建材秒知道
登录
建材号 > 煤炭 > 正文

煤炭自燃的危害

温婉的小笼包
自信的香烟
2023-01-31 11:11:13

煤炭自燃的危害?

最佳答案
洁净的白昼
成就的金毛
2025-08-08 13:15:22

(1)在火区附近,温度、湿度增高,有时出现雾气或巷道壁出汗,井口或巷道口出现水汽等。这是因为煤炭氧化的初期,会从煤中泄出水分,使巷道内空气温度增加。同时,火区内热空气逸出时,遇到冷空气,会有水蒸汽冷凝,巷道内往往出现雾气;潮湿的热空气与巷道壁接触,可在巷道壁上出现水珠;浅部开采时,冬季在地面塌陷区或钻孔附近,亦可发现水蒸汽或冰雪融化等现象。

本文来自-----中国煤炭论坛-----

www.pdf8.cn

(2)巷道内可闻到特殊气味。煤炭在自燃过程中所产生的各种气体有一种类似煤油、松节油的特殊气味,当能闻到这种气味时,说明煤已自燃到相当程度。

(3)人体感到不舒服。煤炭温度上升时,必然产生一氧化碳、二氧化碳等气体,人呼吸到这种气体就会感到头疼、闷热、疲乏、四肢无力等。

(4)从火区流出的空气和水的温度增高。

从上述煤炭自燃的外部特征可以确认该地区煤炭是否已开始自燃。但是,某些征兆,对不同的人,感觉是不一样的。可是,对于在现场没有检测仪器的情况下,学会识别自燃发火的外部征兆,对于及时发现和采取有效的自救防护措施,保证人身安全等都具有重大意义。当然,利用气体分析法来识别初期火灾,是目前国内、外普遍采用的比较可靠的方法。

最新回答
眼睛大的香菇
诚心的香烟
2025-08-08 13:15:22

煤炭燃烧产生的污染物种类要根据煤种、净度、燃烧工况等具体情况确定。

主要污染物为:SO₂、NOX(以NO₂计)、烟尘(TSP、PM10、PM2.5)、一氧化碳。

其他:砷、汞、铜、铅、铬等重金属(只限于部分煤种,砷含量超标的煤炭禁止开采)、氟化物。

煤炭燃烧时,氮不产生热量,在高温下转变成氮氧化合物和氨,以游离状态析出。硫、磷、氟、氯和砷等是煤炭中的有害成分,其中以硫最为重要。

煤炭燃烧时绝大部分的硫被氧化成二氧化硫(SO₂),随烟气排放,污染大气,危害动、植物生长及人类健康,腐蚀金属设备;当含硫多的煤用于冶金炼焦时,还影响焦炭和钢铁的质量。

扩展资料:

煤中的无机物质含量很少,主要有水分和矿物质,它们的存在降低了煤的质量和利用价值。矿物质是煤炭的主要杂质,如硫化物、硫酸盐、碳酸盐等,其中大部分属于有害成分。

因煤炭开采形成的废气主要指矿井瓦斯和地 面矸石山自燃施放的气体。矿井瓦斯中的主要成分甲烷是一种重要的温室气体,其温室效应为CO₂的21倍。

参考资料来源:百度百科——煤炭污染

合适的电脑
安静的曲奇
2025-08-08 13:15:22
煤或煤矸石堆放得过高过久,与空气中氧气发生缓慢氧化放出的热量不能散失而会引起自燃,由于煤的自发燃烧造成资源的浪费,煤污染产生的二氧化硫等有害气体还会造成空气的污染;

造成的危害是:能源浪费,污染空气。

辛勤的冰棍
高高的招牌
2025-08-08 13:15:22

煤火对环境的影响主要体现在燃烧产生的能量和物质导致了燃烧区域物理、化学、生物等性质改变,表2⁃1⁃1是地下煤火发展前后对部分环境影响的对比。这些环境标志的变化特征,在一定程度上又是探测煤层自燃的重要依据。

表2-1-1 地下煤火发展前后对环境影响对比

(一)物理变化标志

煤层自燃对物理性质的改变,主要是对地质环境的影响,如地面沉降和塌陷、崩塌、滑坡、泥石流和土地沙漠化等次生环境问题上。地下煤层的自燃一方面燃烧地下煤炭,形成烧空区;另一方面自燃对上覆岩层的烘烤,改变了岩石的物理化学性质,岩石在重力作用下发生坍塌,导致地面沉降,形成塌陷坑和燃烧裂隙带,见图2⁃1⁃1。

图2-1-1 煤层自燃形成的燃烧塌陷和裂隙

煤层自燃形成的地面沉降还使地貌发生变化,改变原有的景观。使道路改道,造成交通的不便。塌陷形成的陡坎,如果上有破碎的岩石,在风力和各种自然营力的长期作用下,上覆岩石还会发生沉降和崩塌,直接导致地形的改变,使原本完善的地表千疮百孔。地形的改变还会使近地表的阻力发生改变,这又会造成地表风速和风向的变化,在一定程度上会对当地的小气候产生影响,进而影响当地的生态环境。由于地表变得更加破碎,加速和扩大了自然因素所引起的土壤破坏和岩石的侵蚀,造成土地沙化和水土流失。当有暴雨天气的出现时,还有产生泥石流的潜在危害。煤层自燃除产生这些宏观上的地表地貌和地形的变化外,还会使煤层上覆岩层或土壤的物化结构发生改变,生成烧变岩和烧变土壤。结合这些微观的变化,煤层燃烧产生的次生地质问题可以用来作为判断煤层自燃区域和强度的一个环境标志。

(二)化学变化标志

煤层自燃使一些物质产生化学变化,主要是煤层自燃过程中向外释放的各种燃烧物质(图2⁃1⁃2)。煤自燃产生CO、CO2、SO2、NOx和颗粒物,以及析出的硫磺、芒硝和煤焦油等化学物质在自燃区的扩散和在地表的覆盖,使得自燃区在大气、土壤及颜色、气味等方面存在明显的变化(图2⁃1⁃3),这是煤层自燃的另一个环境标志。

图2-1-2 乌达煤田自燃区烟气排放景观

(三)生物环境变化标志

煤层自燃的另一个明显的环境标志是自燃区生态环境的变化。对乌达煤田来说,主要是地表植被的变化。乌达地区由于受乌兰布和沙漠的影响,具有干旱无雨、热量有余、风暴成灾、夏炎冬寒的气候特点;地面干燥,风蚀严重,土质疏松,土壤、植被发育不良,自然景观总体上比较荒凉,生态系统脆弱。煤层自燃释放的热量和有毒有害物质加剧了对自燃区植被的影响。它们影响了植被的生存环境,有毒有害物质对植物的叶片和枝茎产生损害,产生各种斑点和纹理;热量对植被的烘烤,影响植被的正常生长,与正常区相比,植株形态会发生变化。如果烘烤的过于强烈,还会导致植被大面积的枯萎,甚至死亡,形成了自燃区和非自燃区地表植被在形态和密度上的明显差异。

图2-1-3 地下煤自燃析出的硫磺、芒硝和煤焦油

正常区植被叶片呈正常的绿色,植被密度适中,植株发育正常(图2⁃1⁃4(a));燃烧区植被较正常区稀疏、矮小,且植被叶片成明显的枯萎状(图2⁃1⁃4(b));燃烧中心,植被已经无法生存,形成了裸露的地表,与远处绿色的植被形成极其明显的对照(图2⁃1⁃4(c))。因此,煤自燃对植被的影响很大,植被生长的稀疏矮小、枯萎、死亡等形成了一个明显的环境标志。

图2-1-4 乌达煤田火区植被状况

综上所述,煤层自燃能够造成地面的沉降和塌陷,裂隙发育;自燃释放的化学物质、燃烧释放的能量形成烧变岩和烧变土壤,改变了原来煤层上覆岩石和土壤的物化性质;地表植被的生存环境发生改变,加剧了沙漠化进程。这些特征是遥感探测最直接的环境标志。

俊逸的手链
高贵的月饼
2025-08-08 13:15:22
(1)煤炭开采导致土地资源破坏及生态环境恶化。由于露天开采剥离排土,井工开采地表 沉陷、裂缝,都将破坏土地资源和植物资源,影响土地耕作和植被生长,改变地貌并引发景 观生态的变化。开采沉陷造成中国东部平原矿区土地大面积积水受淹或盐渍化,使西部矿区 水土流失和土地荒漠化加剧。采煤塌陷还会引起山地、丘陵发生山体滑落或泥石流,并危及 地面建筑物、水体及交通线路安全。据调查,中国因采矿直接破坏的森林面积累计达106万 公顷,破坏草地面积为26.3万ha,全国累计占用土地约586万ha,破坏土地约157万ha ,且每年仍以4万ha的速度递增,而矿区土地复垦率仅为10%。另据测算,中国每采万吨煤 ,平均塌陷土地0.2ha;在村庄稠密的平原矿区,每采出1000万t煤需迁移约2000人。

(2)煤炭开采破坏地下水资源,加剧缺水地区的供水紧张。中国是世界上人均占有水资源量较低的国家,且水资源分布极不平衡。从含煤地区分布看,富煤地区往往也是贫水地区。据调查,全国96个国有重点矿区中,缺水矿区占71%,其中严重缺水矿区占40%。随着煤炭开采强度和延伸速度的不断加大提高,矿区地下水位大面积下降,使缺水矿区供水更为紧张,以致影响当地居民的生产和生活。另一方面,大量地下水资源因煤系地层破坏而渗漏矿井并 被排出,这些矿井水被净化利用的不足20%,对矿区周边环境形成新的污染。据统计,中国煤矿每年产生的各种废污水约占全国总废污水量的25%。2000年,全国煤矿的废污水排放量 达到27.5亿t,其中,矿井水23亿t,工业废水3.5亿t,洗煤废水5000万t,其它废水450 0万t。

(3)煤炭开采导致废气排放,危害大气环境。因煤炭开采形成的废气主要指矿井瓦斯和地 面矸石山自燃施放的气体。矿井瓦斯中的主要成分甲烷是一种重要的温室气体,其温室效应 为CO2的21倍。据统计中国每年从矿井开采中排放甲烷70~90亿m?3,约占世界甲烷总 排放量的30%,除5%左右的集中回收利用外,其余全部排放到大气中。矿区地面矸石山自燃 施放出大量含SO2、CO2 、CO等有毒有害气体,严重污染大气环境并直接损害周围居民的身体健康 。煤矸石产出量很大,其排放量约占煤矿原煤产量的15%~20%。据不完全统计,中国国有煤矿现有矸石山1500余座,历年堆积量达30亿t,占地5000ha。另据1994年的矿山环境调查, 淮河以北半干旱地区的1072座矸石山中,有464座发生过自燃,自燃率达43.3%。

(4)为满足社会对洁净煤的需求,中国原煤入洗比例连年提高。1999年原煤入洗量3.17亿 t,入洗比例30%,其中国有重点煤矿入洗比例达到48%。原煤被入洗的同时,也排放出大量 的煤泥水污染土壤植被及河流水系。据调查,因洗煤全国每年排出洗矸4500万t,洗煤废水 4000万t,煤泥200万m3。

(5)在中国,由于煤炭生产与消费之间巨大的空间差异,导致“北煤南运,西煤东输”的 长距离运煤格局。运输中产生的煤尘飞扬,既损失大量的煤炭,又污染沿线周围的生态环境 。据统计,1999年全国铁路运煤量为64917万t,平均运距为550km;经公路运输或中转到 铁路的煤炭量达6亿t,平均运距为80km。若以0.5%的扬尘损失计算,因运输向大气中排放的 煤尘达600多万t,直接经济损失超过6亿元人民币。

(6)中国长期以煤炭为主的能源消费结构,不仅形成以酸雨、二氧化硫和烟尘为主要危害 的煤烟型大气污染,也是中国污染物排放量居世界第二的主要原因。统计资料显示,2000年 ,全国废气中SO2排放总量1995万t,其中工业来源的排放量1612万t,生活来源的排放量3 83万t;烟尘排放总量1165万t,其中工业烟尘排放量953万t,生活烟尘排放量212万t; 酸雨区面积约占国土面积的30%。

霸气的龙猫
阔达的火车
2025-08-08 13:15:22

火力发电厂需要大量储煤,以确保正常生产的需要。但煤通过长期的堆积和时间磨合,会慢慢的产生氧化反应而发热,这样就导致煤的温度逐渐升高,并且自然起火。不仅造成一定经济损失,而且也容易引起火灾。如何有效的防止火灾发生、保证贮煤安全,对企业安全生产和经济运营至关重要。

1、煤自燃的原因

通过长期的堆积和时间磨合,会慢慢的产生氧化反应而发热,这样就导致煤的温度逐渐升高,最终煤就会自然起火。而这就是煤自燃的原因和过程。同时煤的自燃起火与其他的燃烧有着很大的不同,这就是因为它的温度是呈缓慢上升的状态,同时在按照煤的堆积—低温的氧化发热—放热—内部的干燥—温度的急剧上升—自燃起火这些过程而进行的。

煤自燃的因素很多,主要与煤的物理化学性质、堆积状态、环境因素等几个方面有关。 

(1)化学成份的影响

煤自身中包含有硫份物质,尤其硫在一定的温度下,就会产生化学反应,并发生变化,从而生成氧化硫,其中氧化硫物质一旦遇到水就会生成稀硫酸,这个反应的过程就是放热过程,通过该反应过程就可以很好的提高煤堆温度现象。 

(2)氧气的影响

在各种光、热、雨水等自然力的作用下,煤炭表面与大气中的氧气接触后发生氧化分解与碎裂,并放出热量,同时形成新的表面,新表面又再次氧化,如此反复循环,导致煤堆温(3)水分影响

煤堆中一定量的水分促使煤中的各种反应的进行,如硫份的酸化,产生的热量又加快了氧化反应过程,加剧了煤的自燃。 

(4)气温气压的影响

经验表明,煤堆的自燃经常发生在秋后大气温度下降时,此季节大气密度比煤堆的空气密度大,因此,渗入煤堆的空气量增大,导致自燃加剧。一般来说,大气温度降低,密度变大,渗入煤堆内的新鲜空气量增加,煤堆的自燃加快,反之亦然。

2、防止煤场自燃措施

为了减少或防止煤场自燃,可采用的预防措施:

(1)分层压实组堆。对易受氧化的煤如褐煤、长焰煤,组堆时最好分层压实,至少也得将表层压实,有条件时还可以在煤堆表面披上一层覆盖物。实践证明,这是一种很有效且又经济的根本措施。

(2)建立定期检温制度。对贮量大、存期长的煤堆特别是变质程度低的煤,需每天检测一次煤堆温度,对其他类别的煤可适当延长检温时间,并做好详细记录。

(3)及时消除自燃“祸源”。在检温过程中,一旦发现煤堆温度达到60度的极限温度,或煤堆每昼夜平均温度连续增加高于2度时,就立即消除“祸源”,消除自燃“祸源”的方法是将“祸源”区域内的煤挖出来暴露在空气中散热降温。不要往“祸源”区域煤中加水,这样会加速煤的氧化和自燃。

3、煤场灭火措施

发生自燃的煤炭,尤其是高硫煤或煤层较厚的区域,用水浇方式处理收效并不明显。浇水后的煤若不及时取用,水到之处即成富氧区,同时易导致煤炭颗粒归集下沉,形成更大的氧化空间,使自燃区域扩大。另外明火炙碳遇水有爆裂伤人的风险。这就需要专业的煤碳防灭火技术。普瑞特防灭火技术是一种有效的煤场灭火技术措施,该技术有徐州吉安矿业科技有限公司联合中国矿业大学研发。

技术特点:

(1)集凝胶、黄泥灌浆、两相或三相泡沫、惰性气体和阻化剂的防灭火优点于一体,能把泡沫中的水固结在凝胶体内,避免了黄泥灌浆和其它泡沫大量水流失或者溃浆的缺点;

(2)在采空区具有良好的扩散性能,生成的普瑞特以泡沫为载体能够对采空区或煤田火区的高、中、低位火源进行大范围、全方位的覆盖,持久保持煤体湿润冷却,隔绝氧气,且添加剂中含有的阻化剂能长久对煤体阻化,彻底防治煤炭自燃;

(3)普瑞特被注入火区后,会在火区全方位覆盖一层凝胶层,并且凝胶层中95%以上都是水,具有长久的吸热降温作用,能够有效防止火区复燃;

(4)普瑞特以泡沫为载体,在防灭火区域内能向高处堆积,所到之处普瑞特都能有效覆盖并黏附浮煤裂隙,具有良好的封堵漏风通道的性能;

(5)泡沫中的氮气缓慢释放,避免单独注氮时氮气容易流失的缺点,持久保持火区惰化。

结语

储煤场的安全管理主要是以预防为主,灭火为辅为原则,健全相应的管理制度,措施得力,就能有效的抑止自燃现象的发生。

高高的猎豹
奋斗的柚子
2025-08-08 13:15:22
煤炭开采带来的环境污染和生态破坏问题日益突出,主要表现在:

1、地面水下跌

由于在煤炭开采过程中矿井水大量外排,导致地下水位下降,引起地面水下跌。

2、地层错动与地表下沉

由于煤矿井下水大量外抽,矿井上底承载能力下降,加上大部分小窑煤井在开采过程中,没有采取预留煤柱等预防措施,有的小窑煤井甚至对国有煤矿预留煤柱肆意采挖、破坏,导致地层错动,地表下沉。

3、地面水受到污染

矿井废水中悬浮物等污染物浓度较高,特别是流经含硫铁矿煤层的矿井水,酸性很大。据南坑镇水仔边一带矿区的矿井废水抽样检测,其悬浮物浓度平均值为280毫克/升,化学耗氧量浓度平均值为530毫克/升,硫酸根离子浓度高达2500毫克/升,最低PH值仅为2.7。这类矿井废水如不经处理就外排,将严重污染地面水体,淤塞河道和农田渠道,造成土壤板结,对农作物影响很大。

4、煤矸石占地及风化污染问题

煤矿排出的煤矸石一般都就近堆放。随着堆存量的不断增加,堆场的占地面积也逐年扩大。据统计,到2001年底,全市煤矸石的累计堆存量已达7500万吨,占用土地3000多亩,而且目前仍以每年新增80余万吨堆存量的速度在递增。煤矸石经风化、雨蚀、自燃后,其表面的风化层物质在风力作用下进人大气,严重污染大气环境。下雨天,在雨水的冲刷下,会携带其表层的小颗粒物质流入河道,同时还会将煤矸石伴生的硫铁矿中的硫离子和亚铁离子等浸取出来,污染水体环境。

5、对森林植被的破坏

煤炭开采需要大量木材,按万吨煤炭产量平均消耗坑木150立方米计算。全市仅煤炭开采业一年就需消耗木材约10万立方米,如此大的木材缺口迫使煤矿多渠道收购木材,客观上助长了乱砍滥伐,使育伐比例失调。同时,由于地下水位下降,地表含水层含水量减少,也使植被生长受到影响。

6、二次扬尘污染问题

煤炭有相当一部分靠汽车运输,撒漏现象非常严重,大量煤炭流失,使街道煤尘飞扬。

为有效防治煤炭开采过程中产生的环境污染和生态破坏,使煤矿矿区的生态环境逐步步入良性循环的发展轨道,提出以下对策建议:

一、加强矿井废水和区域环境综合治理

(一)对现有废水治理设施进行改造。对已老化、坏损的废水治理设施、设备进行修复、改造,确保矿井废水长期、稳定达标排放。

(二)对部分废弃矿井外排的废水进行治理。部分煤矿虽然停止了采煤,但仍有矿井废水(俗称老窿水)外排。主要是部分煤矿的采煤巷道间接相通,矿井废水全部从标高最低的井口外排,并将原有老巷道岩石断层和风化层中硫铁矿中的铁离子等浸取出来,导致废水中铁离子和硫酸根离子的浓度很高,严重污染水体环境。所以,对部分废弃矿井外排的废水必须进行治理,修建沉淀池,井投加石灰等药剂,经中和、反应、沉淀处理后,再达标外排。

(三)对部分环境污染和生态破坏严重的区域进行综合治理。一是对淤塞的河道进行清淤疏浚、护岸;二是做好水保工程,一般应在矿区地面径流汇入点建设污水沉淀处理池等。

二、搞好煤矸石的综合利用

目前,我市综合利用煤矸石的主要途径是发电和制砖,年利用量约65万吨,但与目前的堆存量相比,可以说利用量很小,且利用途径单一。必须努力探索综合利用煤矸石的新途径,以实现在尽可能短的时限内“消灭”煤矸石山。可采取的措施是:

(一)提高煤矸石发电的综合利用量

煤矸石发电以循环流化床锅炉为主要炉型,加入石灰石或白云石等脱硫剂,可降低烟气中硫氧化物和氮氧化物的产生量。其常用燃料热值应在12550千焦/千克以下,产生的热量既可以发电,也可以用作采暖供热,燃烧后的灰渣具有较高的活性,是生产建材的良好原料。这部分煤矸石以选煤厂排出的洗矸为主。目前,我市仅有高坑、安源和王坑三个煤矸石发电厂,总装机容量为4.8万千瓦时,年综合利用煤矸石约50万吨。可在巩固、提高现有煤矸石发电综合利用量的基础上,对上述三个电厂进行扩容改造,提高煤矸石发电综合利用量。

(二)利用煤矸石代替粘土制砖

利用煤矸石全部代替粘土,既可以降低能耗,又能减少生态破坏,这是大宗利用煤矸石的主要途径。可利用现有国家政策,采取控制、取缔粘土制砖,鼓励综合利用煤矸石制砖的方式进行,可将现有煤矸石制砖能力从现在的利用煤矸石16万吨提高到奶万吨。

(三)利用煤矸石回填处置

1、煤矸石回填采矿区

利用煤矸石回填采矿区,既可减少煤矸石占地,又可减少煤矸石对环境的污染。一般用于回填的煤矸石以砂岩、石灰岩为主。

2、煤矸石作工程填筑材料

煤矸石作填筑材料主要是指充填沟谷、采煤塌陷区等区的建筑工程用地,或用于填筑铁路、公路路基等。

三、做好矿区植被恢复和矸石堆场的覆土植被工作

(一)实施封山育林,采取植草、人工造林和疏林补方式,提高地表涵养水源、保持水土的能力。

(二)对短期内暂无法消化的煤矸石,制定切实可行被保护规划、方案和措施。宜林则林,宜草则草,努好煤矸石堆场的覆土植被保护工作。

听话的茉莉
单薄的火车
2025-08-08 13:15:22

煤炭对环境的影响当然很大了。

煤中组成有机质的元素主要有碳、氢、氧、氮、硫等,另外还含有少量磷、氟、氯、砷等元素。煤有机质中,碳、氢、氧含量占95%以上;煤化程度越深,碳含量越高,氢、氧含量越低。煤燃烧时,碳和氢是产生热的元素,氧是助燃的元素。在煤的燃烧过程中,氮气不产生热量,在高温下转化为氮氧合和氨气,自由析出。煤中有害成分有硫、磷、氟、氯、砷等,其中硫的含量最大。煤燃烧时,大部分硫氧化为二氧化硫(SO2),随烟气排出,污染大气,危害动力性、植物生长和人体健康,对金属设备造成腐蚀;如果含有大量硫的煤用于冶金炼焦,也会影响焦炭和钢铁的质量。因此,硫含量是评价煤质优劣的重要指标之一。

煤中的无机物很少,主要是水和矿物质,降低了煤的质量和利用价值。矿物质是煤的主要杂质,如硫化物、硫酸盐、碳酸盐等,大部分是有害成分。煤矿开采导致土地资源的破坏和生态环境的恶化。由于露天开采中的剥离和倾倒,地面沉降和地下开采中的裂缝会破坏土地资源和植物资源,影响土地耕作和植被生长,改变地貌,引起景观生态的变化。开采沉陷在我国东部平原矿区造成了大面积积水泛滥或盐碱化,加剧了西部矿区的水土流失和荒漠化。

煤矿开采破坏了地下水资源,加剧了缺水地区的供水短缺。中国是世界上人均水资源较低的国家,水资源分布极不均衡。从含煤区分布来看,富煤区往往是缺水区。据调查,全国96个重点国有矿区71%缺水,其中40%严重缺水。随着煤矿开采强度和延伸速度的不断提高,矿区地下水位大面积下降,使得缺水矿区供水更加紧张,从而影响当地居民的生产和生活。

煤矿开采导致废气排放,危害大气环境。煤矿开采产生的废气主要是矿井瓦斯和地面矸石自燃释放的气体。甲烷是矿井瓦斯的主要成分,是一种重要的温室气体,其温室效应是CO2的21倍。据统计,中国每年从矿井开采中排放70-90亿立方米甲烷。3、约占全球甲烷排放总量的30%,除约5%的集中回收外,其余全部排入大气。大量含有SO2、CO2、CO等有毒有害气体。是矿区地面矸石山自燃释放出来的,严重污染大气环境,直接危害周围居民的健康。

碧蓝的鸵鸟
无情的耳机
2025-08-08 13:15:22
影响煤自燃的因素很多,主要有:

一、受煤炭本身所含黄铁矿(又称硫化铁矿)的影响。煤炭中往往夹杂着黄铁矿和其他硫化物,它们与氧结合能够迅速发生化学反应,放出热量,促进煤炭的氧化过程,同时还会使煤炭膨胀、分裂,扩大煤炭的氧化范围。

二、水分和湿度的影响,含水分多的煤炭,因空隙被水分填塞,给热量积聚提供了条件,所以当空气干燥、温度小时,其中的水分容易蒸发,煤炭便不易自燃,空气温度大时,煤炭中的水分,这样便容易造成煤炭的自燃。

三、粒度大小和煤化程度的影响,粒度大的煤炭如块煤,与空气接触面小,易通风散热。自燃可能性就小;粒度小的煤粉,与空气接触面大,易氧化,又不易散热,自燃的可能性就大;煤化程度深的煤炭,含碳量高,挥发物和含水量低,结构紧密,不易氧化和自燃;煤化程度浅的,含碳量低,挥发物和含水量高,结构松散,就易氧化和自燃。煤炭自燃前有许多征兆,常见的有:煤堆冒汽和“出汗”。

四、煤炭堆上在清晨时可以看到有潮湿点;闻到煤油、汽油或松节油的气味或恶臭气味,人员产生头痛等轻度中毒征兆,特别是当煤堆附近热气逼人时,那煤炭内部已可能开始自燃了。为了防止煤堆自燃,可采取下列措施:加强通风。

难过的长颈鹿
甜美的心锁
2025-08-08 13:15:22

影响煤炭自燃发火的因素

决定矿井或煤层自燃发火危险程度的因素一是煤的自燃发火倾向性,二是地质采矿技术。

影响煤炭自燃的内因

煤的变质程度 各种牌号的煤都有发生自燃的可能,但在褐煤矿井,煤化程度低的一些煤层自燃发火次数要多一点。烟煤矿井以开采煤化程度最低的长焰煤和气煤的自燃危险性较大,贫煤则较少。在煤化程度较高的无烟煤矿井自燃发火较少见。所以可以认为,煤化程度较高的煤,自燃倾向性越小。但决不能以煤化程度作为判定自燃倾向性大小的唯一标志。因为生产实践证明,煤化程度相同的煤有的具有自燃特性,有的却不自燃。

煤的水分 煤中的水分是影响其氧化进程的重要因素,在煤的自热阶段,由于水分的生成与蒸发必然要消耗大量的热。煤体中外在的水分没有全部蒸发之前很难上升到100%,这就是水分大的煤炭难以自燃的原因。但是,煤中的水分又能充填于煤体微小的孔隙中,把氮气,二氧化碳,甲烷等气体排除,当干燥以后对煤的吸附起活化作用。水分的催化作用随煤温的增高而增大。所以地面煤堆在雨雪之后容易发生自燃,井下灌浆灭火,疏干之后自燃现象更为严重。

煤岩成分 煤的岩石化学成分有丝煤、暗煤、亮煤和镜煤。它们有不同的氧化性,其中丝煤含量越多,自燃倾向性就越强;相反,暗煤含量越多,越不易自燃。

煤的含硫量 同牌号的煤中,含硫矿物越多,越易自燃。

煤的孔隙率和脆性 煤炭孔隙率越大,越易自燃。这是因为孔隙率越大,氧气越易渗入煤体内部。变质程度相同的煤,脆性越大,越易自燃。因为煤的脆性大小与该种煤炭是否易于破碎和形成煤粉有关。完整的煤体一般不会发生自燃,一旦呈破碎状态则使煤的吸氧表面积增大,着火点明显降低,使其自燃性显著提高。

煤层瓦斯含量 瓦斯通常是以游离状态和吸附状态存在于煤体中,这两种瓦斯是以压力状态存在的,吸附瓦斯在煤体卸压、温度上升等客观条件影响下,可以产生解吸现象,吸附瓦斯转变成游离瓦斯,具有流动性。因此,处于原始状态的瓦斯或以压力状态存在的瓦斯对侵入煤体中的空气具有抑制作用,是防止煤自燃的有利因素。

影响煤炭自燃的外因

煤炭自燃的外在条件决定于煤炭接触到的空气量和外界的热交换作用,这两个因素与煤层的埋藏条件和其开采方法有着错综复杂的联系,其中外在因素有:

地质因素: ①倾角。煤层倾角越大,自燃危险性就越大。因为开采急倾斜煤层时,煤炭回收率低、采区煤柱易被破坏、采空区不易封锁。②煤层厚度。煤是不良导体,煤层越厚,越易积聚热量,所以,厚煤层易发火。③地质构造。在有地质构造的地区,自燃危险性加剧。地质构造复杂的地区,包括断层,褶皱发育地带,岩浆入侵地带,自燃发火频繁。这是由于煤层受张力、挤力、裂隙大量发生,煤体破碎,吸氧条件好造成的。

开采技术因素: ①开拓方式。实践经验表明,采用石门,岩巷开拓,少切割煤层少留煤柱时,自燃发火的危险性就降低了。厚煤层开采岩巷进入采区,便于打钻注浆,有利于实现预防性或灭火灌浆。②采煤方法。采煤方法对自燃发火的影响主要表现在煤炭回收率的高低、回采时间的长短上。丢煤越多,丢失的浮煤越集中,工作面的推进速度愈慢愈益发现火灾。③通风条件。通风因素的影响主要表现在采空区,煤柱和煤壁裂隙漏风。漏风就是向这些地点供氧,促进煤的氧化自燃。采空区面积大,漏风量相当可观,但风速有限,散热作用低。