跪求!!【山东省17地市所有的新能源企业名录】高分,忽悠的绕行!~~
370784000000410 安丘远弘新能源有限公司 详细信息
370105200028182 济南金鸭新能源有限公司 详细信息
370700400013148 潍坊节健能源科技有限公司 详细信息
371202200003240 莱芜市利民能源开发有限公司 详细信息
370883228022148 邹城兖能源物资供应有限公司 详细信息
370100300014499 济南神州万象车用清洁能源有限公司清河北路加气站 详细信息
370700200004727 山东仁晋电力能源有限公司 详细信息
371524200001858 东阿金顺新能源有限公司 详细信息
370883200003568 邹城市凯丰能源科技有限公司 详细信息
370400200002212 山东立马新能源实业有限公司
370983100000224 山东东岳能源有限责任公司接待中心 详细信息
370705200013586 潍坊高功新能源节能科技有限公司 详细信息
370282230023571 青岛德润新能源燃料有限公司 详细信息
370100000042158 山东中实能源安全评价有限公司 详细信息
370100200105654 山东莱能新能源科技发展有限公司 详细信息
370000228023784 山东华业新能源开发有限公司 详细信息
370000228058900 山东国佳能源科贸有限公司 详细信息
370203228137757 青岛晋润达能源有限公司 详细信息
371300400005891 临沂久新能源有限公司 详细信息
370502228046019 山东远通能源科技有限公司 详细信息
370211119022965 中海油能源发展股份有限公司青岛人力资源服务分公司 详细信息
370300500000339 淄博SK能源有限公司金乔油气站 详细信息
371083018013096 山东省乳山市东方能源有限责任公司 详细信息
370000018080006 山东广宇能源有限公司 详细信息
371000228013398 威海明媚新能源科技有限公司 详细信息
370400228056052 枣庄朕泰能源有限公司 详细信息
370202228123117 青岛澳科新能源有限公司 详细信息
370100200173029 济南大卓能源技术有限公司 详细信息
370205119022151 青岛中油环保科技有限公司清洁能源宜昌路油气站 详细信息
370826228007684 山东好德国际能源发展有限公司 详细信息
370211228070947 青岛国海燃电能源有限公司 详细信息
370103200022948 济南海汇新能源科技发展有限公司 详细信息
370000200008353 山东鲁神能源有限公司 详细信息
370000200003358 山东宏泰升新能源有限公司 详细信息
370882228009101 山东诺力新能源科技有限公司 详细信息
370481200009858 山东邦能新能源有限公司 详细信息
371700200006731 菏泽晟天新能源科技开发有限公司 详细信息
371722200002767 单县隆海能源科技有限公司 详细信息
370900200001384 泰安市德丰光电能源科技有限公司 详细信息
371322200001295 郯城县恒瑞能源科技有限公司 详细信息
370811000000024 济宁华辰能源有限公司 详细信息
371100200001073 日照华业阳光可再生能源科技有限公司 详细信息
371123228005519 日照市海普能源有限公司 详细信息
371102200011984 日照恩一能源有限公司 详细信息
370281230021861 青岛神特新能源科技有限公司 详细信息
370686200003198 烟台润丰新能源发展有限公司 详细信息
370303280002026 淄博光大水务能源开发有限公司 详细信息
371500200009177 聊城市西士信能源科技有限公司 详细信息
370400018015644 山东华邦能源集团有限公司 详细信息
371725228010593 郓城孚高能源科技有限公司 详细信息
370100200162441 济南中诺新能源产业有限公司 详细信息
371627228003306 山东滨达能源科技开发有限公司 详细信息
370481200009536 滕州福德新能源设备有限公司 详细信息
370105200018252 济南海晨能源设备有限公司 详细信息
370400228051110 山东文河能源有限公司 详细信息
370211230021930 青岛东金能源技术开发有限公司 详细信息
370811119008639 山东华聚能源股份有限公司济东新村电厂 详细信息
371100228037703 日照市建华能源贸易有限公司 详细信息
370634300000682 国电电力山东新能源开发有限公司长岛分公司 详细信息
370300500007105 淄博SK能源有限公司磁村加油站 详细信息
370881200002265 山东万里能源有限公司 详细信息
371403228008115 山东法斯特能源设备有限公司 详细信息
370000018086537 肥城矿业集团杨营能源有限责任公司 详细信息
370300228033583 淄博嘉能能源科技开发有限公司 详细信息
370203230036610 青岛易可润能源科技有限公司 详细信息
370202228210761 青岛清华新能源有限公司 详细信息
370602200020385 烟台市广利沼气能源工程有限公司 详细信息
370613228033856 烟台市澳特赛能源有限公司 详细信息
370600400013716 烟台正泰能源科技工程有限公司 详细信息
3701052900548 济南真金能源技术开发中心 详细信息
370124NA000237X 平阴县顺民能源推广专业合作社 详细信息
370127200022856 济南三农能源科技有限公司 详细信息
371311200000013 临沂久泰能源环保燃料有限公司 详细信息
371323200003668 临沂富乐福新能源有限公司 详细信息
370832228004375 梁山宇航能源化工有限公司 详细信息
370726228020160 潍坊广生新能源有限公司 详细信息
370728200001666 潍坊富泰能源技术有限公司 详细信息
370213230014294 青岛爱沃特新能源有限公司 详细信息
370214400016127 青岛东华能源设备制造有限公司 详细信息
370200505024916 爱思开新兴能源(青岛)有限公司辽阳路经营部 详细信息
370635228063881 烟台清华能源工程有限公司 详细信息
371102200007092 日照良运能源科技开发有限公司 详细信息
371600000000254 滨州国信能源发展有限公司 详细信息
371323200000493 沂水县凯至能源有限公司 详细信息
370781228024252 青州新自然能源科技有限公司 详细信息
370100200112292 济南辛百成能源技术开发有限公司 详细信息
370800200004681 山东德立信能源有限公司 详细信息
370100200033775 济南华通能源环境设备有限公司 详细信息
371424200001740 临邑县彤鑫新能源有限公司 详细信息
370303300002650 北京三合通能源科技开发有限公司山东分公司 详细信息
370281230020792 青岛成宇新能源有限公司 详细信息
370284410000117 青岛恒圣阳光新能源科技有限公司 详细信息
370300500000187 淄博SK能源有限公司临淄人民路加气站 详细信息
370202228114286 青岛瑞智能源设备有限公司 详细信息
370500300001668 山东东信新能源科技有限公司东营分公司 详细信息
370125200002379 山东三和生物能源开发有限公司 详细信息
370000200011841 山东园天缘能源开发有限公司 详细信息
370903228260261 泰安市岱岳区华邦新能源科技有限公司 详细信息
370200228056553 青岛中泽信润新能源科技发展有限公司 详细信息
370282230027173 青岛宏耐新能源科技有限公司 详细信息
你去山东工商行政管理局网站上,随便注册个名字,直接就能查,由于太多了就不都粘帖上了。
第一章 总 则第一条 为了规范供热用热行为,提高供热服务质量,维护供热用热双方的合法权益,节约能源,保障和改善民生,根据《山东省供热条例》和有关法律、法规,结合本市实际,制定本条例。第二条 本市行政区域内的供热规划、建设、经营、使用及相关管理活动,适用本条例。
本条例所称供热,是指供热企业依靠稳定热源,通过管网为用户提供生活用热的集中供热行为。第三条 发展供热事业应当遵循政府主导、企业经营、保障安全、节能环保的原则。第四条 市人民政府城市管理部门负责全市供热及相关活动的监督管理,县级人民政府住房和城乡建设部门或者县级人民政府确定的供热管理部门(以下统称供热主管部门)负责本行政区域内供热以及相关活动的监督管理。
发展改革、财政、自然资源和规划、住房和城乡建设、城市管理、生态环境、市场监管、行政审批服务等部门按照职责分工,做好相关供热管理工作。第五条 市、县(市、区)人民政府应当组织开展供热管网“汽改水”等节能改造,制定专项支持政策,鼓励发展清洁能源和可再生能源供热,鼓励和扶持供热新技术、新工艺、新材料、新设备的研究开发和推广使用。公共建筑优先采用可再生能源、清洁能源等方式供热。
市、县(市、区)人民政府应当制定天然气等清洁能源替代燃煤供热的规划,对本行政区域内的清洁能源利用区域、方式、规模和实施措施作出安排。具体由市、县(市、区)人民政府发展改革部门负责制定。第六条 市、县(市、区)人民政府应当综合运用环保、土地、财政等政策,引导供热企业通过参股、控股、兼并等形式整合供热资源,推动供热规模化、集约化经营。第二章 规划与建设第七条 市人民政府城市管理部门负责组织编制奎文区、潍城区、坊子区、寒亭区等行政区域内的供热专项规划。县(市)人民政府供热主管部门负责组织编制本行政区域内的供热专项规划。
供热专项规划经自然资源和规划部门审查同意,报本级人民政府批准后实施。经批准的供热专项规划不得擅自变更;确需变更的,应当报原批准机关批准。
自然资源和规划等部门应当按照供热专项规划要求,预留热源、热力站、供热管网等供热设施配套建设用地。预留的供热设施配套建设用地,任何单位和个人不得擅自占用或者改变用途。第八条 供热主管部门应当根据供热专项规划确定供热范围和供热方式。供热企业应当按照供热主管部门确定的供热范围和供热方式发展用户、提供热源,满足用户用热需求。
供热企业供热能力不能满足用热需求时,供热主管部门应当及时调整其供热范围。
在供热专项规划确定的工业余热和可再生能源、清洁能源供热发展区域内,供热企业因条件限制不能采用规划确定的供热方式供热的,供热主管部门应当调整其供热范围或者依法确定新的供热企业。第九条 新建、改建、扩建工程需要接入供热管网的,建设单位应当在编制建设工程设计方案时就建设项目供热条件征求供热主管部门意见,在开工前向供热企业办理用热报装手续。
供热主管部门应当自受理之日起七个工作日内根据供热专项规划及其实施情况提出书面答复意见,明确工程是否具备供热条件。具备供热条件的,供热主管部门应当告知建设单位供热方式及供热企业,并提出供热分项设计技术要求。第十条 新建住宅小区内的供热设施(包括供热管道、换热系统和用热计量装置),由供热企业负责投资建设、维护和管理。供热设施的施工,应当严格执行招投标法律、法规。房地产开发企业应当协调配合供热设施的施工,并承担相关管沟、设备用房等土建工程的配套建设,保证配套设施内具备通讯联网、水电单独立户条件。
供热设施的建设资金,并入城市基础设施配套费,由房地产开发企业按照规定缴纳,专项用于供热设施的投资建设。第十一条 新建住宅小区的用热设施,由房地产开发企业负责建设。
房地产开发企业应当依法承担用热设施保修期内的整改、维修和调试等保修责任。房地产开发企业委托供热企业承担用热设施保修责任的,应当按照约定向供热企业缴纳相应的维修费用。
房地产开发企业与购房者在住宅销售合同中约定的用热设施保修期限不得少于二个采暖期。用热设施的保修期从住宅交付之日起计算。
氢能更重要的是作为一种清洁能源和良好的能源载体,具有清洁高效、可储能、可运输、应用场景丰富等特点。
氢是二次能源,通过多种方式制取,资源制约小,利用燃料电池,氢能通过电化学反应直接转化成电能和水,不排放污染物,相比汽柴油、天然气等化石燃料,其转化效率不受卡诺循环限制,发电效率超过 50%,是零污染的高效能源。
氢能是实现电力、热力、液体燃料等各种能源品种之间转化的媒介,是在可预见的未来实现跨能源网络协同优化的唯一途径。当前能源体系主要由电网、热网、油气管网共同构成,凭借燃料电池技术,氢能可以在不同能源网络之间进行转化,可以同时将可再生能源与化石燃料转化成电力和热力,也可通过逆反应产生氢燃料替代化石燃料或进行能源存储,从而实现不同能源网络之间的协同优化。
随着可再生能源渗透率不断提高,季节性乃至年度调峰需求也将与日俱增,储能在未来能源系统中的作用不断显现,但是电化学储能及储热难以满足长周期、大容量储能需求。氢能可以更经济地实现电能或热能的长周期、大规模存储,可成为解决弃风、弃光、弃水问题的重要途径,保障未来高比例可再生能源体系的安全稳定运行。
氢能应用模式丰富,能够帮助工业、建筑、交通等主要终端应用领域实现低碳化,包括作为燃料电池 汽车 应用于交通运输领域,作为储能介质支持大规模可再生能源的整合和发电,应用于分布式发电或热电联产为建筑提供电和热,为工业领域直接提供清洁的能源或原料等。
日本、韩国、美国、德国和法国等国都从国家层面制定了氢能产业发展战略规划与线路,如日本的《氢能基本战略》、美国的《氢能经济路线图》、欧盟的《欧洲绿色协议》中的“绿氢战略”、韩国的《氢经济发展线路图》等,持续支持氢燃料电池的研发、推进氢燃料电池试点示范以及多领域应用,已在产业链构建、氢燃料电池 汽车 研发方面取得优势。根据国际氢能联合会发布的《氢能源未来发展趋势调研报告》预测,至2050年,氢燃料电池 汽车 将占全球机动车的20 25%,创造2.5万亿美元的市值,承担全球约18%的能源需求。
《中国制造2025》、《能源技术革命创新行动计划(2016-2030)》、《国家创新驱动发展战略纲要》、《“十三五”国家战略性新兴产业发展规划》、《“十三五”国家 科技 创新规划》等都将氢能与燃料电池列为重要任务,作为引领产业变革的颠覆性技术和战略性新兴产业,提出系统推进氢能 汽车 的研发、产业化和商业化。
今年以来,国家政策倾斜力度加大。6月22日,国家能源局发布了《2020年能源工作指导意见》,从改革创新和推动新技术产业化的角度推动氢能产业发展。文件指出,制定实施氢能产业发展规划,组织开展关键技术装备攻关,积极推动应用示范。
中国首部《能源法》再次征求意见。其中,氢能被列为能源范畴,是中国第一次从法律上确认了氢能属于能源。
目前,全国有20多个省份发布了氢能产业发展规划,在长三角、珠三角、京津冀等地区,氢能已形成一些小规模的示范应用。在一些地方形成了制备、储运、加注燃料电池和下游应用的完整产业链。
其中,山东省国内首个省级氢能中长期规划,山东3677战略打造氢经济带。省政府办公厅印发的《山东省氢能产业中长期发展规划(2020-2030年)》,以2019年为基准年,规划期限为2020-2030年,内容主要包括发展环境、总体要求、发展路径与空间布局、重点发展任务、保障措施和环境影响评价等6个部分。3月26日印发《济青烟国际招商产业园建设行动方案(2020-2025年)》,新能源 汽车 、氢能等字眼出现频率很高,也和山东省省级氢能规划相呼应。济南“中国氢谷”、青岛“东方氢岛”两大高地随着《方案》要拔地而起。潍坊市人民政府办公室印发了《潍坊市促进加氢站建设及运营扶持办法》。本办法适用于对在本市进行加氢站建设、加氢站加氢的企业给予补贴,即按日加氢能力和建成年限分别给予50~600万元补贴。
2019年,中国石油对外依存度首次突破70%的关口,而天然气对外依存度也高达45%。自2018年中美贸易战爆发以来,高度依赖海外油气进口所带来的能源安全隐患越来越让决策层与 社会 各界侧目。新冠疫情又进一步暴露了在紧急状态下产业链全球化的隐患和风险,致使原本已有抬头之势的逆全球化趋势进一步加深,将能源安全的地位上升到新的政治高度。
全球气候变化是21世纪人类面临的最复杂的挑战之一,减缓气候变化的措施之一是减少温室气体的人为排放。中国是仅次于美国的第二大碳排放国家,已承诺力争2030年前二氧化碳排放达到峰值2060年前实现碳中和。在碳中和的道路上,氢能是一个不可或缺的二次能源形式
尽管氢能发展前景广阔,但当前也面临着产业基础薄弱、装备和燃料成本偏高以及存在安全性争议等方面的问题。目前我国制氢技术相对成熟且具备一定产业化基础,全国化石能源制氢和工业副产氢已具相当规模,碱性电解水制氢技术成熟。但在氢气储运技术、燃料电池终端应用技术方面与国际先进水平相比仍有较大的差距。
譬如在储运方面,实现氢能规模化、低成本的储运仍然是我国乃至全球共同面临的难题。高压气氢作为目前国内外主流的氢能储运模式,还存在储氢密度仍然不够高、储运成本太高等问题。
氢气是二次能源,需要通过一定的方法利用其它能源制取,目前主要包括以下方法:
天然气中的烷烃在适当的压力和温度下,在转化炉中发生一系列化学反应生成包含一氧化碳和氢气的转化气,转化气再经过换热、冷凝等过程,使气体在自动化的控制下通过装有多种吸附剂的PSA装置后,一氧化碳、二氧化碳等杂质被吸附塔吸附,从而得到氢气。
以煤为原料制取含氢气体的方法主要有两种:一是煤的焦化,二是煤的气化。焦化是指煤在隔绝空气条件下,在90-1000 制取焦碳,副产品为焦炉煤气。焦炉煤气组成中含氢气55-60%左右。煤的气化是指煤在高温常压或加压下,与气化剂反应转化成气体产物,组成主要是氢及一氧化碳,经转化后可制得纯氢。
通常不直接用石油制氢,而用石油初步裂解后的产品,如石脑油、重油、石油焦以及炼厂干气制氢。石脑油制氢主要工艺过程有石脑油脱硫转化、CO变换、PSA,其工艺流程与天然气制氢极为相似;重油制氢是在一定压力下与水蒸气及氧气反应制得含氢气体产物;石油焦制氢与煤制氢非常相似,是在煤制氢的基础上发展起来的;炼厂干气制氢主要是轻烃水蒸气重整加上变压吸附分离法,与天然气制氢非常相似。
氯碱工业采用电解盐水的方式生产氯气和烧碱,在电解槽阳极生成氯气,阴极生成氢气,阴极附近生成烧碱,氢气进入脱氧塔脱除其中氧气,然后经过变压吸附脱除其中N2、H2、CO2、H2O等杂质,可获得高纯度氢气。
甲醇蒸汽重整制氢由于氢收率高,能量利用合理,过程控制简单,便于工业操作而更多地被采用。甲醇与水蒸气在一定的温度、压力条件下在催化剂的作用下,发生甲醇裂解反应和一氧化碳的变换反应,生成氢和二氧化碳,重整反应生成的H2和CO2,再经过变压吸附法(PSA)将H2和CO2分离,得到高纯氢气。
电解水制氢是一种较为方便的制取氢气的方法。在充满电解液的碱性电解槽(ALK)中通入直流电,水分子在电极上发生电化学反应,分解成氢气和氧气。也可使用PEM电解槽直接电解纯水产生氢气。此方式可利用光电、风电以及水电等清洁能源进行电解水制取氢气。
(1)风力发电机组的原理及特点:风力发电机组通过控制风轮转速,达成在低风速下最优能量捕捉;在高风速时,保持风轮转速和功率稳定。因此,在额定风速前(大部分工作状态),风力发电机组发岀的有功功率一直在随着风的改变而波动,表现在秒级上的发电功率波动性。另外,风力发电机组是一个电流源,也就是说风电机组每时每刻在跟随电网的50Hz交流电频率,把能量通过电流的方式输岀给电网。如果没有电网的电压维持,目前的风电机组很难独立发电。
(2)光伏发电:光伏电池将太阳能转化为电能,光伏逆变器一方面通过控制,追踪光伏电池的最佳功率点,一方面作为电流源,跟踪电网50Hz交流电频率,把能量通过电流方式输岀到电网。由于阳光在分钟级上变化不大,相对于风电,波动性较小。但是光伏发电表现出昼夜的间歇性。
光伏发电制氢主要利用光伏发电系统所发直流电直接供应制氢站制氢用电。主要有3种技术路线。
碱性电解槽制氢。 该种电解槽的结构简单,适合大规模制氢,价格较便宜,效率偏低约70%~80%,主要设备包括电源、阴阳极、横膈膜、电解液和电解槽箱体组成,电解液通常为氢氧化钠溶液,电解槽主要包括单极式和双极式。
质子交换膜电解槽(PEM Electrolyzer)制氢。 效率较碱性电解槽效率更高,主要使用了离子交换技术。电解槽主要由聚合物薄膜、阴阳两电极组成,由于较高的质子传导性,电解槽工作电流可大大提高,从而提升电解效率。
固体氧化物电解槽(Solid Oxide Electrolyzer)制氢。 可在高温下工作,部分电能可由热能替代,效率高、成本低,固体氧化物电解槽是三种电解槽中效率最高的设备,反应后的废热可与汽轮机、制冷系统进行联合循环利用,提升效率,可达到90%。
电解水制氢技术路线成熟,目前未大规模推广关键因素为电价问题,以目前工业用电用来制氢成本过高,市场竞争力较差。
甲醇制氢投资较低,适合2500Nm3以下制氢规模,按照1Nm3氢气消耗0.72千克甲醇,甲醇价格按2319元 / 吨计算,制氢成本如下表:甲醇制氢成本表
天然气制氢单位投资成本低,在1000Nm3以上经济性较好,按照1Nm3氢气消耗0.6Nm3天然气,天然气价格按1.82元/Nm3计算,制氢成本下表:
天然气制氢成本表
以1000Nm3/h 水电解制氢为例,总投资约1400万元,按照1Nm3氢气消耗5kWh 电能计算,不同电价测算制氢成本分析如下表:
光伏发电制氢成本表
由此分析,光伏发电制氢电价控制在0.3元 / 千瓦时以下时,制氢成本才具有竞争力。按照目前市场价格进行测算,以100MW光伏发电直流系统造价如下表:
光伏发电直流系统造价
以一类资源区域为例,首年光伏利用小时数为1700小 时 计 算,其他参数为 :装机容量100MW,建设期1年,资本金投资比例20%,流动资金10元 /kW,借款期限10年,还本付息方式为等额本息,长期贷款利率4.90%,折旧年限20年,残值率5%,维修费率0.5%,人员数量5,人工年平均工资7万元,福利费及其他70%,保险费率0.23%,材料费3元 /kW,其他费用10元 /kW。按照全部投资内部收益率满足8% 反算电价,并分别分析计算造价为2.3亿、2亿、1.8亿、1.6亿元时的电价。通过计算,在满足全部投资内部收益率为 8% 时,不同造价下的电价如下表:
不同造价反算电价
光伏发电制氢在资源一类区域已具备经济可行性,较天然气制氢、甲醇制氢成本较低,随着光伏发电成本的持续下降,光伏发电制氢竞争力将进一步增强。本文未考虑氢气运输成本,光伏发电直供电制氢应与需求方靠近,资源一类区域主要集中在西北区域,该区域氢气用户主要为炼化、化工企业,用气量较大,对制氢站规模要求较大。
光伏组件价格下降较快,随着价格进一步降低,部分二类资源区光伏发电制氢也将具有竞争力,该类区域相对靠近负荷中心,经济发达,氢气需求量较大。光伏发电制氢工艺简单、运维难度低,制氢规模可根据场地和需求进行模块化组合,随着燃料电池技术的进步,分布式可再生能源制氢供应燃料电池也将是未来重要发展趋势。
氢气的运输方式可根据氢气状态不同分为气态氢气(GH2)输送、液态氢气(LH2)输送和固态氢气(SH2)输送。选择何种运输方式,需基于以下四点综合考虑:运输过程的能量效率、氢的运输量、运输过程氢的损耗和运输里程。
在用量小、用户分散的情况下,气氢通常通过储氢容器装在车、船等运输工具上进行输送,用量大时一般采用管道输送。液氢运输多用车船等运输工具。
虽然氢气运输方式众多,但从发展趋势来看,我国主要以气氢拖车运输(tube trailer)、气氢管道运输(pipeline)和液氢罐车运输(liquid truck)三种运氢方式为主。
长管拖车是国内最普遍的运氢方式。这种方法在技术上已经相当成熟。但由于氢气密度很小,而储氢容器自重大,所运输氢气的重量只占总运输重量的1~2%。因此长管拖车运氢只适用于运输距离较近(运输半径200公里)和输送量较低的场景。
其工作流程如下:将净化后的产品氢气经过压缩机压缩至20MPa,通过装气柱装入长管拖车,运输至目的地后,装有氢气的管束与车头分离,经由卸气柱和调压站,将管束内的氢气卸入加氢站的高压、中压、低压储氢罐中分级储存。
该方法的运输效率较低。国内标准规定长管拖车气瓶公称工作压力为10-30MPa,运输氢气的气瓶多为20MPa。
以上海南亮公司生产的TT11-2140-H2-20-I型集装管束箱为例,其工作压力为20MPa,每次可充装体积为4164Nm3、质量为347kg的氢气,装载后总质量33168kg,运输效率1.05%。国内生产长管拖车的主要厂商有中集安瑞科、鲁西化工、上海南亮、浦江气体、山东滨华氢能源等。
长管拖车运氢成本测算
为测算长管拖车运氢的成本,我们的基本假设如下:
(1)加氢站规模为500kg/天,距离氢源点100km;
(2)长管拖车满载氢气质量350kg,管束中氢气残余率20%,每日工作时间15h;
(3)拖车平均时速50km/h,百公里耗油量25升,柴油价格7元/升;
(4)动力车头价格40万元/台,以10年进行折旧;管束价格120万元/台,以20年进行折旧,折旧方式均为直线法;
(5)拖车充卸氢气时长5h;
(6)氢气压缩过程耗电1kwh/kg,电价0.6元/kwh;
(7)每台拖车配备两名司机,灌装、卸气各配备一名操作人员,工资10万元/人·年;
(8)车辆保险费用1万元/年,保养费用0.3元/km,过路费0.6元/km;根据以上假设,可测算出规模为500kg/d、距离氢源点100km的加氢站,运氢成本为8.66元/kg。
测算过程如下表:
运输成本随距离增加大幅上升。当运输距离为50km时,氢气的运输成本5.43元/kg,随着运输距离的增加,长管拖车运输成本逐渐上升。
距离500km时运输成本达到20.18元/kg。
考虑到经济性问题,长管拖车运氢一般适用于200km内的短距离运输。
提高管束工作压力可降低运氢成本
由于国内标准约束,长管拖车的最高工作压力限制在20MPa,而国际上已经推出50MPa的氢气长管拖车。
若国内放宽对储运压力的标准,相同容积的管束可以容纳更多氢气,从而降低运输成本。
当运输距离为100km时,工作压力分别为20MPa、50MPa的长管拖车运输成本为8.66元/kg、5.60元/kg,后者约为前者的64.67%。
具有发展潜力的低成本运氢方式,但我国氢气管网发展不足,建设需提速。
低压管道运氢适合大规模、长距离的运氢方式。由于氢气需在低压状态(工作压力1~4MPa)下运输,因此相比高压运氢能耗更低,但管道建设的初始投资较大。
我国布局氢气管网布局有较大提升空间。美国和欧洲是世界上最早发展氢气管网的地区,已有70年 历史 。
根据PNNL在2016年的统计数据,全球共有4542公里的氢气管道,其中美国有2608公里的输氢管道,欧洲有1598公里的输氢管道,而中国仅有100公里。
随着氢能产业的快速发展,日益增加的氢气需求量将推动我国氢气管网建设。
氢气管道造价高、投资大,天然气管道运氢可降低成本
天然气管道是世界上规模最大的管道,占世界管道总长度的一半以上,相比之下氢气管道数量很少。据IEA报告,目前世界上有300万公里的天然气管道,氢气管道仅有5000公里,现有的氢气管道均由制氢企业运营,用于向化工和炼油设备运送成品氢气。
由于管材易发生氢脆现象(即金属与氢气反应而引起韧性下降),从而造成氢气逃逸,因此需选用含炭量低的材料作为运氢管道。美国氢气管道的造价为31~94万美元/km,而天然气管道的造价仅为12.5~50万美元/km,氢气管道的造价是天然气管道造价的两倍以上。
虽然氢气在管道中的流速是天然气的2.8倍,但由于氢气的体积能量密度小,同体积氢气的能量密度仅为天然气的三分之一,因此用同一管道输送相同能量的氢气和天然气,用于押送氢气的泵站压缩机功率高于压送天然气的压缩机功率,导致氢气的输送成本偏高。
氢气输运网络基础设施建设需要巨大的资本投入和较长的建设周期,管道的建设还涉及占地拆建问题,这些因素都阻碍了氢气管道的建设。
研究表明,含20%体积比氢气的天然气-氢气混合燃料可以直接使用目前的天然气输运管道,无需任何改造。
在天然气管网中掺混不超过20%的氢气,运输结束后对混合气体进行氢气提纯,这样既可以充分利用现有管道设施,出于经济性考虑,也能降低氢气的运送成本。
目前国外已有部分国家采用了这种方法。
为测算管道运氢的成本,我们参考济源-洛阳氢气管道的基本参数,做出如下假设:
(1)管道长度25km,总投资额1.46亿元,则单位长度投资额584万元/km;(10)年输氢能力为10.04万吨,运输过程中氢气损耗率8%;
(2)管线配气站的直接与间接维护费用以投资额的15%计算;
(3)氢气压缩过程耗电1kwh/kg,电价0.6元/kwh;
(4)管道寿命20年,以直线法进行折旧。
根据以上假设,可测算出长度25m、年输送能力10.04万吨的氢气管道,运氢价格为0.86元/kg。
当输送距离为100km时,运氢成本为1.20元/kg,仅为同等距离下气氢拖车成本的1/5,通过管道运输氢气是一种降低成本的可靠方法。
适合长距离运输,国内外应用差距明显,但液氢运输相比气氢效率更高,国内应用程度有限。
液氢罐车运输系统由动力车头、整车拖盘和液氢储罐3部分组成。
由于液氢的运输温度需保持在-253 以下,与外部环境温差较大,为保证液氢储存的密封和隔热性能,对液氢储罐的材料和工艺有很高的要求,使其初始投资成本较高。
液氢罐车运输是将将氢气深度冷冻至21K液化,再将液氢装在压力通常为0.6兆帕的圆筒形专用低温绝热槽罐内进行运输的方法。
由于液氢的体积能量密度达到8.5MJ/L,液氢槽罐车的容量大约为65m3,每次可净运输约4000kg氢气,是气氢拖车单车运量的10倍多,大大提高了运输效率,适合大批量、远距离运输。
但缺点是制取液氢的能耗较大(液化相同热值的氢气耗电量是压缩氢气的11倍以上),并且液氢储存、输送过程均有一定的蒸发损耗。
在国外尤其是欧、美、日等国家,液氢技术发展已经相对较为成熟,液氢在储运等环节已进入规模化应用阶段,某些地区液氢槽车运输超过了气氢运输规模。
而国内目前仅用于航天及军事领域,这是由于液氢生产、运输、储存装置等标准均为军用标准,无民用标准,极大地限制了液氢罐车在民用领域的应用。
国内相关企业已着手研发相应的液氢储罐、液氢槽车,如中集圣达因、富瑞氢能等公司已开发出国产液氢储运产品。
2019年6月26日,全国氢能标准化技术委员会发布关于对《氢能 汽车 用燃料液氢》、《液氢生产系统技术规范》和《液氢贮存和运输安全技术要求》三项国家标准征求意见的函。
液氢相关标准和政策规范形成后,储氢密度和传输效率都更高的低温液态储氢将是未来重要的发展方向。
为测算液氢槽车运输的成本,我们的基本假设如下:
(1)加氢站规模为500kg/天,距离氢源点100km;
(2)槽车装载量为15000加仑(约68m3,即4000kg),每日工作时间15h;
(3)槽车平均时速50km/h,百公里耗油量25升,柴油价格7元/升;
(4)液氢槽车价格约为50万美元/辆,以10年进行折旧,折旧方式为直线法;
(5)槽车充卸液氢时长6.5h;
(6)氢气压缩过程耗电11kwh/kg,电价0.6元/kwh;
(7)每台拖车配备两名司机,灌装、卸载各配备一名操作人员,工资10万元/人·年;
(8)车辆保险费用1万元/年,保养费用0.3元/km,过路费0.6元/km。根据以上假设,可测算出规模为500kg/d、距离氢源点100km的加氢站,运氢成本为13.57元/kg。
测算过程如下表:
液氢罐车成本变动对距离不敏感。当加氢站距离氢源点50~500km时,液氢槽车的运输价格在13.51~14.01元/kg范围内小幅提升。虽然运输成本随着距离增加而提高,但提高的幅度并不大。这是因为成本中占比最大的一项——液化过程中消耗的电费(约占60%左右)仅与载氢量有关,与距离无关。而与距离呈正相关的油费、路费等占比并不大,液氢罐车在长距离运输下更具成本优势。
第四章 加氢站建设
1.投资估算
加氢站投资主要包含设备投资、土建工程投资以及设计、监理、审批等费用。
项目投资估算表如下:
序号 名 称 费用(万元) 备注
1 工艺设备 222.00
1.1 增压系统 160.00
1.2 加注系统 56.00
1.3 卸车系统 6.00
2 现场管道、仪表电缆等 12.00
3 PLC柜、火焰探头、氢气泄漏探头、视频监控等 28.00
4 设备安装及调试 40.00 含辅材
5 土建工程 80.00
6 设计、监理、审批等费用 45.00
7 合计 424.00
2.运营成本估算
加氢站建成后,运营成本包括土地租金、设备折旧、运营维护成本、人员工资等。
项目总投资为424万元,固定资产采用直线法综合折旧,不计残值,按照10年折旧摊销,每年42.4万元。
每年运维成本包括设备维护费、管理费及人工成本费、电费和水费等,其中设备维护费用约55万元,管理费及人工(4名工人)成本费15万元,电费及水费30万元,每年运维成本费用为100万元。
本项目单站占地面积约2亩,参照目前服务区征地费用,土地租金暂按每年每亩10万元计取,单站每年土地租金为20万元。
3.效益测算
加氢站对外销售价格为35元/kg,进销价差一般为20元/kg。
本次加氢站项目设计日加氢能力:500kg/d,加注压力:35MPa;按照其70%加注负荷计算,日加注350kg,年可实现加注量120000kg。
按照价差收入,年毛利润额估算为252万元。
经济效益情况分析:
序号 名称 单位 金额(万元) 备注
1 价差收入(毛利润) 万元 240.00
2 土地租金 万元 20.00
3 年运行成本 万元 100.00
4 折旧及摊销 万元 42.4 按10年折旧
5 年税前利润 万元 97.6
5 税金及附加 万元 24.4
6 年利润 万元 73.2
静态投资回收期为:424万元/73.2万元 5.79年。
但是当前投运氢燃料车辆较少,但氢能源在政策利好下不断发展中,当前预测存在较大的困难和不可预见性,测算中取设计负荷的70%进行的估算。
山东省下发国内首个省级氢能中长期规划,山东3677战略打造鲁氢经济带,济南“中国氢谷”、青岛“东方氢岛”两大高地随着《方案》要拔地而起,具有广阔的发展前景和潜力,在当前国家碳达峰、碳中和战略背景下,氢能必将迎来大发展阶段。
新型清洁能源是未来发展的趋势,我国大力推广清洁能源,可再生能源往大了说是保护人类自身,往小了说也是维护国家利益。
大的方面:使用化石能源产生二氧化碳,过量的温室气体对环境的破坏无法想象:全球气候变暖、海平面上升、大量物种灭亡、厄尔尼诺现象……人类对自然的破坏最后都会反噬人类自身。因此发展清洁能源不但是保护环境,更是保护人类自己。
小的方面:中国本身石油存储很低,且开发难度高,因此需要大量进口石油,随着中国的发展,我国对石油的需求就不断提高,但是由于历史及国际政治环境,运输石油的路线极易受到他国封锁,我国推动清洁能源替代化石能源;如大力发展新能源汽车、减少化石能源依赖,也符合中国自身的国情;可在发生地区冲突的时候,降低国内的影响。
随着人类对地球资源的无节制的获取和利用,地球的有限资源将在未来的几百年枯竭,地球的生态系统也会受到巨大的影响。人类只有减少非再生能源的使用,逐渐向可再生能源转型,这样才可以维持人类的可持续发展。可再生能源主要包括风能,太阳能、水能、生物质能、地热能、海洋能和核能等。
可再生能源的意义。地球上的不可再生资源主要包括煤炭、石油和天然气。这些资源探明的储备量已经远远无法满足人类的使用了。石油只够使用50年,天然气只够使用60年,而煤炭只够使用200年,其他金属矿产只够使用不到200年,不过虽然人类技术的提高,金属的回收利用的效率也会提升。人们面临的最大问题就是能源危机。除了能源危机以外,不可再生资源的燃烧和利用会产生大量的有害气体和温室气体,多生态环境的影响是巨大的。所以大力发展可再生能源就是人类的未来,而且这些能源最大的优点是清洁无污染。
可再生能源的种类。可再生能源中最常见的就是太阳能,该能源主要来自于太阳辐射,目前人类的卫星和航天器都用太阳能提供持续的动力,未来可以提高给汽车和飞机使用,也可以普及居民用电,光伏产业目前已经成为全世界关注的焦点。风能是地球表面空气的运动而产生的,风力发电是目前最常见的使用领域。水能和潮汐能都是利用水的运动而产生的能源,目前主要用于发电,这类能源是取之不尽用之不竭的能源。生物能主要包括沼气、生物制氢、生物燃料乙醇等,但是该能源如果不合理的开发会对生态系统造成影响。核能是人类文明最重要的发现,虽然技术含量较高,但是能源的持续性较好,而且宇宙中的原材料是取之不尽的。
新能源是一种可再生的清洁能源。
它指的是在新技术、新材料的基础上,用机械化的开发和利用的方式使用可再生的能源,由于可再生能源是用之不尽、取之不竭的,所以资源有限、对环境有污染的传统的化石能源能够被取代。新能源的重要研发领域包括风能、太阳能、潮汐能、生物质能、氢能、地热能以及核能。
一般地说,常规能源是指技术上比较成熟且已被大规模利用的能源,而新能源通常是指尚未大规模利用、正在积极研究开发的能源。因此,煤、石油、天然气以及大中型水电都被看作常规能源,而把太阳能、风能、现代生物质能、地热能、海洋能以及氢能等作为新能源。
随着技术的进步和可持续发展观念的树立,过去一直被视作垃圾的工业与生活有机废弃物被重新认识,作为一种能源资源化利用的物质而受到深入的研究和开发利用,因此,废弃物的资源化利用也可看作是新能源技术的一种形式。
相关信息:
在汽车领域,就是指动力由汽油或者柴油等矿物质以外的清洁能源提供的汽车,新能源汽车常用来指代电动汽车。根据前瞻产业研究院发布的公开报告表示,我国未来新能源三大发展战略主要是,第一阶段到二十一世纪10年代,落实局部新能源技术的民用设施,如太阳能热水器、太阳能路灯等。
第二阶段为部分商业化的十年之后,此时新能源技术普遍运用在各个领域,以电能为基础的新能源汽车将在民用车中普及。最后阶段是各领域完全实现新能源的普及应用,到时将可能完全取替传统化石能源。
新能源是相对于常规能源而言,以采用新技术和新材料而获得的,在新技术基础上系统地开发利用的能源。如太阳能、风能、海洋能、地热能等。与常规能源相比,新能源生产规模较小,使用范围较窄。常规能源和新能源的划分是相对的。
新能源是指传统能源之外的各种能源形式。我整理了浅谈新能源技术论文,欢迎阅读!
浅谈新能源技术论文篇一论新能源发电技术
摘要:本文从全球能源的现状,介绍了中国能源发电技术的应用情况,发现中国新能源发电对现代化建设具有重要战略意义。进一步介绍了风力发电系统和燃料电池发电系统两种新能源发电技术。风力发电是当今非水可再生能源发电中技术最成熟、最具有大规模开发条件和商业化前景的发电方式,也是近期发展的重点。燃料电池是一种将化学能直接转换成电能的装置,它能量转化效率高,几乎不排放氮的氧化物和硫的氧化物。
关键词:新能源风能燃料电池发电技术
中图分类号: F206 文献标识码: A
能源紧缺已成为制约各国经济发展的瓶颈,如何开发先进安全的新能源使用技术、如何提高能源利用率也随之成为世界各国关心的课题。欧盟就首先提出了20-20-20计划:到2020 年,可再生能源占欧盟总能源消耗的20%。2007年12月,美国前总统布什也签署了《能源独立和安全法案》(EISA),从而大力推动新能源的使用和节能计划。另外,从环境的角度来看,为了保护人们赖以生存的地球,开发新能源也是必由之路。
一、我国能源和发电技术的现状
2011年,我国新能源发电继续保持快速发展态势,并网装机容量持续增长,发电量不断增加。截至2011年底,我国新能源安装容量达到7000万kW,居世界首位,并网新能源装机容量达到5409万kW,同比增长47.4%,约占全部发电装机容量的5.1%。其中,风电并网容量约占并网新能源装机总量的85.5%并网太阳能光伏装机容量约占并网新能源装机总量的4.4%生物质及其他新能源发电装机容量约占并网新能源装机总量的10.1%。
2011年,我国新能源发电量约为1016亿kW?h,同比增长29.9%,约占全部发电量的2.2%。其中,风电发电量约占新能源发电总量的72.0%太阳能光伏发电约占0.9%生物质及其他新能源发电约占27.1%。2011年我国新能源发电量按发电煤耗320g/(kW?h)计算,相当于节约3241万tce,减排二氧化碳9030万t。
电能是国民生活和生产的根基,无论是从能源角度,还是电力系统自身方面来看,研究新能源发电技术对于我国的现代化建设和人民生活都具有相当大的现实意义和战略意义。
二、风力发电技术
风能资源主要包括陆地资源与近海离岸资源两部分。风力发电是当今非水可再生能源发电中技术最成熟、最具有大规模开发条件和商业化前景的发电方式,也是目前新能源发展的重点方向。
1.发展现状
近年来,我国风力发电产业取得了长足发展,这与我国的风能资源丰富密不可分。据有关资料显示,陆地上离地面10米高度处,我国风能资源理论储量约为43亿千瓦,技术可开发量约为3亿千瓦,离地面50米,估计可能增大一倍近海资源10米高经济可开发量约7.5亿千瓦,50米高约15亿千瓦。从我国联网风电场总装机量来说,到2006 年底,我国已建成约91个风电场,装机总容量达到约260万千瓦,比2005年新增装机134万千瓦,增长率为105%。根据国家中长期规划,2015年风能发电要达到1500万千瓦,2020年要达到3000万千瓦。但是,与风电发达国家相比,我国的发展规模还很小,发展速度也较缓慢。制约我国风电发展的重要因素包括技术和制度两个方面。技术方面,风电机组的制造水平较低,风电机组性能测试设备和技术也相对落后,并缺少相应的认证机构制度方面,风电场的运行维护水平和制度与国外风电场及国内火电生产相比有明显差距,缺乏对运行过程中出现的问题和故障的详细记录、分析。
2.对电力系统的影响
风力发电机是以风作为原动力,风的随机波动性和间歇性决定了风力发电机的电能输出也是波动和间歇的。所以,风电场的大规模接入将会带来波动功率,从而加重电网负担,影响电网供电质量和电网稳定性等。
(1)对电能质量的影响。空气气流运动导致的风速波动周期一般为几秒到几分钟,这种短周期的风速波动以及风电机组本身的运行特性可能影响电网的电能质量。首先会对频率产生影响:风力发电有功功率波动引起电磁功率的波动,由于发电机组转子惯性,调节系统很难跟上电磁功率的瞬时变化,造成功率不平衡,使发电机转速变化,系统频率也将改变。此外,风电还会对电压产生影响:并网风电机组输出功率的波动导致电压的波动,而其输出功率的频率范围正处于电压闪变的范围之内(25Hz),因此又会造成电压闪变,最后会产生谐波电压和谐波电流。
(2)对电网稳定性的影响。对较为薄弱的电网,风电功率波动将导致瞬间电压跌落以及风力发电机的频繁掉线。在故障清除之后,发电机的磁化和转差率的增加会消耗大量无功,导致电网电压恢复困难。
(3)对调频调峰能力的影响。气流长时间、季节性运动导致的风速波动周期一般为数小时,甚至数天、数月,这种长周期的风速波动会增加现有电网调频调峰的负担。负荷曲线的低谷期常常对应了风电出力的高峰期,风电场的并网发电使电网的等效负荷峰谷差增大,大大增加了电网调频调峰负担。
三、太阳能光伏电池发电技术
1. 1 太阳能光伏电池
太阳能光伏电池发电也简称为太阳能光伏发电,被认为是未来世界上发展最快和最有前途的一种可再生新能源技术。太阳能光伏电池的基本原理是利用半导体的“光生伏打效应”( 光伏效应) 将太阳的光能直接转换成电能。能利用光伏效应产生电能的物质,称为光伏材料。利用光伏效应将太阳能直接转换成电能的器件叫太阳能光伏电池或光伏电池。光伏电池是太阳能光伏发电的核心组件。
1839 年,法国物理学家贝克勒尔 ( Edmond Bec-qurel) 发现: 将两片金属浸入电解液中所构成的伏打电池,当接收到太阳光照射时电压升高,他在所发表的论文中把这种现象称为“光生伏打效应( PhotovohaicEffect) ”。“光生伏打效应”是不均匀半导体或半导体与金属混合材料在光照作用下,其内部可以传导电流的载流子分布状态和浓度发生变化,因而在不同部位之间产生电位差的现象。1941 年,奥尔在硅材料上发现了光伏效应,从而奠定了半导体硅在太阳能光伏发电中广泛应用的基础。1954 年,美国贝尔实验室的科学家恰宾( Darryl Chapin) 和皮尔松( Gerald Pearson) 研制成功世界上第一个实用的单晶硅光伏电池。同年,韦克尔发现砷化镓具有光伏效应,并在玻璃上沉积硫化镉薄膜,制成世界上第一块薄膜光伏电池。我国2010 年 12 月投入运行的大丰 20 MW 光伏电站,是目前全国最大的薄膜光伏电站,年发电量2 300 万 kW·h。
太阳能光伏电池的工作原理如图 1 所示。
在半导体中掺加杂质制成 PN 结,以形成在平衡状态时具有的内建电场,在该内建电场的作用下分离由外界激发而生成的过剩载流子,从而形成外部电压。在光照条件下,半导体中的电子吸收光子能量从价带跃入导带,形成电子———空穴对,成为载流子。生成载流子所需要的最低能量是半导体的禁带宽度 Eg,使用禁带宽度较小的材料制作的太阳能电池可以形成较大的电流。
基于单晶硅的第一代光伏电池是目前太阳能光伏电池市场的主流,其光电转换率已达 24. 7%基于薄膜技术的第二代光伏电池的光电转换效率已达到16. 5% ~ 18. 8% 。由于薄膜光伏电池大大减少了半导体材料的消耗,因此具有很好的发展前景。应该指出,光伏电池在光电转换过程中,光伏材料既不发生任何化学变化,也不产生任何机械磨损,因此太阳能光伏电池是一种无噪音、无气味、无污染的理想清洁能源。2006 年,我国太阳能电池生产总量首次达到400 MW,从而超过美国成为全球第三大生产国,也是世界上发展最快的国家。
1. 2 太阳能光伏电站
太阳能光伏电站是将若干个光伏转换器件即光伏电池封装成光伏电池组件,再根据需要将若干个组件组合成一定功率的光伏阵列,并与储能、测量、控制装置相配套,构成太阳能光伏电站。
太阳能光伏电池具有很大的灵活性,不仅可以用其建设零星规格的电站,而且可以组成应用于小型、分散电力用户的太阳能光伏发电系统。这种独立运行的太阳能光伏发电系统称之为离网型太阳能光伏发电系统。
由于受昼夜日照变化及天气的影响,离网型光伏发电系统通常需要和其他电源形式联合使用,比如柴油发电机组以及蓄电池组,从而增大了电站的投资和维护费用。离网型光伏发电系统往往建在距离电网较远的偏远山区及荒漠地带,向独立的区域用户供电。西藏措勒 20 kW 光伏电站是我国建设较早的离网型光伏电站,总投资 290 万元,1994 年 12 月正式投产发电。
离网型太阳能光伏电站系统如图 2 所示。
电站的发电系统由太阳能光伏电池方阵、蓄电池组、直流控制器、直流 - 交流逆变器、交流配电柜和备用电源系统( 包括柴油发电机组和整流充电柜) 等组成。其工作原理为太阳能光伏电池方阵经过直流控制柜向蓄电池组供电,并根据需要整定蓄电池组的上限和下限电压,由直流控制柜自动控制充电。蓄电池组通过直流控制柜向直流 - 交流逆变器供电,经逆变器将直流电变换成三相交流电,再通过交流配电柜以三相四线制向用户供电。当蓄电池组的电压下降到下限电压时,为不造成蓄电池组的过渡放电,直流控制柜将自动切除其输出电路,使直流 - 交流逆变器停止工作。柴油发电机组为电站的备用电源,必要时由备用电源通过整流充电柜向蓄电池组充电,或在光伏发电系统出现故障及停运时直接通过交流配电柜向用户供电。直流 - 交流逆变器和柴油发电机组不能同时向用户供电,为此必须在交流配电柜中设置互锁装置以保证供电电源的唯一性。
当太阳能光伏电站的容量达到一定规模时,还可与电网相联,即所谓的并网型光伏电站。这时,如果本地负荷不足,则可将多余的电能输送给电网。当本地太阳能发电量不足时,则由电网向用户提供电能。因此,并网型光伏电站可以不需要使用蓄能装置,减少系统投资和维护费用。同时由于与电网的互济,提高了发电设备的利用率和供电用电的安全可靠性,是大规模开发太阳能发电技术的必然趋势。我国第一座并网型光伏电站是 2006 年建成投运的西藏羊八井可再生能源基地 100 kW 高压并网光伏电站。2010 年底全国首个光伏并网发电项目敦煌 2 ×10 MW 光伏发电项目建成投产。
四、结论与展望
本文从全球和我国的能源现状出发,分析说明了新能源发电技术是当前迫切而有实际价值的研究课题,进而具体介绍了风力发电系统和燃料电池发电系统的特点以及我国在这两个方面的发展现状。新能源不仅仅指风能和燃料电池,还包括生物质能、海洋能、地热能和光伏电池等。我国乃至全世界的新能源发电技术发展的潜力都是巨大的。在人类明天的舞台上,新能源将取代化石燃料,扮演重要的角色。
参考文献:
[1] 徐德鸿 . 新能源电力电子导论 [D]. 杭州 : 浙江大学 ,2009.
[2] 郝伟, 舒隽, 张粒子. 新能源发电技术综述 [C].华北电力大学第五届研究生学术交流年会 ,2007.
[3] 施涛.燃料电池发电系统的建模与仿真 [D].南京:东南大学,2007:5-6,63-64.
点击下页还有更多>>>浅谈新能源技术论文
清洁能源主要有水能、生物能、太阳能、风能、地热能、海洋能、天然气、清洁煤、核能等。
清洁能源,即绿色能源,是指不排放污染物、能够直接用于生产生活的能源,它包括可再生能源。狭义的绿色能源是指可再生能源,如水能、生物能、太阳能、风能、地热能和海洋能。这些能源消耗之后能够恢复补充,很少产生污染。
广义的清洁能源则包括在能源的生产、及其消费过程中,选用对生态环境低污染或无污染的能源,如天然气、清洁煤、核能等。新能源指近几年发展的二次能源技术,如燃料电池、新型二次电池。
一、核能
核能是可持续发展的清洁能源,已经被公认为是一种唯一能够大规模取代常规能源的替代能源。核能被列入我国能源政策之中,我国的核电事业有广阔的发展前景,它将是我国实现国民经济发展战略目标所需能源的重要支柱之一。
二、太阳能
与其它能源相比,太阳能具有很多优点,例如:地球上一年接受的太阳能总量远远大于人类对能源的需求量。分布广泛,不需要开采和运输。不存在枯竭问题,可以长期使用。安全卫生,对环境无污染等。因此太阳能必将在未来的能源结构中占有重要的地位,目前其开发利用已经受到人们高度重视,并取得较大的进展。
三、风能
风能是空气流动所产生的动能。风能是可再生的清洁能源,储量大、分布广,但它的能量密度低,并且不稳定。在一定的技术条件下,风能可作为一种重要的能源得到开发利用。