太阳能研究经费,其中美国最为突出。
导致这种现象的主要原因是:世界石油价格大幅度回落,而太阳能产品价格居高不下,缺乏竞争力;太阳能技术没有重大突破,提高效率和降低成本的目标没有实现,以致动摇了一些人开发利用太阳能的信心;核电发展较快,对太阳能的发展起到了一定的抑制作用
第七阶段(1992-今)
由于大量燃烧矿物能源,造成了全球性的环境污染和生态破坏,对人类的生存和发展构成威胁。在这样背景下,1992年联合国在巴西召开“世界环境与发展大会”,会议通过了《里约热内卢环境与发展宣言》、《21世纪议程》和《联合国气候变化框架公约》等一系列重要文件,把环境与发展纳入统一的框架,确立了 可持续发展的模式。这次会议之后,世界各国加强了清洁能源技术的开发,将利用太阳能与环境保护结合在 一起,使太阳能利用工作走出低谷,逐渐得到加强。世界环发大会之后,中国政府对环境与发展十分重视,提出10条对策和措施,明确要“因地制宜地开发和推广太阳能、风能、地热能、潮汐能、生物质能等清洁能源”,制定了《中国21世纪议程》,进一步明确 了太阳能重点发展项目。
3. 太阳能利用方式
3.1 光-热能转换
光热转换是利用太阳辐射加热物体而获得热能的一种太阳能利用方式。常见应用有太阳能热水器、反射式太阳灶、高温太阳炉、地膜、大棚、温室等。
3.1.1集热器
太阳辐射的能流密度低,在利用太阳能时为了获得足够的能量,或者为了提高温度,必须采用一定的技术和装置(集热器),对太阳能进行采集。太阳能集热器是把太阳辐射能转换成热能的设备,它是太阳能热利用中的关键设备。常见有可分为聚光型和非聚光型。
3.1.1.1非聚光型集热器
非聚光型集热器常见有平板和真空管集热器。
平板集热器
平板集热器是非聚光类集热器中最简单且应用最广的集热器。它吸收太阳辐射的面积与采集太阳辐射的面积相等,能利用太阳的直射和漫射辐射。按工质划分有空气集热器和液体集热器,目前大量使用的是液体集热器;按吸热板芯材料划分有钢板铁管、全铜、全铝、铜铝复合、不锈钢、塑料及其它非金属集热器等; 按结构划分有管板式、扁盒式、管翅式、热管翅片式、蛇形管式集热器,还有带平面反射镜集热器和逆平板集热器等;按盖板划分有单层或多层玻璃、玻璃钢或高分子透明材料、透明隔热材料集热器等。
目前,国内外使用比较普遍的是全铜集热器和铜铝复合集热器。铜翅和铜管的结合,国外一般采用高频焊,国内以往采用介质焊,1995年我国也开发成功全铜高频焊集热器。1937年从加拿大引进铜铝复合生产线,通过消化吸收,现在国内已建成十几条铜铝复合生产线。 为了减少集热器的热损失,可以采用中空玻璃、聚碳酸酯阳光板以及透明蜂窝等作为盖板材料,但这些材料价格较高,一时难以推广应用。
真空管集热器
为了减少平板集热器的热损,提高集热温度,国际上70年代研制成功真空集热管,其吸热体被封闭在高真空的玻璃真空管内,大大提高了热性能。将若干支真空集热管组装在一起,即构成真空管集热器,为了增加太阳光的采集量,有的在真空集热管的背部还加装了反光板。
真空集热管大体可分为全玻璃真空集热管,玻璃-U型管真空集热管,玻璃-金属热管真空集热管,直通式真空集热管和贮热式真空集热管。最近,我国还研制成全玻璃热管真空集热管和新型全玻璃直通式真空集 热管。
我国已经建立了拥有自主知识产权的现代化全玻璃真空集热管的产业,用于生产集热管的磁控溅射镀膜机在百台以上,产品质量达世 界先进水平,产量雄居世界首位。我国自80年代中期开始研制热管真空集热管,经过十几年的努力,攻克了热压封等许多技术难关,建立了拥有全部知识产权的热管真空管生产基地,产品质量达到世界先进水平,生产能力居世界首位。
真空管平板集热器
它是将单根真空管装配在复合抛物面反射镜的底面,兼有平板和固定式聚光的特点,它能吸收太阳光的直射和80%的散射。
3.1.1.2聚光集热器
聚光集热器通常由聚光器、吸收器和跟踪系统三部分组成。其工作原理是,自然阳光经聚光器聚焦到吸收器上,并加热吸收器内流动的集热介质,跟踪系统则根据太阳的方位随时调节聚光器的位置,以保证聚光器的开口面与人射太阳辐射总是互相垂直的。
在反射式聚光集热器中应用较多的是旋转抛物面镜聚光集热器(点聚焦)和槽形抛物面镜聚光集热器 (线聚焦)。前者可以获得高温,但要进行二维跟踪;后者可以获得中温,只要进行一维跟踪。这两种聚光集热 器在本世纪初就有应用,几十年来进行了许多改进,如提高反射面加工精度,研制高反射材料,开发高可靠性 跟踪机构等,现在这两种抛物面镜聚光集热器完全能满足各种中、高温太阳能利用的要求,但由于造价高,限制了它们的广泛应用。
3.1.2 太阳能热水器
基本原理:通过集热,促使管内水温高于水箱水温,热水比冷水轻,形成对流,最终使水箱中的温度达到使用所需的温度。
太阳能热水器通常由平板集热器、蓄热水箱和连接管道组成。按照流体流动的方式分类,可将太阳能热水器分成三大类:闷晒式、直流式和循环式。
3.1.3 太阳能采暖
太阳能采暖可以分为主动式和被动式两大类。主动式是利用太阳能集热器和相应的蓄热装置作为热源来代替常规热水(或热风)采暖系统中的锅炉。被动式则是依靠建筑物结构本身充分利用太阳能来达到采暖的目的,因此它又称为被动式太阳房。
被动式太阳房构造简单,取材方便,造价便宜,无需维修,有自然的 舒适感,特别适合发展中国家的广大农村。
主动式太阳房利用集热器产生的热水采暖,结构简单,蓄热器置于室外,室内又是由地板供暖,故不占用室内居住面积是这种系统的一大优点。
3.1.4 太阳能干燥
太阳能干燥按干燥器(或干燥室)获得能量的方式可分为:
1.集热器型干燥器
2.温室型干燥器
3.集热器—温室型干燥器
实际中还有集热器与常规能源、集热器与储热装置、集热器与热泵等各种组合式太阳能干燥装置。
集热器型干燥器是利用太阳能空气集热器,先把空气加热到预定温度后再送入干燥室,干燥室视干燥物品的类型多种多样,如箱式、窑式、固定床式或流动床式等。
温室型干燥器其温室就是干燥室,它直接接受太阳的辐射能。
集热器—温室型干燥器则是上述两种形式的结合。其温室顶部为玻璃盖板,待干燥物品放在温室中的料盘上,它既直接接受太阳辐射加热,又依靠来自空气集热器的热空气加热。
属于光热转化的还有:太阳能海水淡化、太阳能制冷和空调、太阳能热动力发电、太阳坑发电技术、太阳能热推进等。
3.2 光-电转换
原理是根据光电效应,利用太阳能直接转化为电能。应用包括为无电场所提供电池,包括移动电源和备用电源、太阳能日用电子产品等。
世界上,1941年出现有关硅太阳电池报道,1954年研制成效率达6%的单晶硅太阳电池,1958年太阳电池应用于卫星供电。在70年代以前,由于太阳电池效率低,售价昂贵,主要应用在空间。70年代以后,对太阳电池材料、结构和工艺进行了广泛研究,在提高效率和降低成本方面取得较大进展。
目前,世界上太阳电他的实验室效率最高水平为:单晶硅电池24%(100px2),多晶硅电池18.6%(100px2), InGaP/GaAs双结电池30.28%(AM1),非晶硅电池14.5%(初始)、12.8(稳定),碲化镉电池15.8%, 硅带电池14.6%,二氧化钛有机纳米电池10.96%。
我国于1958年开始太阳电池的研究,40多年来取得不少成果。目前,我国太阳电他的实验室效率最高水平为:单晶硅电池20.4%(50px×50px),多晶硅电池14.5%(50px×50px)、12%(250px×250px),GaAs电池 20.1%(lcm×cm),GaAs/Ge电池19.5%(AM0),CulnSe电池9%(lcm×25px),多晶硅薄膜电池13.6% (lcm×25px,非活性硅衬底),非晶硅电池8.6%(250px×250px)、7.9%(500px×500px)、6.2%(750px×750px), 二氧化钛纳米有机电池10%(25px×25px)。
由于各种不同材料制成的太阳电池所吸收的太阳光谱是不同的,因此将不同材料的电池串联起来,就可以充分利用太阳光谱的能量,大大提高太阳电池的效率,因此叠层串联电池的研究已引起世界各国的重视,成为最有前途的太阳电池。
太阳电池重量轻,无活动部件,使用安全。单位质量输出功率大,即可作小型电源,又可组合成大型电站。目前其应用已从航天领域走向各行各业,走向千家万户,太阳能汽车,太阳能游艇,太阳能自行车,太阳能飞机都相继问世,它们中有的已进入市场。然而对人类最有吸引力的是所谓太空太阳站。
3.2.1 太阳空间电站
空间电站实际上是利用太阳能发电的卫星,这些卫星表面覆盖有太阳能电池板,能够吸收积聚大量太阳能并将其转化为电能,通过微波束将电能传送回地面。
它是由永远朝向太阳的太阳电池列阵,能把直流电转换成微波能的微波转换站,发射微波束能的列阵天线等三部分组成,通过天线以微波形式向地面输电。在地面上则要建一个面积达几十平方公里的巨型接受系统。
空间发电有两大优点:一是可以充分利用太阳能,同时又不会污染环境,二是 不用架设输电线路,可直接向空中的飞船和飞机提供电力,也可向边远的山区、沙漠和孤岛送电。科学家预测,一旦建成空间电站,人类可以不断获得能源,地球能源利用将产生革命性变化。
问题:一是空间运输成本问题,按推测,至少空间运输成本要降低99%才有可能;二是能量转换的效率问题。
3.2.2 太阳能发电系统
太阳能电源是由太阳能电池发电,经蓄电池贮能,从而给负载供电的一种新型电源,广泛应用于微波通讯、基站、电台、野外活动、高速公路、也可为无电山区、村庄、海岛提供电力。 有以下好处:
1.不必拉设电线,不必挖开马路,安装使用方便;
2.一次性投资,可保证二十年不间断供电(蓄电池一般为5年需更换);
3.免维护,无任何污染。
太阳能电源可分为直流供电系统和交直流供电系统二种。
我们预计太阳能光伏发电在不久的将来将会占据世界能源消费的重要席位,它的发展不但要替代部分常规能源,而且还将成为世界能源供应的主体。预计到2030年,可再生能源的消耗将占总能源消耗比例的30%以上,而太阳能光伏发电在世界总电力供应中的占有比也将达到10%以上;到2040年,可再生能源消耗将占总能耗的50%以上,太阳能光伏发电将占总电力的20%以上;到21世纪末,可再生能源消耗将占总能耗的80%以上,太阳能发电将占到60%以上。以上这些数字足以显示出太阳能光伏产业的发展前景及其在能源领域所占有的重要地位。根据《可再生能源中长期发展规划》报道,到2020年,我国将力争使太阳能发电装机容量达到1.8GW(百万千瓦),到2050年将达到600GW(百万千瓦)。预计到2050年,我国可再生能源的电力装机将占全国总电力装机容量的25%,其中光伏发电装机将占到5%。未来十几年,将是我国太阳能光伏产业发展继续迅猛的一个阶段。
3.3 光-化学能转化
这种转换技术包括半导体电极产生电而电解水产生氢,利用氢氧化钙或金属氢化物热分解储能等形式。太阳能制氢问题解决了,才有真正意义上的氢能利用(包括燃料电池),这将引起时代的变革。
正在研究的太阳能制氢。有以下几种方式:
1)太阳能电解水制氢。电解水制氢是目前应用较广且比较成熟的方法,效率较高(75%-85%),但耗电大,用常规电制氢,从能量利用而言得不偿失。所以,只有当太阳能发电的成本大幅度下降后,才能实现大规模电解水制氢。
2)太阳能热分解水制氢 。将水或水蒸汽加热到3000K以上,水中的氢和氧便能分解。这种方法制氢效率高,但需要高倍聚光器才能获得如此高的温度,一般不采用这种方法制氢。
3)太阳能热化学循环制氢。为了降低太阳能直接热分解水制氢要求的高温,发展了一种热化学循环制氢方法,即在水中加入一种或几种中间物,然后加热到较低温度,经历不同的反应阶段,最终将水分解成氢和氧,而中间物不消耗,可循环使用。热化学循环分解的温度大致为900-1200K,这是普通旋转抛物面镜聚光器比较容易达到的温度,其分解水的效率在17.5%-75.5%。存在的主要问题是中间物的还原,即使按99.9%-99. 99%还原,也还要作0.1%-0.01%的补充,这将影响氢的价格,并造成环境污染。
4)太阳能光化学分解水制氢 。这一制氢过程与上述热化学循环制氢有相似之处,在水中添加某种光敏物质作催化剂,增加对阳光中长波光能的吸收,利用光化学反应制氢。日本有人利用碘对光的敏感性,设计了一套包括光化学、热电反应的综合制氢流程,每小时可产氢97升,效率达10%左右。
5)太阳能光电化学电池分解水制氢。1972年,日本本多健一等人利用n型二氧化钛半导体电极作阳极,而以铂黑作阴极,制成太阳能光电化学电池,在太阳光照射下,阴极产生氢气,阳极产生氧气,两电极用导线连接便有电流通过,即光电化学电池在太阳光的照射下同时实现了分解水制氢、制氧和获得电能。这一实验结果引起世界各国科学家高度重视,认为是太阳能技术上的一次突破。但是,光电化学电他制氢效率很低,仅0.4%,只能吸收太阳光中的紫外光和近紫外光,且电极易受腐蚀,性能不稳定,所以至今尚未达到实用要求。
6)太阳光络合催化分解水制氢。从1972年以来,科学家发现三联毗啶钉络合物的激发态具有电子转移能力,并从络合催化电荷转移反应,提出利用这一过程进行光解水制氢。这种络合物是一种催化剂,它的作用是吸收光能、产生电荷分离、电荷转移和集结,并通过一系列偶联过程,最终使水分解为氢和氧。络合催化分解水制氢尚不成熟,研究工作正在继续进行。
7)生物光合作用制氢。40多年前发现绿藻在无氧条件下,经太阳光照射可以放出氢气;十多年前又发现,兰绿藻等许多藻类在无氧环境中适应一段时间,在一定条件下都有光合放氢作用。目前,由于对光合作用和藻类放氢机理了解还不够,藻类放氢的效率很低,要实现工程化产氢还有相当大的距离。据估计,如藻类光合作用产氢效率提高到10%,则每天每平方米藻类可产氢9克分子,用5万平方公里接受的太阳能,通过光合放氢工程即可满足美国的全部燃料需要。
3.4 太阳能-生物质能转换
太阳能-机械能转换。 20世纪初,俄国物理学家实验证明光具有压力。20年代,前苏联物理学家提出,利用在宇宙空间中巨大的太阳帆,在阳光的压力作用下可推动宇宙飞船前进,将太阳能直接转换成机械能。科学家估计,在未来10~20年内,太阳帆设想可以实现。通常,太阳能转换为机械能,需要通过中间过程进行间接转换。
3.5 太阳能利用中的污染
太阳能电池在使用过程中确实具有无排放,无噪音,无能耗的清洁能源称号,但当今主流却忽略了太阳能电池光鲜表面背后生产过程中的高污染、高能耗的问题。
一、高污染
主要是生产硅过程中带来的四氢化硅污染和其它易燃易爆有毒气体污染和蓄电池带来的污染。
现太阳能电池90%为晶体硅电池,其原材料为多晶硅,由金属硅(工业硅)提纯而来,目前国内均采用化学法(改良西门子法):先将金属硅转变为三氯氢硅,再进行分馏和精馏提纯,得到高纯度的三氯氢硅 (具有毒性、腐蚀性和易爆炸) 后,最终由氢气还原而成;这一过程中只有约25%的三氯氢硅传化成多晶硅,其余基本直接排放;而污染最严重的,则是在还原过程中产生的副产品——四氯化硅(一种腐蚀性极强、难以保存的有毒液体,具有急毒性。由于四氯化硅不能自然降解,如果将四氯化硅倾倒或掩埋,水体将会受到严重污染,土地会变成不毛之地)。这还不包括大量氯气等其它易燃易爆有毒气体。
每生产1KW太阳能电池板需耗费10Kg多晶硅,产生80Kg以上四氯化硅。而国内能通过氢化还原闭环工艺循环减小四氯化硅排放的仅有一家;而即使通过氢化还原闭环工艺循环,四氯化硅的排放仍到达50%;四氯化硅虽然也是化工原料,但下游的化工厂消化十分有限。国内绝大多数多晶硅生产厂家的四氯化硅少部分以低价卖给下游厂家,一部分存储,一部分则偷偷掩埋。
这还不包括硅片后期处理的其它辅料。如制绒过程中用到的各种强酸强碱溶液、扩散使用的三氯氧磷、PECVD中使用的硅烷等,这些辅材的消耗不比主材料少。
由于太阳电池具有时效性,只有阳光照射才会产生电能;所以必须用蓄电池在有阳光时蓄电,无阳光时维持供电。而蓄电池又以铅酸蓄电池为主,其污染程度是相当大的。
二、高能耗
硅石冶炼为金属硅、金属硅提纯为多晶硅、多晶硅片处理需要耗费大量的电能,主要集中在硅石冶炼、多晶硅的铸锭和扩散这几个流程;每生产1KW太阳能电池板需要耗费5800-6000度电(国内平均数)。我们可以这样计算:按平均光照时间4小时/天,太阳能电池是寿命为15至20年(按20年),1KW太阳能电池总的发电量为4x365x20=29200KW• h;与耗掉的6000度电相比,其电能再生比只有4.87,这还没有算上光照效率以及逆变电源的损耗和控制电路的损耗;远远低于水电和风电。如果再加上超白玻璃、铝合金、钢材、电缆等辅件,其电能再生比是相当低的。
更大的问题是现国内生产的太阳能电池板90%以上用于出口,他国享受清洁能源,而我国却饱受能耗和污染之苦。
写在最后
据有关部门对2050年各种一次能源在世界能源构成中所占的比例预测结果显示,其构成为:石油0,天然气13%,煤20%,核能10%,水电5%,太阳能(含风能、生物质能)50%,其它2%,以太阳能为代表的新能源与可再生能源将在可持续发展中发挥重要作用。
中国是世界上最大的煤炭生产国和消费国,煤炭约占商品能源消费结构的76%,已成为中国大气污染的主要来源。大力开发新能源和可再生能源的利用技术将成为减少环境污染的重要措施。能源问题是世界性的,向新能源过渡的时期迟早要到来。从长远看,太阳能利用技术和装置的大量应用,也必然可以制约矿物能源价格的上涨。
参考文献
1、百度百科http://baike.baidu.com/view/21294.htm
2、太阳能干燥技术概况及应用前景张璧光
3、太阳能利用与可持续发展姚伟
4、太阳能热泵系统简介禚 静
5、我国太阳能利用进展陆维德 罗振涛
6、我国太阳能资源利用区划王炳忠
7、太阳能发电尚无经济可行性葛伟民
其一,化石能源消费比重仍然较高,甚至过大,因此造成严重的空气污染问题。近年来,我国第三产业及其它终端能源消费增长较快,但是工业终端能源消费仍占总终端能源消费的较高比例。2016年中国终端能源消费总量达到32.3亿吨标准煤,其中工业部门占61%,交通部门占比21%,建筑部门占比14%。煤炭是中国终端能源消费的主要能源品种。2016年,煤炭消费占总终端能源消费比重的39%,石油27%,电力19%,天然气7%,区域供热5%,生物质能源2%。电力部门中,2016年可再生能源发电量占全国总发电量的比重达到26%,非化石能源发电量占29.5%。全国总发电量中的67%来自煤电,3%来自天然气发电。2016年,中国一次能源总消费量43.6亿吨标准煤。煤炭占比62%,石油占比18.3%,天然气占比6.4%,非化石能源所占比例为13.3%,其中可再生能源的比例为11%。
“我国能源消费结构中化石能源比重过大,这也导致了对能源进口的依赖。显著特征是石油进口依存度持续提高,我国2016年石油对外依存度占全部石油消费总量的三分之二。我国部分区域严重依赖煤炭经济,这些煤炭经济包括煤炭的开采及煤电产业,导致煤炭消费出现‘锁定’,这对降低我国煤炭消费、地方经济转型造成了阻碍。”王仲颖说。
化石能源的消费比重大,造成我国多地空气污染仍然严重。现在已经形成共识,煤炭发电厂、燃煤工业和以化石能源驱动的汽车是造成中国大部分城市严重空气污染的重要原因。“当前,我国政府将解决空气污染问题作为其首要任务之一。此外,水污染和土壤退化等环境问题也同样严重,上述生态环境问题将可能危及中国未来的可持续发展。”王仲颖强调说。
其二,可再生能源的浪费虽在减少,但仍很严重。
“被迫降低水电、风电和太阳能光伏电量——也被称作‘弃用’问题,在我国已存在多年。‘弃用’现象表明当前我国可再生能源尚未被充分优化整合进入能源系统。”王仲颖以弃风为例予以说明。2016年,我国全年弃风率为17%。今年1~9月,全国弃风电量和弃风率实现双降,弃风限电的范围和规模得到缓解,全国总弃风电量298.5亿千瓦时,同比减少25%,累计弃风率13%,同比下降6.8个百分点。由于弃用造成可再生能源资源的浪费,提高了风电等可再生能源电力生产成本。如果考虑由此导致的煤电发电量上升,则进一步增加了大气污染物和二氧化碳等温室气体排放。近年来,太阳能发电和部分重点地区的水力发电也遭到了弃用。
其三,电力系统缺乏灵活性,运行管理制度面临挑战。
王仲颖说,我国自改革开放以来所采用的能源和电力发展战略成功地保障了电力供应,为快速增长的经济提供了动力,目前依然影响着电力系统发展。我国经济进入新常态以来,煤炭发电厂产能过剩明显,在未来的电力系统中,有出现投资搁浅和化石能源技术锁定的风险。此外,电厂和互联电网的调度运行受到传统电力市场交易制度和地方利益壁垒的影响,无法适应大规模风电和太阳能发电等波动性电源的发展。我国的电力体制改革正在进行,这些问题均应得到解决,为电力系统的运行和发展创造一个全新的框架。然而,由于制度障碍以及缺乏针对不同省份的共同目标,目前电力市场改革推进缓慢,区域电力市场在市场设置和计划安排方面的合作往往存在明显的利益冲突。“在电力体制改革不到位的情况下,的的确确会影响不同省市现实的本身利益。可喜的是,十九大的定调,一定会加快电力体制改革的进程,上述问题会在电力体制深化改革的过程中逐步得到解决。”王仲颖说。
其四,可再生能源经济激励制度亟待改革。
王仲颖介绍说,当前,固定电价政策是中国可再生能源发展的主要支持机制,但补贴机制存在的问题,使改革迫在眉睫,以确保政策的有效性。“涉及到三方面的问题。一是电力附加费并不能保证为规模日益增长的可再生能源项目提供资金支持。二是补贴水平调整不平稳,且当补贴下降时产生新增项目的‘抢装潮’。三是固定电价机制并不适用于未来电力市场改革及可再生能源市场化。”“对可再生能源技术的支持主要是为应对化石能源价格不能反映其社会真实成本问题。现在的化石能源价格并没有完全反映出化石能源利用对我国生态环境影响的全部成本。环境成本没有真实呈现,且化石能源的其它支持机制也扭曲了不同能源技术之间的竞争。”王仲颖强调说。
既定战略必须更加坚定地深入实施
“我国的能源体系正在由以煤炭为基础、高环境成本向低碳、环境友好转型。我们的分析显示,尽管我国政府已经制定了正确的政策战略,但能源转型是否成功取决于政策是否得到强有力的执行。”王仲颖说。
记者:我国政府制定并实施了哪些能源转型战略举措?
王仲颖:当前,我国政府已经制定了一揽子政策战略及措施,全面推动能源系统向可持续和低碳方向转变:牢固树立“五大”发展理念、统筹推进“五位一体”总体布局、坚持协调推进“四个全面”战略布局“绿水青山就是金山银山”的发展理念已经植入我国政府的治国理政实践我国政府签署《巴黎协定》,并在全球应对气候变化行动中发挥大国作用的行为,展现了我国政府积极应对人类生存威胁因素的决心。正在进行中的“全国环境行动计划”、电力市场化改革和国家碳排放权交易系统则昭示着我国能源深度转型进程的序幕已经拉开。
记者:如果坚定坚持既定方针政策,那么到2030年、到2050年会出现怎样的结果?
王仲颖:CREO2017的分析表明,如果坚定不移地执行既定政策情景,那么2050年煤炭消费总量将降至2016年消费水平的三分之一,并确保二氧化碳排放于2030年之前达到峰值。2030年后,二氧化碳排放显著降低,直至下降到2050年的50亿吨水平,接近2016年排放水平的50%。2050年,非化石能源占全部一次能源供应的60%。同时,通过投资能源系统转型,未来能源系统的电力成本与当下严重依赖化石能源以及不可持续的能源系统相比将基本一致,而能源系统的可持续和稳定性则将大幅提升。如果那样的话,煤炭消费量被控制,以合理的经济代价实现2050年高比例开再生能源发展目标就可以实现。
记者:如果既定政策执行不坚决或有误,会出现怎样的结果?
王仲颖:政策措施和创新战略的高效实施是确保能源转型平稳实现的关键。反之,如果部分政策措施不能如期施行或方向有误,则将导致我国能源系统将继续被化石能源技术锁定,可再生能源技术的发展及其与能源系统的整体融合将面临严重障碍。因此,政策的执行力是关键,特别是短期战略的强有力地实施是长期能源深度转型取得成功的关键。
记者:能源转型本身、电网基础设施和可再生能源技术都需要大量投资,这可能会导致短期内电力成本上升。如何看待这个问题?
王仲颖:的确,能源转型本身、电网基础设施和可再生能源技术都需要大量投资,这可能会导致短期内电力成本上升,但这些额外的成本也会带来效益,使那些过去依赖低化石能源价格的行业快速向电力和非化石能源转型,同时改善空气质量、降低污染水平。能源转型的大量投资也会创造出代表未来技术方向的新的就业岗位,从而弥补传统煤炭产业链和技术制造业转型所削减的就业机会,这一切都与我国积极的创新战略相符合。在这个角度上看,可以说,可再生能源成本下降、电力市场改革和碳交易价格将是驱动能源转型投资的主要动力。
记者:能源转型成功和煤炭消费总量下降需要哪些客观条件?
王仲颖:能源转型和煤炭消费总量下降是在基于三项重要客观条件下实现的。首先,CREO2017假定在国际大环境和我国创新战略驱动下,可再生能源技术发展将延续近年成本继续降低、效率提升的表现,可再生能源技术以较低的成本实现能源供应。到2050年,非化石能源消费中占比超过60%,煤炭消费占比下降至2016年消费水平的三分之一,电力供应成本基本维持不变,碳排放总量在2030年之前达到峰值。其次,假定碳排放权交易制度能够得到有效实施,碳排放价格将切实影响到能源部门的投资决策,(在CREO2017既定政策情景中,设定了长期执行的碳价格水平,即每吨二氧化碳100元人民币),这将有助于支持可再生能源尽快实现与煤电平价。再次,假定持续推进电力市场化改革,并将其作为确保波动性可再生能源与电力系统融合的重要工具。
要实现“低于2℃”目标,需在既定政策基础上再加码
“CREO2017研究结论显示,即使既定政策情景顺利实施,仍不能支撑全球实现‘巴黎协定’设定的控制未来升温幅度‘低于2℃’目标。我国按既定政策情景发展,将能够实现承诺的国家自主贡献目标,但与大多数国家一样,二氧化碳减排尚显不足。”王仲颖说。
记者:依据CREO2017研究结论,既定政策难以支撑实现温升幅度“低于2℃”目标。那要实现控制温升目标,需要怎样的新目标?
王仲颖:基于考虑我国二氧化碳减排展望和未来实现“低于2℃”目标,CREO2017分析认为,我国要满足《巴黎协定》要求,就必须采取进一步的二氧化碳减排措施。综合分析国际研究成果,CREO2017假定了我国未来能源部门的二氧化碳快速减排的约束预案,即从2016年的100亿吨左右二氧化碳排放水平降到2020年的90亿吨、2030年80亿吨,直至2050年下降至30亿吨。
记者:也就是说,为达到实现“低于2℃”目标,应制定执行更加有利于可再生能源发展的政策?
王仲颖:是的,如果我国未来碳排放足迹遵循“低于2℃”假设,则我国必须加速削减煤炭消费、更为迅捷地发展可再生能源。相比既定政策情景,CREO2017结论表明,2020年,“低于2℃”情景需要额外增加3.05亿千瓦的可再生能源装机容量,2050年需要增加15.18亿千瓦。额外增加的发电装机初期将主要来自风电,后期则更多来自太阳能发电技术。在“低于2℃”情境下,煤炭消费量更为快速地降低。煤电装机到2020年将再削减1600万千瓦、2050年降低2.2亿千瓦。为了促进终端用能部门的减排,在“低于2℃”情景中,CREO2017设定了相比既定政策情景更高的终端电气化率水平,特别是提高了交通部门和工业部门的电气化率。
记者:如果按照“低于2℃”目标,我国可再生能源“十三五”规划中的发展目标已经落后于近期的发展形势。CREO2017展望风能、太阳能和生物质能发电装机总量也显著超出2020年规划目标,这个超出的部分能否实现?
王仲颖:从快速降低电力部门碳排放和提升终端用能部门电气化水平的角度分析,既定政策下的能源转型成就仍有进一步提升的发展空间。从遵守《巴黎协定》的角度看,2020年后的能源转型任务将更加艰巨,因此加码是必然的,只不过是早晚的问题。
记者:总体而言,今年以来,弃风、弃光现象有所好转,但仍比较严重。在这样的情况下如何发展更多的可再生能源?
王仲颖:要保证更多的新增可再生能源发电容量接入电网,要对煤电企业的运行提出严格的灵活性要求,维持提高电力系统灵活运行,要更为灵活地调度输电线路和省间电量交换。这些措施需要地方政府提高接纳和利用区外可再生能源的积极性,支持电网调度合作和联合调度。
记者:“低于2℃”情景下目前的电力系统已不需新增煤电装机。那么对那些已经获得行政许可、并准备开工建设的新的燃煤电厂应作如何对待?
王仲颖:应当在进一步加强开工审核的同时,尽快颁布禁止新建煤电厂的临时禁令,从而避免大额资产搁浅。近中期,随着电力市场化的进程,应逐步取消年度发电计划确定的满发利用小时数,直至最终取消年度发电计划制度。这也就意味着,所有的发电商都需要根据市场的需求来决策自己的发电量。在这种情况下,新建煤电厂的风险会更大,因为它已无法通过行政手段确保电价水平。在可预见的未来,煤电价格预期将会继续上升、可再生能源发电成本则处于下降通道,固定电价的长期购电合约将不复存在。到那时,可再能能源发电无论在成本上、技术上都会比煤电具有竞争性,起码不会比煤电竞争力弱。
从现在到2050年可再生能源逐步成为主导能源
CREO2017展示了我国能源系统到2050年的两条发展路径。一是低于2℃情景发展路径,这条路径由严格的碳预算推动二是既定政策情景发展路径,这一路径由当前实施的能源政策维持。
记者:请结合现实情况,用CREO2017研究结论,分析一下从现在到2035年、到2050年可再生能源如何逐步变成主导能源?
王仲颖:2016年,可再生能源占总终端能源消费的6%。据中电联数据,今年1~9月,全国基建新增发电能力中水电、火电、风电、太阳能发电分别比上年同期多投产35万、197万、146万、1977万千瓦。截止今年9月底,全国可再生能源发电总装机容量达到58655万千瓦,占全国规模以上电厂总发电装机容量的35.2%。从全球看,中国仍然是世界上最大的可再生能源投资国,未来几十年依照中国宏大的可再生能源政策和能源体系去碳化需求,可再生能源份额将大幅增长。
2016年,可再生能源消费量为2.7亿吨标准煤。“低于2℃”情景下,2050年该值增加8倍,达到21.86亿吨标准煤,既定政策下则增至16.63亿吨标准煤。“低于2℃”情景的主要趋势是首先发展风能,2035年前的中阶段发展太阳能。2050年前的长期阶段,将扩大太阳能发展规模,迅速提升生物质能利用率。
由于水资源进一步发展的潜力有限,因此两种情况下均遵循相同的增量增长。“低于2℃”情景下,2050年可再生能源涵盖大部分能源需求。2030年之前的能源转型初期,风能和太阳能发电将快速增加。
两种情景均预测中国能源需求于2030年左右达到顶峰。2050年,“低于2℃”情景的终端能源需求为33.21亿吨标准煤既定政策情景为35.3亿吨标准煤。提升能效措施是两种情景能源需求趋势类似的主要原因。
记者:根据CREO2017,到2050年前后,我国能源需求侧将发生怎样的改变?
王仲颖:到那时,我国能源需求侧将产生重大改变。目前工业领域占据终端能源利用的指导地位,但到2050年,尽管能源需求总量将与现在保持同一水平,但能源需求结构将发生巨变——工业领域的能源消费量大幅下降,交通和建筑能源消费将上涨。终端部门电气化程度提高主要源自可再生能源的贡献。两种情景均是如此,“低于2℃”情景的电气化程度和可再生能源份额更高。2050年,“低于2℃”情景下52%的终端能源需求为电力,既定政策情景该比例为39%。工业用化石能源很大程度被电取代。到那时,中国走上绿色、多样化供能之路,减轻对煤炭的高度依赖,代之以非化石能源。“低于2℃”情景下该发展趋势更为明显,2050年非化石能源占供能的63%,相比之下,既定政策情景则为47%。据此可以说,“低于2℃”情景下非化石能源的快速、决定性发展是我国实现《巴黎协定》目标的关键。
记者:到那时,电网传输将会发生怎样的变化?
王仲颖:两种情景均加大了电网基础设施投资,用以提升电力系统灵活性,促进在区域内外高效传输清洁电力。到2050年,中国电网将在更大的平衡区域实现密切整合,整个中国电网发展为一体化市场。中部和东部省份为主要输入地区,西南和东北则是净输出地区。“低于2℃”情景下的电网扩容总体比既定政策情景高。两个情景均表明,到2050年中国的输电系统继续完善,且依靠价格手段按照市场原则调节电力供需两侧,从而促进新增电网的大规模投资。
记者:依据CREO2017,从目前到2020年这段时期内,对可再生能源的发展要采取怎样的政策?
王仲颖:总体上要注意四方面。
一是2020年前可再生能源仍需延续固定电价政策,其中海上风电、太阳能光热发电需要延续到2020年后实现规模化发展。应更好利用竞争性招标推动价格下降,逐步扩大可再生能源电站竞争性招标的范围和规模。
二是随着2020年后逐步建立竞争性电力市场,在电力市场价格基础上,率先对新增风电、光伏电站建立基于定额补贴的市场溢价机制。初期可按目前固定电价的差价补贴标准确定溢价补贴标准,未来适时合理调整、逐步降低定额补贴标准,或者建立与招标电价结合的差价合约机制。
三是在2017年建立可再生能源电力证书自愿交易市场的基础上,在2020年前建成强制性可再生能源电力配额(发电侧)和绿色证书交易市场(售电侧),逐年提升配额比例要求,形成市场化绿色证书价格形成机制和逐年上升的未履约价格惩罚水平。
四是切实发挥即将正式启动的全国碳交易市场对促进可再生能源与化石能源公平竞争的作用,逐步建立起新建建筑和工业用热的可再生能源用热强制安装或者供热比例要求制度。
记者:近日,《京津冀能源协同发展行动计划(2017~2020)》印发,说明三地能源协同发展进入实质落地阶段。依据CREO2017研究成果,该地区该如何实现能源协同发展?
王仲颖:京津冀是我国重要的能源消费重心之一。同时,京津冀作为我国的“首都圈”,是我国北方经济规模最大、最具活力的区域之一。经济的快速增长、不断优化转型的产业布局和依然严峻的环境污染问题对京津冀的清洁能源保障提出了更高要求。但是,目前京津冀区域的可再生能源利用比重不高,多样化可再生能源利用潜力没有充分挖掘,电网等基础设施发展不同步,急需通过创新驱动京津冀能源协同发展,不断完善能源政策体系和相关体制机制。CREO2017研究显示,京津冀可通过全面协同能源转型实现高比例可再生能源发展。在低于2℃情景下,2030年风电装机容量将达到128165兆瓦,占总装机比重的47.8%太阳能发电总装机将达到83922兆瓦,占全部发电装机的31.3%。雄安作为国家级新区,2030年可实现可再生能源占一次能源消费比重超过50%以上。
记者:具体而言,实现京津冀高比例可再生能源的目标需要哪些保障措施?
王仲颖:针对京津冀高比例可再生能源发展重点任务,京津冀需要加强以下5方面的保障措施。一是加强可再生能源发展的顶层设计二是提高京津冀可再生能源发展的协同性三是加大政策支持力度四是创新市场化机制体制五是加大宣传提高公众认识。
国家可再生能源中心2017~2020年行动建议
依据CREO2017研究结论,并基于过去数年可再生能源产业、技术和政策方面的进步,并展望其近中期发展情况,针对中国可再生能源发展,国家可再生能源中心提出下列建议:
可再生能源和非化石能源目标
“十三五”规划中2020年可再生能源发展目标是应努力超越的底线,通过努力实现更快发展:太阳能光伏装机量从1.1亿千瓦增至2亿千瓦,风电装机量从2.1亿千瓦增至3.5亿千瓦生物质能发电装机量从1500万千瓦增至3000万千瓦,总计增加5亿千瓦。
2020年非化石能源占一次能源消费总量的比例从15%提升到19%。如考虑落实《巴黎协定》提出的“低于2℃”温控目标,则需要进一步提升发展目标要求。
加大削减煤炭力度
即刻停止批准新建燃煤电厂努力实现2030年煤炭消费量占全部能源消费量的比例从现在的64%降至33%左右加快燃煤电厂灵活性改造,逐步取消年度发电计划制度地方经济主要依赖煤炭工业的地区要加紧制定经济发展转型升级计划。
加快电力行业改革
开展批发市场试点和区域协调市场试点市场试点要纳入跨区电网调度,打破省间壁垒预防双边交易合同锁定高碳型电力生产制定中国电力市场下一步发展的清晰路线图。
实施碳排放权交易制度
加强中国碳市场活力制定能够确保碳减排目标实现的最低碳交易价格。
深化经济激励机制改革
提高可再生能源附加水平(2020年后逐步降低直至取消),确保转型期补贴资金需求实施可再生能源发电配额制度,配套实施强制性与自愿性相结合的绿色证书交易制度更大范围的采取竞争性拍卖方式,降低大规模风电和太阳能发电项目的并网价格。