煤化验中的元素组成对火电厂生产运行有什么意义
一、煤质特性指标对火电厂生产运行的影响
(一)煤中水分对火电厂生产运行的影响水分的存在不仅使煤中可燃质含量相对减少,降低了发热量,还会因受热蒸发、汽化而消耗大量的热量(1Kg水汽化约耗去2.3Mj热量),导致炉膛温度降低、煤粉着火困难、排烟量增大,增加了厂用电率。同时,还增加了输煤系统堵塞的几率,影响正常供电。
燃用多水分煤,烟气中的水蒸汽分压高,促进了烟气中三氧化硫形成硫酸蒸汽,增加锅炉尾部低温处硫酸的凝结沉积,造成空气预热器腐蚀、堵灰和烟囱内衬的剥落。一般认为,煤中水分(Mf)大于8%时,常给输煤系统带来麻烦,若水分(Mt)超过12%~17%,则将会严重威胁运行的安全。
(二)灰分对火电厂生产运行的影响
1.燃烧不正常。灰分增加,炉膛燃烧温度下
降。如灰分从30%增大到50%,每增加1%的灰分,理论燃烧温度平均约降低5℃。煤的燃尽度差,排
灰量增大,机械不完全燃烧热损失增加,飞灰和灰渣带走的物理热损失增加。同时,由于炉膛温度降低,使煤粉着火困难,引起燃烧不良,严重时引起熄火。
2.事故率增高。燃用多灰分煤还会增加锅炉
受热面的污染、积灰,从而导致排烟温度升高,排烟热损失增加,降低了锅炉运行的经济性。当煤的折算灰分(Az)大于15%时还会造成输煤、制粉、引风、除尘等设备的磨损,从而引起锅炉设备的漏风、堵灰等事故增加。因此,从燃烧稳定和运行安全、经济考虑,固态排渣炉燃用的灰分不宜超过
40%。
3.环境污染严重。
燃用多灰煤,灰量成倍或数倍地增加,使电厂排放的粉尘、灰渣急剧增加,严重污染环境,破坏生态环境。
4.燃用多灰分煤还给锅炉设备造成很大的磨
损,缩短运行寿命,特别是制粉系统,尤为显著。
5.增加了基建投资和厂用电量。
灰分增多,使输煤和制粉、除尘等设备容量增加,储灰场容量加大,投资增加;灰分增高,用煤量、排灰量增加,导致输煤、制粉、除尘系统耗电量增大。
(三)挥发分对火电厂生产运行的影响挥发分是发电厂用煤的重要指标,挥发分的高低对煤的着火和燃烧有较大影响。挥发分高的煤易着火、火焰大、燃烧稳定,但火焰温度较低。相反,挥发分低的煤,不易点燃、
燃烧不稳定,化学和机械不完全燃烧热损失增加,严重时,甚至还能引起熄火。锅炉燃烧器的结构形式和一、二次风的选择,炉膛形状及大小燃烧带的铺设,制粉系统的选型和防爆措施的设计等都与挥发分有密切关系。除此之外,煤的挥发分还与煤的存放及制粉系统的安全运行有密切关系。煤粉阴燃的温度随煤的挥发分含量增高而降低,如Vdaf为15%~30%的煤阴燃温度为270~300度,Vdaf为40%的煤阴燃温度为210度。因此,当煤中挥发分高时,制粉系统煤粉积集时容易使煤粉着火自燃。
(四)煤中硫对火电厂生产运行的影响就电力用煤而言,煤中硫可分为可燃硫和不可燃硫,两者之和称为全硫。硫分是一种极其有害的杂质,对焦化、气化和燃烧都会带来极不利的影响。锅炉燃用高硫煤对锅炉设备主要产生下列不良后果:
1.引起锅炉高、低温受热面的腐蚀,特别是
高、低温段空气预热器,往往运行不到一年,就发现有腐蚀穿孔且伴随堵灰的现象。
2.加速磨煤机部件及输煤管道的磨损,尤其
含黄铁矿多的煤,更为严重。因为黄铁矿的莫氏硬度仅次于石英,为6 ̄6.5。对钢球磨煤机、磨制灰分大的煤比灰分小的煤,其吨煤钢球消耗约大4倍。
3.促进煤氧化自燃。对变质程度浅的煤在煤
场组堆或煤粉贮存时,若含有较多的黄铁矿,则会由于黄铁矿受氧化放热而加剧煤的氧化自燃。
4.增加大气污染。煤中硫燃烧后绝大多数形成SO2随烟气逸出烟囱,增加了对周围环境的污染。煤中硫每增加1%,则每用1吨煤就多排放约20千克的SO2气体。
(五)发热量对火电厂生产运行的影响发热量是煤炭作为燃料利用的一个重要的煤质特性指标,它对于电力安全生产和经济运行均有重要的意义,主要表现在以下方面:
1.在煤炭管理上,入厂煤属于商务贸易。它的计价、编制电厂燃料的消耗定额和供应计划、核算发电成本和计算能源利用效率等,都要以发热量作为主要依据。
2.在设计锅炉机组时,煤炭发热量是用来计
算炉膛热负荷、选择磨煤机容量和计算物料平衡等必不可少的煤质参数。
3.在锅炉机组运行时,煤炭发热量又是锅炉
热平衡、配煤燃烧及负荷调节等的主要依据。同时也是计算发供电煤耗经济指标的依据之一。
4.煤的低位发热量降低时,在锅炉负荷不变的情况下,燃料量增加,总烟气量通常增加,炉膛出口温度升高,而炉膛内单位辐射吸热却降低;燃料量增加,反映在各制粉系统上,各制粉系统的出力增加,导致一次风量的增加,煤粉细度相对变粗。而一次风量相对于总风量的比例增加,使炉膛内冷风量增加,炉内燃烧区域的平均温度降低,燃烧损失q3和q4增加,同时由于燃料量的增加,必须增加制粉系统的数量,使炉内火焰中心温度上移;燃料量的增加,使锅炉受热面的积灰程度增加,锅炉传热下降,使尾部烟道的烟气温度上升,排烟温度和烟气量均上升,排烟损失q2增加;由于燃料量的增加,锅炉的排渣量增加,使炉渣物理热损失增加,进一步降低锅炉的效率。
(六)哈氏可磨性指数对火电厂生产运行的影响
由于电厂中绝大部分安装的是煤粉锅炉,故衡量煤磨制成粉难易程度的可磨性,就成为一项对电力生产有关重要影响的煤质特性指标。提供
可靠的可磨性指数,对电厂设计时选择磨煤机的类型及容量,预测磨煤机所需动力及了解磨煤机运行工况等方面,都是不可缺少的参数。哈氏可磨性指数越大,在消耗一定能量的条件下,磨煤机出力越大。哈氏可磨性相差10个指数,在磨制相同细度的条件下,磨煤机约相差25%的压力。为了减少能耗,电力用煤的哈氏可磨性指数宜选择较大一些的煤源。哈氏可磨性指数为70,属于可磨性中等程度煤;其值如能达到80 ̄90,是较为易磨;而值为50 ̄60,则算作难磨煤。
(七)灰熔融性对火电厂生产运行的影响灰熔融性是影响锅炉安全经济运行的重要特性指标。煤灰熔融温度低,则锅炉容易结渣,这对电厂安全经济运行关系很大。某些锅炉结渣事故,导致人员伤亡,造成了严重的经济损失。
为了避免锅炉严重结渣,对煤质与灰渣特性的要求是:煤中灰分及含硫量不宜过大,煤粉也不宜太粗;要选用灰熔融温度高的煤,一般是ST要高于1350℃,越高越好;要避免选用灰熔融温度较低的短渣煤,因为燃用这种煤,最易导致严重情况的发生;宜选用煤灰熔融性不受或少受气氛条件影响的煤。由于这种煤的灰渣特性受锅炉运行工况波动的影响较小,从而有助于锅炉的稳定燃烧。
二、当前火电厂燃煤具有的特点
1.燃煤数量多。因单座火电厂装机容量的增
多,其所需的燃煤量也相应增多。
2.燃煤品种杂。除极少数靠近产煤地区的火
电厂外,多数火电厂燃用部分或相当部分的小窑煤,致使煤品种繁杂,少则一二十种,多则达四五十种,有的甚至更多。
3.燃煤杂质多。
燃煤中除含有矸石外,还经常夹杂有从开采、运输中混入的木片、金属物、棉纱或塑料制品等杂质。
4.粒级范围大。
燃用地方小窑煤的火电厂,因供煤多是未经加工处理的原煤,一般粒级范围大,且其波动性范围也大。
煤的好坏看什么啊?
一、矿物原料特点
(一) 煤的物理性质
煤的物理性质是煤的一定化学组成和分子结构的外部表现。它是由成煤的原始物质及其聚积条件、转化过程、煤化程度和风、氧化程度等因素所决定。包括颜色、光泽、粉色、比重和容重、硬度、脆度、断口及导电性等。其中,除了比重和导电性需要在实验室测定外,其他根据肉眼观察就可以确定。煤的物理性质可以作为初步评价煤质的依据,并用以研究煤的成因、变质机理和解决煤层对比等地质问题。
1.颜色
是指新鲜煤表面的自然色彩,是煤对不同波长的光波吸收的结果。呈褐色—黑色,一般随煤化程度的提高而逐渐加深。
2.光泽
是指煤的表面在普通光下的反光能力。一般呈沥青、玻璃和金刚光泽。煤化程度越高,光泽越强矿物质含量越多,光泽越暗风、氧化程度越深,光泽越暗,直到完全消失。
3.粉色
指将煤研成粉末的颜色或煤在抹上釉的瓷板上刻划时留下的痕迹,所以又称为条痕色。呈浅棕色—黑色。一般是煤化程度越高,粉色越深。
4.比重和容重
煤的比重又称煤的密度,它是不包括孔隙在内的一定体积的煤的重量与同温度、同体积的水的重量之比。煤的容重又称煤的体重或假比重,它是包括孔隙在内的一定体积的煤的重量与同温度、同体积的水的重量之比。煤的容重是计算煤层储量的重要指标。褐煤的容重一般为1.05~1.2,烟煤为1.2~1.4,无烟煤变化范围较大,可由1.35~1.8。煤岩组成、煤化程度、煤中矿物质的成分和含量是影响比重和容重的主要因素。在矿物质含量相同的情况下,煤的比重随煤化程度的加深而增大。
5.硬度
是指煤抵抗外来机械作用的能力。根据外来机械力作用方式的不同,可进一步将煤的硬度分为刻划硬度、压痕硬度和抗磨硬度三类。煤的硬度与煤化程度有关,褐煤和焦煤的硬度最小,约2~2.5无烟煤的硬度最大,接近4。
6.脆度
是煤受外力作用而破碎的程度。成煤的原始物质、煤岩成分、煤化程度等都对煤的脆度有影响。在不同变质程度的煤中,长焰煤和气煤的脆度较小,肥煤、焦煤和瘦煤的脆度最大,无烟煤的脆度最小。
7.断口
是指煤受外力打击后形成的断面的形状。在煤中常见的断口有贝壳状断口、参差状断口等。煤的原始物质组成和煤化程度不同,断口形状各异。
8.导电性
是指煤传导电流的能力,通常用电阻率来表示。褐煤电阻率低。褐煤向烟煤过渡时,电阻率剧增。烟煤是不良导体,随着煤化程度增高,电阻率减小,至无烟煤时急剧下降,而具良好的导电性。
(二) 煤的化学组成
煤的化学组成很复杂,但归纳起来可分为有机质和无机质两大类,以有机质为主体。
煤中的有机质主要由碳、氢、氧、氮和有机硫等五种元素组成。其中,碳、氢、氧占有机质的95%以上。此外,还有极少量的磷和其他元素。煤中有机质的元素组成,随煤化程度的变化而有规律地变化。一般来讲,煤化程度越深,碳的含量越高,氢和氧的含量越低,氮的含量也稍有降低。唯硫的含量则与煤的成因类型有关。碳和氢是煤炭燃烧过程中产生热量的重要元素,氧是助燃元素,三者构成了有机质的主体。煤炭燃烧时,氮不产生热量,常以游离状态析出,但在高温条件下,一部分氮转变成氨及其他含氮化合物,可以回收制造硫酸氨、尿素及氮肥。硫、磷、氟、氯、砷等是煤中的有害元素。含硫多的煤在燃烧时生成硫化物气体,不仅腐蚀金属设备,与空气中的水反应形成酸雨,污染环境,危害植物生产,而且将含有硫和磷的煤用作冶金炼焦时,煤中的硫和磷大部分转入焦炭中,冶炼时又转入钢铁中,严重影响焦炭和钢铁质量,不利于钢铁的铸造和机械加工。用含有氟和氯的煤燃烧或炼焦时,各种管道和炉壁会遭到强烈腐蚀。将含有砷的煤用于酿造和食品工业作燃料,砷含量过高,会增加产品毒性,危及人民身体健康。
煤中的无机质主要是水分和矿物质,它们的存在降低了煤的质量和利用价值,其中绝大多数是煤中的有害成分。
另外,还有一些稀有、分散和放射性元素,例如,锗、镓、铟、钍、钒、钛、铀……等,它们分别以有机或无机化合物的形态存在于煤中。其中某些元素的含量,一旦达到工业品位或可综合利用时,就是重要的矿产资源。
通过元素分析可以了解煤的化学组成及其含量,通过工业分析可以初步了解煤的性质,大致判断煤的种类和用途。煤的工业分析包括对水分、灰分、挥发分的测定和固定碳的计算四项内容。
1.水分
指单位重量的煤中水的含量。煤中的水分有外在水分、内在水分和结晶水三种存在状态。一般以煤的内在水分作为评定煤质的指标。煤化程度越低,煤的内部表面积越大,水分含量越高。水分对煤的加工利用是有害物质。在煤的贮存过程中,它能加速风化、破裂,甚至自燃在运输时,会增加运量,浪费运力,增加运费炼焦时,消耗热量,降低炉温,延长炼焦时间,降低生产效率燃烧时,降低有效发热量在高寒地区的冬季,还会使煤冻结,造成装卸困难。只有在压制煤砖和煤球时,需要适量的水分才能成型。
2.灰分
是指煤在规定条件下完全燃烧后剩下的固体残渣。它是煤中的矿物质经过氧化、分解而来。灰分对煤的加工利用极为不利。灰分越高,热效率越低燃烧时,熔化的灰分还会在炉内结成炉渣,影响煤的气化和燃烧,同时造成排渣困难炼焦时,全部转入焦炭,降低了焦炭的强度,严重影响焦炭质量。煤灰成分十分复杂,成分不同直接影响到灰分的熔点。灰熔点低的煤,燃烧和气化时,会给生产操作带来许多困难。为此,在评价煤的工业用途时,必须分析灰成分,测定灰熔点。
3.挥发分
指煤中的有机物质受热分解产生的可燃性气体。它是对煤进行分类的主要指标,并被用来初步确定煤的加工利用性质。煤的挥发分产率与煤化程度有密切关系,煤化程度越低,挥发分越高,随着煤化程度加深,挥发分逐渐降低。
4.固定碳
测定煤的挥发分时,剩下的不挥发物称为焦渣。焦渣减去灰分称为固定碳。它是煤中不挥发的固体可燃物,可以用计算方法算出。焦渣的外观与煤中有机质的性质有密切关系,因此,根据焦渣的外观特征,可以定性地判断煤的粘结性和工业用途。
(三)煤的工艺性质
为了提高煤的综合利用价值,必须了解、研究煤的工艺性质,以满足各方面对煤质的要求。煤的工艺性质主要包括:粘结性和结焦性、发热量、化学反应性、热稳定性、透光率、机械强度和可选性等。
1.粘结性和结焦性
粘结性是指煤在干馏过程中,由于煤中有机质分解,熔融而使煤粒能够相互粘结成块的性能。结焦性是指煤在干馏时能够结成焦炭的性能。煤的粘结性是结焦性的必要条件,结焦性好的煤必须具有良好的粘结性,但粘结性好的煤不一定能单独炼出质量好的焦炭。这就是为什么要进行配煤炼焦的道理。粘结性是进行煤的工业分类的主要指标,一般用煤中有机质受热分解、软化形成的胶质体的厚度来表示,常称胶质层厚度。胶质层越厚,粘结性越好。测定粘结性和结焦性的方法很多,除胶质层测定法外,还有罗加指数法、奥亚膨胀度试验等等。粘结性受煤化程度、煤岩成分、氧化程度和矿物质含量等多种因素的影响。煤化程度最高和最低的煤,一般都没有粘结性,胶质层厚度也很小。
2.发热量
是指单位重量的煤在完全燃烧时所产生的热量,亦称热值,常用106J/kg表示。它是评价煤炭质量,尤其是评价动力用煤的重要指标。国际市场上动力用煤以热值计价。我国自1985年6月起,改革沿用了几十年的以灰分计价为以热值计价。发热量主要与煤中的可燃元素含量和煤化程度有关。为便于比较耗煤量,在工业生产中,常常将实际消耗的煤量折合成发热量为2.930368×107J/kg的标准煤来进行计算。
3.化学反应性
又称活性。是指煤在一定温度下与二氧化碳、氧和水蒸汽相互作用的反应能力。它是评价气化用煤和动力用煤的一项重要指标。反应性强弱直接影响到耗煤量和煤气的有效成分。煤的活性一般随煤化程度加深而减弱。
4.热稳定性
又称耐热性。是指煤在高温作用下保持原来粒度的性能。它是评价气化用煤和动力用煤的又一项重要指标。热稳定性的好坏,直接影响炉内能否正常生产以及煤的气化和燃烧效率。
5.透光率
指低煤化程度的煤(褐煤、长焰煤等),在规定条件下用硝酸与磷酸的混合液处理后,所得溶液对光的透过率称为透光率。随着煤化程度加深,透光率逐渐加大。因此,它是区别褐煤、长焰煤和气煤的重要指标。
6.机械强度
是指块煤受外力作用而破碎的难易程度。机械强度低的煤投入气化炉时,容易碎成小块和粉末,影响气化炉正常操作。因此,气化用煤必须具备较高的机械强度。
7.可选性
是指煤通过洗选,除去其中的夹矸和矿物质的难易程度。我国现行的选煤方法,详见第四节。
(1) 外在水分(Wwz)外在水分是指煤在开采、运输和洗选过程中润湿在煤的外表以及大毛细孔(直径>10-5厘米)中的水.它以机械方式与煤相连结着,较易蒸发,其蒸汽压与纯水的蒸汽相等.与煤粒度等有关,而与煤质无直接关系.
(2)内在水分(Wnz)吸附或凝聚在煤粒内部的毛细孔(直径〈10-5厘米〉中的水,称为内在水分.内在水分指将风干煤加热到105~110时所失去的水分,它主要以物理化学方式(吸附等)与煤相连结着,较难蒸发,故蒸气压小于纯水的蒸汽压. 失去内在水分的煤称为绝对干燥或干煤.
2. 灰分
1).灰分的来源和种类 煤灰几呼全部来源于煤中的矿物质,但煤在燃烧时,矿物质大部分被氧化,分解,并失去结晶水,因此,煤灰的组成和含量与煤中矿物质的组成和含量差别很大.我们一般说的煤的灰分实际上就是煤灰产率,煤灰成分及其含量与层聚积环境有关. 大量试验资料表明,SiO2含量在45~60%时,灰熔点随SiO2含量增加而降低;SiO2在其含量〈45%或〉60%时,与灰熔点的关系不够明显.A12O3在煤灰中始终起增高灰熔点的作用.煤灰中A12O3的含量超过期30%时,灰熔点在1500.灰成分中Fe2O3,CaO,MgO均为较易熔组分,这些组分含量越高,灰熔点就越低.灰熔点也可根据其组成用经验公式进行计算.
3. 挥发分和固定碳
挥发分主要是煤中有机质热分解的产物,评价煤质时为了排除水分,灰分,变化的影响,须将分析煤样挥发分换算为以可燃物为基准的挥发分,以符号VR表示.挥发分随煤化程度升高而降低的规律性十分明显,可以初步估计煤的种类和化学工艺性质,而且挥发分的测定简单,快速发分的分析结果常受煤中矿物质的影响.所以当煤中碳酸盐含量较高,矿物质在高温下分解出来的CO2,结果水等也包括在挥发分内.所以当煤中碳酸盐含量较高,分解出来的CO2产率大于2%时,需要对煤的挥发进行正.也可在测定挥发分之前,用盐酸处理分析煤样,使煤中碳中碳酸盐事先分解.在我国大我数煤中,粘土矿物,高岭土在560析出的结果水也算入挥发分,因此粘土矿物含量高的煤所测出的挥发分通常偏高.
固定碳就是测定挥发分后残留下来的机物质的产率,可按下式算出: Cgd=1000-(Wf+Af+Vf)
煤是不均质的混合物,由有机物质和无机物质两部分组成,主要是有机物质。有机物质可以燃烧,所以也称为可燃体。无机物质主要是各种矿物杂质,通常不能燃烧。煤的性质分为物理性质、化学组成、工艺性能等。
(1)煤的物理性质。煤的物现性质包括煤岩组成、颜色、光泽、密度、硬度、导电性、导热性、耐热性、磁性、粒度组成、泥化程度等。分析和研究煤的物理性质既有理论意义又有实践价值,它将为煤炭加工技术的发展提供许多重要的信息。
(2)宽的化学组成。煤的化学组成包括煤的工业分析和元素分析。
煤的工业分析包括测定煤中的水分、灰分、挥发分和固定炭四项。根据煤的水分和灰分。可以大致了解煤中有机物质或可燃物的含量,如煤的水分和灰分高,则有机质含量就低,因而发热量低、经济价值小从煤的挥发分可以大致了解到煤中有机物质的性质、煤化程度的高低、黏结性的强弱和发热量的高低。从煤的固定炭含量可以大致判断其煤化程度,评价其经济价值。
煤的元素分析是指对有机部分的碳、氢、氧、氮、硫、磷等元素的组成进行分析。
煤,是由有机化合物和无机化合物组成的复杂混合物,它主要含碳,即单质的碳,还有少量的氢、氧、硫等氧族元素、氮、磷等氮族元素等,它是由远古时代的植物埋在地层内之后变成的。
当煤在隔绝空气后加强热,它就会分解,变成单质的碳,这就叫做干馏。木材也可以干馏,制得木炭。
希望我能帮助你解疑释惑。