建材秒知道
登录
建材号 > 新能源产业 > 正文

新能源电动汽车用电机及其控制器技术条件

感动的发箍
俊秀的狗
2023-01-31 13:48:14

新能源电动汽车用电机及其控制器技术条件

最佳答案
丰富的心情
谦让的楼房
2025-07-30 11:00:09

新能源电动汽车用电机及其控制器技术条件

1 范围

本标准规定了电动 汽车 用驱动电机及其控制器通用技术条件。

本标准适用于电动 汽车 (EV)和混合动力 汽车 (HEV)用的驱动电机及其控制器。

2 引用标准

下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。

GB 755-200 旋转电机定额和性能

GB/T 2423.17-1993 电工电子产品基本环境试验规程试验Ka:盐雾试验方法

GB/T 4772.1-1999 旋转电机尺寸和输出功率等级 第1部分:机座号56 400和凸缘号55 1080

GB/T 4942.1-1985 电机外壳防护分级

GB/T 4942.2-1993 低压电器外壳防护等级

GB 10068.2-2000 轴中心高为56 mm及以上电机的机械振动—振动的测量、评定及限值

GB 10069.3-1988 旋转电机噪声测定方法及限值噪声限值

GB/T 12665-1990 电机在一般环境条件下使用的湿热试验要求

GB/T 12668-1990 交流电动机半导体变频调速装置总技术条件

GB 14023-2000 车辆、机动船和由火花点火发动机驱动的装置的无线电骚扰特性的限值和测量方法

GB 1471l-1993 中小型旋转电机安全通用要求

GB/T 17619-1998 机动车电子电器组件的电磁辐射抗扰性限值测量方法

GB/T 18488.2-2001 电动 汽车 用电机及其控制器试验方法

GB/T 2900.25-1994 电工术语 旋转电机

GB/T 2900.26-1995 电工术语 控制电机

GB/T 2900.33-1993 电工术语 电力电子技术

3 定义

本标准除采用GB/T 2900.25、GB/T 2900.26、GB/T 2900.33中的定义外,还增加了下列定义。

3.1 电机控制器 controllers of the electrical machine

控制主牵引电源与电机之间能量传输的装置、它是由外界控制信号接口电路、电机控制电路和驱动电路组成的。

3.2 电机及控制器整体效率 overall efficiency of the electrical machine and controllers

电机转轴的输出功率和控制器的输入功率之比。

4 工作制和定额

4.1 工作制

4.1.1 连续工作制

电机及控制器在恒定负载下运行至热稳定状态。

4.1.2 短时过载的周期工作制

电机及控制器在额定负载下运行时,允许施加周期性过载,过载的倍数及每次过载持续时间、间隔时间以及整个运行时间应在产品标准中规定。

4.1.3 ISO城市工况及市郊工况

具体要求制定参照附录B。电动车KD,新能源商用车出口,纯电动SKD,国产电动卡车KD,电动车出口

4.2 定额

4.2.1 电机的功率等级

电机的功率等级为5.5 kW、7.5kw、11 kW、15 kw、18.5 kW、22 kW、30 kW、37 kW、45 kw、55 kw、75 kW、90 kW、110 kW、132 kW、150 kW、160 kW、185 kW、200 kw及以上,并符合GB/T 4772.1的要求。

4.2.2 控制器输出容量

15 kVA、35 kVA、50 kVA、60 kVA、100 kVA、150 kVA、200 kVA、270 kVA、300 kVA、360 kVA、420 kVA及以上。

附录A推荐了在360 V、200 kW及以下单台电动机与控制器输出容量的匹配关系。

4.3 电源的电压等级

电机及控制器由牵引电源供电,电源的电压等级为120 V、144 V、168 V、192 V、216 V、24O V、264 V、288 V、312 V、336 V、360 V、384 V、408 V。

4.4 电机及控制器整体效率

η=ηc ηm

式中:η——电机及控制器整体效率;

ηc——电机控制器的效率;

ηm——电机的效率。

根据不同功率等级给出具体产品相应的效率。

5 技术条件

5.1 温度

当周围环境温度在-20 +40 时,电机及控制器能长时间连续运行。

5.2 湿度

电机及控制器在相对湿度不超过100%的情况下能正常工作,电机及控制器应在其表面温度低于露点的情况下,即电机及控制器表面产生冷凝也能安全工作。

5.3 盐雾

作为 汽车 电气设备的产品,应具有一定的抗盐雾能力,并能满足GB/T 2423.17中的有关规定。

5.4 定频振动和扫频振动

根据电机及控制器的安装部位,电机及控制器应经受上下、左右、前后三个方向的定频振动试验和上下方向的扫频振动试验。其他方向还需要作扫频振动试验的,应在具体的产品标准中规定。

5.5 控制器壳体机械强度

控制器壳体应能承受30 cm 30 cm的面积上加100 kg重力,而不发生明显的塑性变形。

5.6 防水、防尘

当淋雨、高压水冲洗时,电机及控制器的构造、安装和通风的方式应保证电机及控制器不出现损坏。电机应符合GB/T 4942.1中IP 55等级,控制器应符合GB/T 4942.2中IPX5产品防护等级要求。

5.7 温升限值

电机应采用下级或H级绝缘。采用4.1.2运行条件或4.1.3运行条件和本标准规定的环境条件,

电机应符合GB 755-2000中7.10规定的温升限值,控制器中各部位的温升应符合GB/T 12668-1990中4.3.15的要求。

5.8 电机定子绕组冷态直流电阻

其电阻值在具体产品中规定。

5.9 电机绕组的匝间绝缘

应达到GB 14711-1993中9.2.1的要求。

5.10 电机定子绕组对机壳的绝缘电阻

在冷态时电机定子绕组对机壳的绝缘电阻值应大于20 MΩ。

5.11 耐电压

电机绝缘应具有足够的介电强度,应能承受GB/T 14711-1993中9.1和9.2规定的耐电压试验,无击穿和闪络现象。控制器的各带电电路对地(外壳)和彼此无电连接的电路之间介电强度,应能耐受GB/T 12668-1990中4.3.14所规定的试验电压,持续时间为1 min。电动车KD,新能源商用车出口,纯电动SKD,国产电动卡车KD,电动车出口

5.12 电压波动

电机及控制器必须能在电源电压为120%额定电压值下安全承受最大电流。另外,电机在电源电压降为75%额定电压时,应能在最大电流下运行(不要求连续运行)。

5.13 峰值功率

按产品规定的持续时间,电机的最大输出功率应达到产品的峰值功率值。

5.14 堵转转矩和堵转电流

为保证电动 汽车 在起动时有足够大的起动转矩,要求电机达到产品规定的堵转转矩值,其堵转电流应不大于控制器提供的最大电流值。

5.15 电机空载转速

在额客电压时,电机空载运行,其最高转速值应满足产品最高空载转速的要求。

5.16 噪声

在正常工作条件下,电机及控制器运行所发出的噪声应符合GB 10069.3的噪声限值要求。

5.17 振动

在正常工作条件下,电机的振动应符合GB 10068.2的振动限值要求。

5.18 安全接地检查

电机及控制器中能触及的金属部件与外壳接地点处的电阻应不大于0.1Ω。接地导线须用黄/绿相间的双色线。接地点应有明显的接地标志。

5.19 电机控制器的过载能力

在额定输出电流下连续工作,允许加非周期性过载,过载的倍数和持续时间在产品中规定。

5.20 电机控制器的保护功能

电机控制器应具有过电流、过电压和欠电压的保护功能。

5.21 馈电要求

在电机因惯性旋转或被拖动旋转时,电机运行于发电机状态。电机通过控制器应能给125%额定电压的电压源充电。馈电电流的大小和馈电效率在产品指标中规定。

5.22 最高工作转速

在额定电压时,电机带载运行所能达到的最高转速。带载的大小和最高工作转速值在产品指标中规定。

5.23 转速

电机应能承受1.2倍最高工作转速试验,持续时间为2 min,并能保证其机械不发生有害变形。

5.24 热态绝缘电阻

电机在室温,热态和受潮后都应有足够的绝缘电阻值。在湿热试验后其热态绝缘电阻值应不低于GB/T 12665-1990中4.1.1的规定,控制器中各带电电路之间及带电零部件与导电零部件或接地零部件之间的电气间隙和爬电距离应符合GB/T 126G8.2-2000中4.3.13的规定。控制器的带电电路与地(外壳)之间的绝缘电阻在环境温度为40 和相对湿度为95%时,不小于1 MΩ。

5.25 接触电流

电机及控制器应具有良好的绝缘性能。在正常工作时,其热态接触电流应不大于5 mA。

5.26 电机转矩。转速特性及效率

电机及控制器应达到具体产品要求的转矩。转速特性以及具体产品所提出的效率。

5.27 电磁兼容性

5.27.1 电磁辐射

电机及控制器在运行中所产生的电磁辐射不得超过GB 14023-2000中第4章所规定的辐射干扰允许值。

5.27.2 电磁辐射抗扰性

按GB/T 17619-1998中第4章规定的测量方法和表1规定的抗扰性电平进行试验,电机及控制器在正常使用条件下能正常工作。电动车KD,新能源商用车出口,纯电动SKD,国产电动卡车KD,电动车出口

5.28 耐久性

在额定负载和额定转速的运行条件下,保证电机及其控制器在第一次使用时的无故障工作时间为3000 h。

6 常规检验

每台电机及控制器必须进行以下项目的常规检验。

6.1 电机空载转速

6.2 电机定子绕组的冷态直流电阻值

6.3 电机绕组匝间绝缘

6.4 控制器壳体机械强度

6.5 电机定子绕组对机壳的绝缘电阻

6.6 耐电压

6.7 堵转转矩和堵转电流

6.8 噪声

6.9 电压波动

6.10 电机控制器的过载能力

6.11 电机控制器保护功能

6.12 安全接地检查

7 型式检验

在产品定型、转产、转厂、停产后复产,结构、材料或工艺有重大改变或合同规定等情况下,应进行型式检验,抽试产品样本数量为2台,如有项目不合格,该项目复检的样本数量应当加倍。重检如仍不合格,则应判定为不合格。检验项目如下。

7.1 环境试验

7.1.1 温度、湿度和热态绝缘电阻。

7.1.2 定频振动和扫频振动。

7.1.3 盐雾

7.2 温升

7.2.1 按4.1.2短时过载周期工作制运行。

7.2.2 按4.1.3 ISO城市工况及市郊工况要求运行。

7.3 防水、防尘

7.4 电机转矩一转速特性及效率

7.5 馈电

7.6 最高工作转速

7.7 超速

7.8 振动

7.9 接触电流

7.10 峰值功率

7.11 电磁兼容性

7.12 耐久性

附录A

(提示的附录)

单台电动机与控制器输出容量的匹配关系

附录B

(提示的附录)

城市工况及市郊工况

表 B1 基本城市循环

表 B2 市郊循环

最新回答
飘逸的荔枝
火星上的小笼包
2025-07-30 11:00:09

导语:纯电动汽车动力总成中的转矩控制精度,是整车关注的关键指标之一,直接影响了整车的驾驶性、能耗优化、以及转矩突变时的响应时间。究竟什么是转矩精度?如何测试?转矩精度和系统哪些参数相关?又要如何在设计开发过程中将其限制在一个可接受的范围内?这些问题是我们关注的焦点。

关于转矩控制精度,分三部分解读:

1. 什么是转矩控制精度?

2. 转矩控制精度的测试方法

3. 转矩精度的估算

1. 什么是转矩控制精度

在《GB/T 18488.1-2015-电动汽车用电机及其控制器第1部分-技术条件》3.11中给出了转矩控制精度的定义:

解读:对于电动车电驱动系统,输出转矩范围大,精度需要分情况定义,标准中给出了偏差与百分比两种不同的定义方式,一般在低转矩段,采用转矩偏差定义,在高转矩段,采用百分比定义,如输出转矩0~100Nm,转矩控制精度±5Nm,大于100Nm,转矩控制精度±5%。

2. 转矩控制精度测试方法

《GB/T 18488.2-2015-电动汽车用电机及其控制器第2部分-实验方法》7.3.2 中已经具体地写明了转矩精度测试的方法:

解读: 标准中试验步骤已经写的很详细,BUT,从标出的重点中还可以看出,电机的运行温度与转速还未明确。而电控的标定过程,会在某特定温度与转速下进行,如定子70°C,转速3500rpm。在此条件下测试的转矩精度相对较高,然而若偏离了此温度或者转速,控制参数需根据电机温度模型自适应调整,温度模型的好坏对转矩精度还是有很大影响的,笔者认为测试中对转速与温度采样点也应有具体的规定。

3. 转矩精度估算

电动车电驱动中很难集成高精度的转矩传感器,所以大多电驱动生产厂商用电流电压及转速传感器以及电机设计的相关参数估算电机输出转矩,比如以下计算模型,分别是 转矩电流计算模型 和 转矩能量计算模型 :

其中:

? f1,f2:计算函数

? T_estimate:估算转矩

? n:电机转速

? id,iq:d轴与q轴电流

? φd, φq:d轴与q轴磁链

? ud,uq:d轴与q轴电压

? T_friction:电机摩擦阻力

? T_iron:电机铁耗转矩损失

? Ploss_ac,dc:交流和直流母线损耗

我们知道了影响转矩计算的参数,我们再看下 电驱动系统的转矩控制图 ,看看哪部分对这些参数产生影响:

对照控制图,依据转矩估计的公式,我们可以分析出影响转矩精度计算的因素,大致可以分为三类:

i. 延迟:控制器计算延迟、直流电压获取延迟、调制延迟、电流传感器延迟

ii. 传感器精度:电流传感器、旋变

iii.电机参数,包括:

1)电机磁链偏差

2)电机磁链随温度变化的改变

3)定子电阻偏差

4)摩擦损耗偏差

5)铁耗的偏差

当然,考虑因素的越多越好,可以对每一点定量分析,如电流传感器精度±2%,旋变角度误差0.7°等,再依据蒙特卡洛法,可以对系统每个工作点的静态转矩精度做分析,这里不做详细展开,想详细了解的读者可以留言。

转矩控制精度的分析,可以对电驱动系统的性能提前预言,是初期设计以及系统改进阶段必要的步骤,这方面的测试标准也要随着控制技术的提高不断改进。

写在最后:关于”转矩精度估算“这一块,除了文中所示的电流和能量计算模型外,根据功能安全等级的不同,其计算模型和变量参数也有所侧重,这里仅示意说明,感兴趣朋友的可留言交流。

关于”转矩精度对整车性能的影响分析”这一块,涉及到控制策略和标定流程,了解有限,期待能得到同行专家的点拨。

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

暴躁的棒球
无心的星星
2025-07-30 11:00:09
定义

新能源又称非常规能源。是指传统能源之外的各种能源形式。指刚开始开发利用或正在积极研究、有待推广的能源,如太阳能、地热能、风能、海洋能、生物质能和核聚变能等。

[编辑本段]分类

新能源的各种形式都是直接或者间接地来自于太阳或地球内部伸出所产生的热能。包括了太阳能、风能、生物质能、地热能、核聚变能、水能和海洋能以及由可再生能源衍生出来的生物燃料和氢所产生的能量。也可以说,新能源包括各种可再生能源和核能。相对于传统能源,新能源普遍具有污染少、储量大的特点,对于解决当今世界严重的环境污染问题和资源(特别是化石能源)枯竭问题具有重要意义。同时,由于很多新能源分布均匀,对于解决由能源引发的战争也有着重要意义。

据世界断言,石油,煤矿等资源将加速减少。核能、太阳能即将成为主要能源。

联合国开发计划署(UNDP)把新能源分为以下三大类:大中型水电;新可再生能源,包括小水电、太阳能、风能、现代生物质能、地热能、海洋能(潮汐能);穿透生物质能。

一般地说,常规能源是指技术上比较成熟且已被大规模利用的能源,而新能源通常是指尚未大规模利用、正在积极研究开发的能源。因此,煤、石油、天然气以及大中型水电都被看作常规能源,而把太阳能、风能、现代生物质能、地热能、海洋能以及核能、氢能等作为新能源。随着技术的进步和可持续发展观念的树立,过去一直被视作垃圾的工业与生活有机废弃物被重新认识,作为一种能源资源化利用的物质而受到深入的研究和开发利用,因此,废弃物的资源化利用也可看作是新能源技术的一种形式。

新近才被人类开发利用、有待于进一步研究发展的能量资源称为新能源,相对于常规能源而言,在不同的历史时期和科技水平情况下,新能源有不同的内容。当今社会,新能源通常指核能、太阳能、风能、地热能、氢气等。

按类别可分为:太阳能 风力发电 生物质能 生物柴油 燃料乙醇 新能源汽车 燃料电池 氢能 垃圾发电 建筑节能 地热能 二甲醚 可燃冰等。

[编辑本段]新能源概况

据估算,每年辐射到地球上的太阳能为17.8亿千瓦,其中可开发利用500~1000亿度。但因其分布很分散,目前能利用的甚微。地热能资源指陆地下5000米深度内的岩石和水体的总含热量。其中全球陆地部分3公里深度内、150℃以上的高温地热能资源为140万吨标准煤,目前一些国家已着手商业开发利用。世界风能的潜力约3500亿千瓦,因风力断续分散,难以经济地利用,今后输能储能技术如有重大改进,风力利用将会增加。海洋能包括潮汐能、波浪能、海水温差能等,理论储量十分可观。限于技术水平,现尚处于小规模研究阶段。当前由于新能源的利用技术尚不成熟,故只占世界所需总能量的很小部分,今后有很大发展前途。

[编辑本段]常见新能源形式概述

太阳能

太阳能一般指太阳光的辐射能量。太阳能的主要利用形式有太阳能的光热转换、光电转换以及光化学转换三种主要方式

广义上的太阳能是地球上许多能量的来源,如风能,化学能,水的势能等由太阳能导致或转化成的能量形式。

利用太阳能的方法主要有:太阳电能池,通过光电转换把太阳光中包含的能量转化为电能;太阳能热水器,利用太阳光的热量加热水,并利用热水发电等。

太阳能可分为3种:

1.太阳能光伏 光伏板组件是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成。由于没有活动的部分,故可以长时间操作而不会导致任何损耗。简单的光伏电池可为手表及计算机提供能源,较复杂的光伏系统可为房屋照明,并为电网供电。 光伏板组件可以制成不同形状,而组件又可连接,以产生更多电力。近年,天台及建筑物表面均会使用光伏板组件,甚至被用作窗户、天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统。

2.太阳热能 现代的太阳热能科技将阳光聚合,并运用其能量产生热水、蒸气和电力。除了运用适当的科技来收集太阳能外,建筑物亦可利用太阳的光和热能,方法是在设计时加入合适的装备,例如巨型的向南窗户或使用能吸收及慢慢释放太阳热力的建筑材料。

3.太阳光合能:植物利用太阳光进行光合作用,合成有机物。因此,可以人为模拟植物光合作用,大量合成人类需要的有机物,提高太阳能利用效率。

核能

核能是通过转化其质量从原子核释放的能量,符合阿尔伯特·爱因斯坦的方程E=mc^2,其中E=能量,m=质量,c=光速常量。核能的释放主要有三种形式:

A.核裂变能

所谓核裂变能是通过一些重原子核(如铀-235、铀-238、钚-239等)的裂变释放出的能量

B.核聚变能

由两个或两个以上氢原子核(如氢的同位素—氘和氚)结合成一个较重的原子核,同时发生质量亏损释放出巨大能量的反应叫做核聚变反应,其释放出的能量称为核聚变能。

C.核衰变

核衰变是一种自然的慢得多的裂变形式,因其能量释放缓慢而难以加以利用

核能的利用存在的主要问题:

(1)资源利用率低

(2)反应后产生的核废料成为危害生物圈的潜在因素,其最终处理技术尚未完全解决

(3)反应堆的安全问题尚需不断监控及改进

(4)核不扩散要求的约束,即核电站反应堆中生成的钚-239受控制

(5)核电建设投资费用仍然比常规能源发电高,投资风险较大

海洋能

海洋能指蕴藏于海水中的各种可再生能源,包括潮汐能、波浪能、海流能、海水温差能、海水盐度差能等。这些能源都具有可再生性和不污染环境等优点,是一项亟待开发利用的具有战略意义的新能源。

波浪发电,据科学家推算,地球上波浪蕴藏的电能高达90万亿度。目前,海上导航浮标和灯塔已经用上了波浪发电机发出的电来照明。大型波浪发电机组也已问世。我国在也对波浪发电进行研究和试验,并制成了供航标灯使用的发电装置。将来的世界,每一个海洋里都会有属于我们中国的波能发电厂。波能将会为我国的电业作出很大贡献。

潮汐发电,据世界动力会议估计,到2020年,全世界潮汐发电量将达到1000-3000亿千瓦。世界上最大的潮汐发电站是法国北部英吉利海峡上的朗斯河口电站,发电能力24万千瓦,已经工作了30多年。中国在浙江省建造了江厦潮汐电站,总容量达到3000千瓦。

风能

风能是太阳辐射下流动所形成的。风能与其他能源相比,具有明显的优势,它蕴藏量大,是水能的10倍,分布广泛,永不枯竭,对交通不便、远离主干电网的岛屿及边远地区尤为重要。

风力发电,是当代人利用风能最常见的形式,自19世纪末,丹麦研制成风力发电机以来,人们认识到石油等能源会枯竭,才重视风能的发展,利用风来做其它的事情。

1977年,联邦德国在著名的风谷--石勒苏益格-荷尔斯泰因州的布隆坡特尔建造了一个世界上最大的发电风车。该风车高150米,每个浆叶长40米,重18吨,用玻璃钢制成。到1994年,全世界的风力发电机装机容量已达到300万千瓦左右,每年发电约50亿千瓦时。

生物质能

生物质能来源于生物质,也是太阳能以化学能形式贮存于生物中的一种能量形式,它直接或间接地来源于植物的光合作用。生物质能是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态或气态的燃料。地球上的生物质能资源较为丰富,而且是一种无害的能源。地球每年经光合作用产生的物质有1730亿吨,其中蕴含的能量相当于全世界能源消耗总量的10-20倍,但目前的利用率不到3%。

生物质能利用现状

2006年底全国已经建设农村户用沼气池1870万口,生活污水净化沼气池14万处,畜禽养殖场和工业废水沼气工程2,000多处,年产沼气约90亿立方米,为近8000万农村人口提供了优质生活燃料。

中国已经开发出多种固定床和流化床气化炉,以秸秆、木屑、稻壳、树枝为原料生产燃气。2006年用于木材和农副产品烘干的有800多台,村镇级秸秆气化集中供气系统近600处,年生产生物质燃气2,000万立方米。

地热能

地球内部热源可来自重力分异、潮汐摩擦、化学反应和放射性元素衰变释放的能量等。放射性热能是地球主要热源。我国地热资源丰富,分布广泛,已有5500处地热点,地热田45个,地热资源总量约320万兆瓦。

氢能

在众多新能源中,氢能以其重量轻、无污染、热值高、应用面广等独特优点脱颖而出,将成为21世纪最理想的新能源。氢能可应用于航天航空、汽车的燃料,等高热行业。

海洋渗透能

如果有两种盐溶液,一种溶液中盐的浓度高,一种溶液的浓度低,那么把两种溶液放在一起并用一种渗透膜隔离后,会产生渗透压,水会从浓度低的溶液流向浓度高的溶液。江河里流动的是淡水,而海洋中存在的是咸水,两者也存在一定的浓度差。在江河的入海口,淡水的水压比海水的水压高,如果在入海口放置一个涡轮发电机,淡水和海水之间的渗透压就可以推动涡轮机来发电。

海洋渗透能是一种十分环保的绿色能源,它既不产生垃圾,也没有二氧化碳的排放,更不依赖天气的状况,可以说是取之不尽,用之不竭。而在盐分浓度更大的水域里,渗透发电厂的发电效能会更好,比如地中海、死海、我国盐城市的大盐湖、美国的大盐湖。当然发电厂附近必须有淡水的供给。据挪威能源集团的负责人巴德·米克尔森估计,利用海洋渗透能发电,全球范围内年度发电量可以达到16000亿度。

水能

水能是一种可再生能源,是清洁能源,是指水体的动能、势能和压力能等能量资源。广义的水能资源包括河流水能、潮汐水能、波浪能、海流能等能量资源;狭义的水能资源指河流的水能资源。是常规能源,一次能源。水不仅可以直接被人类利用,它还是能量的载体。太阳能驱动地球上水循环,使之持续进行。地表水的流动是重要的一环,在落差大、流量大的地区,水能资源丰富。随着矿物燃料的日渐减少,水能是非常重要且前景广阔的替代资源。目前世界上水力发电还处于起步阶段。河流、潮汐、波浪以及涌浪等水运动均可以用来发电。

[编辑本段]新能源的发展现状和趋势

部分可再生能源利用技术已经取得了长足的发展,并在世界各地形成了一定的规模。目前,生物质能、太阳能、风能以及水力发电、地热能等的利用技术已经得到了应用。

国际能源署(IEA)对2000~2030年国际电力的需求进行了研究,研究表明,来自可再生能源的发电总量年平均增长速度将最快。IEA的研究认为,在未来30年内非水利的可再生能源发电将比其他任何燃料的发电都要增长得快,年增长速度近6%在2000~2030年间其总发电量将增加5倍,到2030年,它将提供世界总电力的4.4%,其中生物质能将占其中的80%。

目前可再生能源在一次能源中的比例总体上偏低,一方面是与不同国家的重视程度与政策有关,另一方面与可再生能源技术的成本偏高有关,尤其是技术含量较高的太阳能、生物质能、风能等据IEA的预测研究,在未来30年可再生能源发电的成本将大幅度下降,从而增加它的竞争力。可再生能源利用的成本与多种因素有关,因而成本预测的结果具有一定的不确定性。但这些预测结果表明了可再生能源利用技术成本将呈不断下降的趋势。

我国政府高度重视可再生能源的研究与开发。国家经贸委制定了新能源和可再生能源产业发展的“十五”规划,并制定颁布了《中华人民共和国可再生能源法》,重点发展太阳能光热利用、风力发电、生物质能高效利用和地热能的利用。近年来在国家的大力扶持下,我国在风力发电、海洋能潮汐发电以及太阳能利用等领域已经取得了很大的进展。

新能源(或称可再生能源更贴切)主要有:太阳能、风能、地热能、生物质能等。生物质能在经过了几十年的探索后,国内外许多专家都表示这种能源方式不能大力发展,它不但会抢夺人类赖以生存的土地资源,更将会导致社会不健康发展;地热能的开发和空调的使用具有同样特性,如大规模开发必将导致区域地面表层土壤环境遭到破坏,必将引起再一次生态环境变化;而风能和太阳能对于地球来讲是取之不尽、用之不竭的健康能源,他们必将成为今后替代能源主流。

太阳能发电具有布置简便以及维护方便等特点,应用面较广,现在全球装机总容量已经开始追赶传统风力发电,在德国甚至接近全国发电总量的5%-8%,随之而来的问题令我们意想不到,太阳能发电的时间局限性导致了对电网的冲击,如何解决这一问题成为能源界的一大困惑。

风力发电在19世纪末就开始登上历史的舞台,在一百多年的发展中,一直是新能源领域的独孤求败,由于它造价相对低廉,成了各个国家争相发展的新能源首选,然而,随着大型风电场的不断增多,占用的土地也日益扩大,产生的社会矛盾日益突出,如何解决这一难题,成了我们又一困惑。

早在2001年,MUCE就为了开拓稳定的海岛通信电源而开展一项研究,经过六年多研究和实践,终于将一种成熟的新型应用方式MUCE风光互补系统向社会推广,这种系统采用了我国自主研制的新型垂直轴风力发电机(H型)和太阳能发电进行10:3地结合,形成了相对稳定的电力输出。在建筑上、野外、通信基站、路灯、海岛均进行了实际应用,获得了大量可靠的使用数据。这一系统的研究成果将为我国乃至世界的新能源发展带来了新的动力。

新型垂直轴风力发电机(H型)突破了传统的水平轴风力发电机启动风速高、噪音大、抗风能力差、受风向影响等缺点,采取了完全不同的设计理论,采用了新型结构和材料,达到微风启动、无噪音、抗12级以上台风、不受风向影响等性能,可大量用于别墅、多层及高层建筑、路灯等中小型应用场合。以它为主建立的风光互补发电系统,具有电力输出稳定、经济性高、对环境影响小等优点,也解决了太阳能发展中对电网冲击等影响。

随着能源危机日益临近,新能源已经成为今后世界上的主要能源之一。其中太阳能已经逐渐走入我们寻常的生活,风力发电偶尔可以看到或听到,可是它们作为新能源如何在实际中去应用?新能源的发展究竟会是怎样的格局?这些问题将是我们在今后很长时间里需要探索的。

[编辑本段]新能源的环境意义和能源安全战略意义

我国能源需求的急剧增长打破了我国长期以来自给自足的能源供应格局,自1993年起我国成为石油净进口国,且石油进口量逐年增加,使得我国接入世界能源市场的竞争。由于我国化石能源尤其是石油和天然气生产量的相对不足,未来我国能源供给对国际市场的依赖程度将越来越高。

国际贸易存在着很多的不确定因素,国际能源价格有可能随着国际和平环境的改善而趋于稳定,但也有可能随着国际局势的动荡而波动。今后国际石油市场的不稳定以及油价波动都将严重影响我国的石油供给,对经济社会造成很大的冲击。大力发展可再生能源可相对减少我国能源需求中化石能源的比例和对进口能源的以来程度,提高我国能源、经济安全。

此外,可再生能源与化石能源相比最直接的好处就是其环境污染少。

[编辑本段]未来的几种新能源

波能:即海洋波浪能。这是一种取之不尽,用之不竭的无污染可再生能源。据推测,地球上海洋波浪蕴藏的电能高达9×104TW。近年来,在各国的新能源开发计划中,波能的利用已占有一席之地。尽管波能发电成本较高,需要进一步完善,但目前的进展已表明了这种新能源潜在的商业价值。日本的一座海洋波能发电厂已运行8年,电厂的发电成本虽高于其它发电方式,但对于边远岛屿来说,可节省电力传输等投资费用。目前,美、英、印度等国家已建成几十座波能发电站,且均运行良好。

可燃冰:这是一种甲烷与水结合在一起的固体化合物,它的外型与冰相似,故称“可燃冰”。可燃冰在低温高压下呈稳定状态,冰融化所释放的可燃气体相当于原来固体化合物体积的100倍。据测算,可燃冰的蕴藏量比地球上的煤、石油和天然气的总和还多。

煤层气:煤在形成过程中由于温度及压力增加,在产生变质作用的同时也释放出可燃性气体。从泥炭到褐煤,每吨煤产生68m3气;从泥炭到肥煤,每吨煤产生130m3气;从泥炭到无烟煤每吨煤产生400m3气。科学家估计,地球上煤层气可达2000Tm3。

微生物:世界上有不少国家盛产甘蔗、甜菜、木薯等,利用微生物发酵,可制成酒精,酒精具有燃烧完全、效率高、无污染等特点,用其稀释汽油可得到“乙醇汽油”,而且制作酒精的原料丰富,成本低廉。据报道,巴西已改装“乙醇汽油”或酒精为燃料的汽车达几十万辆,减轻了大气污染。此外,利用微生物可制取氢气,以开辟能源的新途径。

[编辑本段]旧燃料新能源

旧能源新效率无热引擎出新路:索罗斯投资(投机)新能源的另解

发动机效率趋向100%的旧燃料新能源

氢能、风能、太阳能、海洋能、生物质能和核聚变能……新能源的方式,只是能量利用多步骤中前移的一环。而被忽视,潜力巨大的发动机或做功原理、观念的革新更是未来能源开发的第一大方向!

现在的能量利用效率不高,浪费惊人。经典的热机做功方式,能量做功的有用效率只有25%(1/4),最高也就1/3(33.3%).而100%能量中的75%(3/4)、或66.67%(2/3)都作为无用的热浪费掉了。另有意外,“班克斯热机”是利用记忆合金制成的不要燃料,不耗电力的高效发动机。

热机做功的原理是燃料产热=微观粒子的无序运动。这个热运动,平均说三维空间上每个方向的能量各占1/3,而热机做有用功的也就三维方向中的一个方向维度。其他二维方向上的能量只好作为废热浪费掉!

几十年前已经开始冷落的“绝热发动机”没有象“古典热机原理”预测的那样提升发动机的效率。证明古典热力学机理模型有了问题!而且是大问题!热机出口温度与入口温度的比不是决定发动机效率的关键因素!

“绝热”显然已经不是提高热机效率的好创意。原因何在?源自“新热力学发动机原理”!“无热发动机”。当热已经产生,无序运动已经出笼,魔兽就控制不住了!引擎的效率被这1/3或1/4极限桎梏住了。陶瓷“绝热”只是没有诊断对的“错方”,用错药就是必然。

当旧能源(包括新能源)没有产热,新引擎100%做功才会成为可能!也就是旧、新能源微观做有序的一维的运动,发动机的效率才能回归100%,浪费的2/3或3/4能源才可引尔能发,不向或少向环境排泄废热,污染环境,节约大自然的资源!

充分利用好旧能源,为新能源的完美浮出打好前站,做好基础!

自然的奇迹
虚拟的火
2025-07-30 11:00:09
1、获得许可在中国境内使用的纯电动客车、插电式混合动力客车。

2、动力电池不包括铅酸电池。

3、插电式混合动力客车最大电功率比大于30%;插电式混合动力乘用车综合燃料消耗量(不含电能转化的燃料消耗量)与现行的常规燃料消耗量标准中对应目标值相比应小于60%;插电式混合动力客车(含轻型、重型商用车)综合工况燃料消耗量(不含电能转化的燃料消耗量)与同类车型相比应小于60%。

4、通过新能源客车专项检测,符合新能源客车标准要求。

调皮的跳跳糖
丰富的月光
2025-07-30 11:00:09

新能源并网的基本要求和约束条件如下:

【基本要求】

风能、太阳能等新能源发电具有间歇性、波动性等特点,接入电网后需要进行协调配合,保证安全稳定运行。

一方面新能源大规模并网要求电网不断提高适应性和安全稳定控制能力,主要体现在:电网调度需要统筹全网各类发电资源,使全网的功率供给与需求达到实时动态平衡,并满足安全运行标准;电网规划需要进行网架优化工作,输电环节需要采用高压交/直流送出技术,提升电网的输送能力,降低输送功率损耗。

另一方面为了降低风能、太阳能并网带来的安全稳定风险,需要新能源发电具备基本的接入与控制要求。智能电网对风电场和光伏电站在按入电网之后的有功功率控制、功率预测、无功功率、电压调节、低电压穿越、运行频率、电能质量、模型和参数、通信与信号和接入电网测试等方面均作出了具体的规定,用以解决风能、太阳能等新能源发电标准化接入、间歇式电源发电功率精确预测以及运行控制技术等问题,以实现大规模新能源的科学合理利用。

【约束条件】

目前,随着近年来电力市场结构和体制的不断深化,跨区交易已成为各地提升新能源消纳的重要方式。虽然新能源参与跨区交易已经具备相应的电量交易机制和调控原则,但是联络线计划仍作为刚性的约束,各级电网调控中心只能利用所辖电网的资源进行调峰,在很多情况下面临调峰困难的问题,往往导致被迫弃风、弃光,不利于新能源消纳水平的提升。

随着新能源的迅速发展,电力市场体制的建设在不断深入,针对的临时现货电量申请,专利“计及中长期交易和临时现货交易约束的有功实时控制方法”申请号(201810245441.6)提出通过实时统计各个发电厂的交易电量执行指标,并根据交易电量执行指标实时控制各个发电厂的并网有功,然后对各个发电厂进行公平的指标分配,来最大限度地完成交易计划电量。但是该专利没有考虑联络线计划松弛后释放的新能源消纳空间,未能充分利用跨区电网一体化调控的优势。