建材秒知道
登录
建材号 > 煤炭 > 正文

煤、石油的开采和利用对环境造成了哪些恶劣影响

尊敬的高跟鞋
细心的帆布鞋
2023-01-31 02:04:02

煤、石油的开采和利用对环境造成了哪些恶劣影响?

最佳答案
疯狂的板凳
酷酷的大炮
2025-08-24 15:32:10

煤、石油的开采,对环境造成了恶劣影响.

一、对土地的毁坏

采煤、采油,都要占用、浪费大量的土地资源.

采煤的矿渣、煤矸石,采油的钻台、设备,占地是自身设备的几十倍,对土地的毁坏是不可逆的.

二、地下水的破坏

造成地下水位降低,水质变差,污染.

三、地面下沉

山体滑坡、地震的可能性大大增加.地面建筑倒塌的危险大大增加.

四、能源问题

煤和石油都是不可再生能源.

最新回答
追寻的黑裤
凶狠的摩托
2025-08-24 15:32:10

煤炭开采形成的环境问题

(1)对土地资源的破坏和占用。

煤炭开采分为井工和露天两大方式,其中,我国95%以上的煤炭产量来自井工开采。

对土地资源的破坏损害,井工开采以地表塌陷和矸石山压占为主,而露天开采则以直接

挖损和外排土场压占为主。

(2)对水资源的破坏和污染。

煤炭开采过程中,为保证安全而进行的人为疏干排水和采动形成的导水裂隙对煤系含水层的

自然疏干,共同破坏和污染了地下水资源。与此同时,大量未经处理含有煤粉、岩粉和其它

污染物的矿井水外排,又影响到矿区及其周边环境。

(3)对大气环境的污染。

主要来自矿井排风、煤层瓦斯抽放和煤矿矸石山的自燃。

1.2.2

煤炭加工形成的环境问题

煤炭加工形成的环境问题主要来自于对原煤的筛分、洗选、动力配煤和土法炼焦。污染环境

的方式主要是排放出大量煤泥水、洗矸、煤尘和有害气体。

1.2.3

煤炭储运形成的环境问题

主要来自于煤炭的储、装、运过程中产生的煤尘飞扬对矿区及运输线路两侧生态环境的污染

1.2.4

煤炭燃烧使用形成的环境问题

我国85%的煤炭是通过直接燃烧使用的,主要包括火力发电、工业锅(窑)炉、民

用取暖和家庭炉灶等。高耗低效燃烧煤炭向空气中排放出大量SO2、CO2和烟尘,造成我

国以煤烟型为主的大气污染。

1.3

煤炭矿区生态环境问题的危害及程度

(1)煤炭开采导致土地资源破坏及生态环境恶化。由于露天开采剥离排土,井工开采地表

沉陷、裂缝,都将破坏土地资源和植物资源,影响土地耕作和植被生长,改变地貌并引发景

观生态的变化。开采沉陷造成我国东部平原矿区土地大面积积水受淹或盐渍化,使西部矿区

水土流失和土地荒漠化加剧。采煤塌陷还会引起山地、丘陵发生山体滑落或泥石流,并危及

地面建筑物、水体及交通线路安全。

碧蓝的嚓茶
大意的缘分
2025-08-24 15:32:10

煤矿是人类在开掘富含有煤炭的地质层时所挖掘的合理空间,通常包括巷道、井硐和采掘面等等。煤是最主要的固体燃料,是可燃性有机岩的一种。 在中国煤炭开采必须依法开采,证照齐全有效。贯彻“安全第一、预防为主、综合治理”的安全生产方针。 挖煤会造成多方面的环境危害,挖煤对地面主要有以下几个方面的风险:

1、造成地表下沉,地面坍塌。

大多数煤层远离地表,因此不能使用露天开采。 地下采矿占世界煤炭产量的60%。 在矿井中,通常采用室柱法来推进煤层,并使用梁和柱支撑矿井。 由于大量的水从煤矿井筒中抽出,因此降低了矿井底部的承载能力。 另外,在大多数小窑煤矿的开采过程中,没有采取预防措施,例如煤柱。 一些小窑炉煤矿甚至保留给国有煤矿使用。 煤炭支柱被任意开挖和破坏,导致地层移位和地表下沉。

2、长期开发,地面易造成自然灾害。

矿是地质灾害的外部原因,地层岩性和地质构造是造成地质灾害的内在原因。 在地下采矿过程中,开采形成的采空区很容易导致地表塌陷,地形和地貌会发生变化,从而造成地质灾害。 因此,采空区带来的不利影响在破坏地质环境方面尤其严重。

采煤不仅对地面有危害还对环境造成多种冲击。露天煤矿让土地无法再使用。洗煤厂所产生的酸性矿山排水可能渗入河流中,造成生态污染或人体健康的不良影响。煤炭开采带来的环境污染和生态破坏问题日益突出,主要表现:

1、地面水下跌

由于煤矿开采过程中矿井水大量排水,地下水位下降,地表水下降。

2、水污染

矿井废水中的污染物(例如悬浮物)的浓度相对较高,特别是流经含硫铁(非常酸性)的煤层的矿井水。 根据矿区矿山废水的采样检测,平均悬浮物浓度为280 mg / L,平均化学耗氧量为530 mg / L,硫酸根离子浓度为 高达2500 mg / L。最低pH值只有2.7。 如果不经处理就排放这种矿山废水,将会严重污染地表水体,淤塞河道和农田河道,造成土壤压实,对农作物产生很大影响。

3、占地及污染

煤矿排出的煤矸石一般都就近堆放。随着堆存量的不断增加,堆场的占地面积也逐年扩大。煤矸石经风化、雨蚀、自燃后,其表面的风化层物质在风力作用下进人大气,严重污染大气环境。

舒适的白云
淡然的镜子
2025-08-24 15:32:10

煤炭开采对区域生态的影响主要是采煤地表沉陷,其表现形式为地表移动变形影响土地利用、加速水土流失、加速土地沙化、地表建构筑物损害等,露天开采则是完全破坏原地表植被、建构筑物。

一、煤炭开发对生态环境的影响

1、水资源区域分布不均衡且破坏严重

2、土地与地面建筑物塌陷

3、矸石露天排放造成环境污染

二、煤炭利用对生态环境的影响

1、酸沉降由硫酸型向复合型转变

2、颗粒物造成的沙尘和灰霾污染严重

3、臭氧和光化学污染问题凸显

4、应对全球气候变化压力日益增大

煤炭开采对区域生态的影响主要是采煤地表沉陷,其表现形式为地表移动变形影响土地利用、加速水土流失、加速土地沙化、地表建构筑物损害等,露天开采则是完全破坏原地表植被、建构筑物。

谨慎的招牌
细心的母鸡
2025-08-24 15:32:10

土地损毁是指人类生产建设活动或自然灾害造成土地原有功能部分或完全丧失的过程。依据土地损毁方式、损毁主体与生产建设工艺等,土地损毁类型可以分为三类,具体分类如表2.1所示(国土资源部,2013)。

表2.1 土地损毁类型

从煤炭开采对土地损毁的形式来看,井工开采产生的土地损毁以土地塌陷和土地矸石压占为主,而露天开采则以挖损土地和排土场压占土地为主(白中科等,1999;曹银贵等,2014)。在煤炭开采过程中,土地损毁面积的影响因素比较多,包括新的开采规模、资源探明、技术革新、煤炭赋存条件、沉积层的松散程度等(曹银贵等,2014)。土地损毁系数是衡量煤炭开采土地损毁面积的重要指标。土地损毁系数是指在一段时间范围内每采万吨煤所导致的土地损毁面积(何书金,苏光全,2002)。从煤炭开采对土地的损毁来看,土地损毁系数与地貌类型、采矿工艺和损毁土地的类型紧密相关(周伟等,2012)。

爱笑的雪糕
知性的啤酒
2025-08-24 15:32:10

煤石油的开采和利用对环境的影响:

1、地表塌陷

煤炭开采破坏了地壳内部原有的力学平衡状态,由于连续不断的开采,采空区范围不断扩大,当顶板自重超过顶板抗拉强度和煤校抗压强度时,顶板岩土层会发生位移、断裂,经冒落、下沉变化之后引起地表塌陷。地表塌陷后,原有生态系统受到破坏,这种破坏对各个方面都产生了不同程度的影响,最直接的影响就是原有土地收益的减少或丧失,同时造成地表水利设施的破坏和生态环境恶化。

2、城市大气污染

一次能源利用过程中,产生大量的二氧化碳、二氧化硫、氮化物、悬浮颗粒物及多种芳香烃化合物,已对一些国家的城市造成了十分严重的污染。大气污染不仅导致生态的破坏,而且危害人体健康。欧盟由于大气污染造成的材料损坏、农作物和森林以及人体健康损失费用每年超过100亿美元。中国仅大气污染造成的损失每年高达120亿元人民币。

3、温室效应

工业革命前,大气中的二氧化碳按体积计算是每100万大气单位中约有280个单位。之后,由于大量化石能源的燃烧,1988年大气二氧化碳浓度已达到349个单位。如果大气中二氧化碳浓度增加1倍,全球平均表面温度将上升1.5~3℃,极地温度可能上升6~8℃。这样的温度可能导致海平面上升20~140厘米,将对全球许多国家的经济、社会产生严重影响。

4、酸雨

燃烧化石能源而产生的大量二氧化硫和氮化物等污染物通过空气传播,可在一定条件下形成大面积酸雨。酸雨会改变覆盖区的土壤性质,危害农作物和森林生态系统;改变湖泊水库的酸度,破坏水生生态系统;腐蚀材料和建筑物等,造成重大经济损失。酸雨还可导致地区气候改变,造成难以估量的后果。

5、核废料问题

人类发展核能技术,尽管对反应堆已有了一定的安全保障措施,但世界范围内的民用核能计划的实施,已产生了上千吨的核废料。这些核废料的最终处理问题并没有完全解决,在数百年内仍将存在放射性危害。

玩命的大神
开心的衬衫
2025-08-24 15:32:10
煤炭开采带来的环境污染和生态破坏问题日益突出,主要表现在:

1、地面水下跌

由于在煤炭开采过程中矿井水大量外排,导致地下水位下降,引起地面水下跌。

2、地层错动与地表下沉

由于煤矿井下水大量外抽,矿井上底承载能力下降,加上大部分小窑煤井在开采过程中,没有采取预留煤柱等预防措施,有的小窑煤井甚至对国有煤矿预留煤柱肆意采挖、破坏,导致地层错动,地表下沉。

3、地面水受到污染

矿井废水中悬浮物等污染物浓度较高,特别是流经含硫铁矿煤层的矿井水,酸性很大。据南坑镇水仔边一带矿区的矿井废水抽样检测,其悬浮物浓度平均值为280毫克/升,化学耗氧量浓度平均值为530毫克/升,硫酸根离子浓度高达2500毫克/升,最低PH值仅为2.7。这类矿井废水如不经处理就外排,将严重污染地面水体,淤塞河道和农田渠道,造成土壤板结,对农作物影响很大。

4、煤矸石占地及风化污染问题

煤矿排出的煤矸石一般都就近堆放。随着堆存量的不断增加,堆场的占地面积也逐年扩大。据统计,到2001年底,全市煤矸石的累计堆存量已达7500万吨,占用土地3000多亩,而且目前仍以每年新增80余万吨堆存量的速度在递增。煤矸石经风化、雨蚀、自燃后,其表面的风化层物质在风力作用下进人大气,严重污染大气环境。下雨天,在雨水的冲刷下,会携带其表层的小颗粒物质流入河道,同时还会将煤矸石伴生的硫铁矿中的硫离子和亚铁离子等浸取出来,污染水体环境。

5、对森林植被的破坏

煤炭开采需要大量木材,按万吨煤炭产量平均消耗坑木150立方米计算。全市仅煤炭开采业一年就需消耗木材约10万立方米,如此大的木材缺口迫使煤矿多渠道收购木材,客观上助长了乱砍滥伐,使育伐比例失调。同时,由于地下水位下降,地表含水层含水量减少,也使植被生长受到影响。

6、二次扬尘污染问题

煤炭有相当一部分靠汽车运输,撒漏现象非常严重,大量煤炭流失,使街道煤尘飞扬。

为有效防治煤炭开采过程中产生的环境污染和生态破坏,使煤矿矿区的生态环境逐步步入良性循环的发展轨道,提出以下对策建议:

一、加强矿井废水和区域环境综合治理

(一)对现有废水治理设施进行改造。对已老化、坏损的废水治理设施、设备进行修复、改造,确保矿井废水长期、稳定达标排放。

(二)对部分废弃矿井外排的废水进行治理。部分煤矿虽然停止了采煤,但仍有矿井废水(俗称老窿水)外排。主要是部分煤矿的采煤巷道间接相通,矿井废水全部从标高最低的井口外排,并将原有老巷道岩石断层和风化层中硫铁矿中的铁离子等浸取出来,导致废水中铁离子和硫酸根离子的浓度很高,严重污染水体环境。所以,对部分废弃矿井外排的废水必须进行治理,修建沉淀池,井投加石灰等药剂,经中和、反应、沉淀处理后,再达标外排。

(三)对部分环境污染和生态破坏严重的区域进行综合治理。一是对淤塞的河道进行清淤疏浚、护岸;二是做好水保工程,一般应在矿区地面径流汇入点建设污水沉淀处理池等。

二、搞好煤矸石的综合利用

目前,我市综合利用煤矸石的主要途径是发电和制砖,年利用量约65万吨,但与目前的堆存量相比,可以说利用量很小,且利用途径单一。必须努力探索综合利用煤矸石的新途径,以实现在尽可能短的时限内“消灭”煤矸石山。可采取的措施是:

(一)提高煤矸石发电的综合利用量

煤矸石发电以循环流化床锅炉为主要炉型,加入石灰石或白云石等脱硫剂,可降低烟气中硫氧化物和氮氧化物的产生量。其常用燃料热值应在12550千焦/千克以下,产生的热量既可以发电,也可以用作采暖供热,燃烧后的灰渣具有较高的活性,是生产建材的良好原料。这部分煤矸石以选煤厂排出的洗矸为主。目前,我市仅有高坑、安源和王坑三个煤矸石发电厂,总装机容量为4.8万千瓦时,年综合利用煤矸石约50万吨。可在巩固、提高现有煤矸石发电综合利用量的基础上,对上述三个电厂进行扩容改造,提高煤矸石发电综合利用量。

(二)利用煤矸石代替粘土制砖

利用煤矸石全部代替粘土,既可以降低能耗,又能减少生态破坏,这是大宗利用煤矸石的主要途径。可利用现有国家政策,采取控制、取缔粘土制砖,鼓励综合利用煤矸石制砖的方式进行,可将现有煤矸石制砖能力从现在的利用煤矸石16万吨提高到奶万吨。

(三)利用煤矸石回填处置

1、煤矸石回填采矿区

利用煤矸石回填采矿区,既可减少煤矸石占地,又可减少煤矸石对环境的污染。一般用于回填的煤矸石以砂岩、石灰岩为主。

2、煤矸石作工程填筑材料

煤矸石作填筑材料主要是指充填沟谷、采煤塌陷区等区的建筑工程用地,或用于填筑铁路、公路路基等。

三、做好矿区植被恢复和矸石堆场的覆土植被工作

(一)实施封山育林,采取植草、人工造林和疏林补方式,提高地表涵养水源、保持水土的能力。

(二)对短期内暂无法消化的煤矸石,制定切实可行被保护规划、方案和措施。宜林则林,宜草则草,努好煤矸石堆场的覆土植被保护工作。

魁梧的金针菇
忧虑的蜜蜂
2025-08-24 15:32:10

我国矿业开发约占用土地(1.4~20)×106ha,并以每年2×104ha左右的速度增加。露天矿山在投产前剥离矿体覆盖层,要挖损大量土地,并占压新的土地作为排土排岩场。其中,煤炭开采对土地的影响现状及未来影响的预测结果如表5-2所示。

表5-2 煤炭开采对土地影响现状及预测 单位:ha

减少采矿对土地的破坏和压占首先要清洁生产,并不断改进生产技术和工艺,提高资源利用率,减少生产过程中的废弃物,降低土地使用量等。

5.4.2.1 减量化生产和资源化利用

采用新技术、新工艺,提高矿产品的产量和质量,在采选中尽可能实现不排或少排固体废弃物,同时对固体废弃物进行综合利用,如湿法冶金浸出其中部分有用元素后,将废石用于筑路、筑坝或充填于地下采空区。当前一些发达国家,已多数采用少尾矿或无尾矿的先进的选矿工艺。如美国田纳西州某铅锌矿的废石用于筑路和用作混凝土的骨料,尾矿用做石灰,矿山废弃物几乎得到了全部利用。随着选矿技术的进步,过去不能回收或不易回收的成分,现在已可以回收,使得原来作为废石处理的低品位矿石和尾矿得以利用,共伴生矿中的共伴生组分得以回收,这样就减少了尾矿总量。以矿山尾矿为原料用做水泥、玻璃、砖瓦等建筑材料,煤矿利用煤矸石制砖、发电、回填采空区等,既变废为宝又保护了环境。如陕西黄陵矿区用短壁式方式开采,井下巷道基本布置在煤层中,2000年产煤100×104t,仅出矸石2×104t。甘肃金川镍矿采用金属尾矿砂填充工艺,每年可减少尾矿库占地20~27ha,同时通过置换矿柱,提高了铜镍矿资源回采率。

5.4.2.2 固体废弃物处理的生态工程技术

发达国家在探索和应用生态工程技术处理固体废弃物方面成效显著。一方面采用适当的防渗材料,隔绝固体废物与周围环境,并在固体废弃物上覆盖土层,培植人工植被或建筑景观,将其改造成公园、游乐场、农田或牧场等。另一种生态工程建设是利用固体废弃物积极改造环境的技术,如澳大利亚对于含有硫铁矿的尾矿采用石灰石污泥、肥料等各种调整剂调整尾矿后,可以直接建立长期的生态植被工程而无需覆土。

5.4.2.3 有毒固体废弃物安全填埋技术

为减少有毒有害物质对环境的污染,安全填埋有毒固体废弃物技术在国外是一种主要的方法,在美国已有2000 多个安全填埋场,其固体废弃物处理量占总量的80%,德国为50%。

5.4.2.4 矿山固体废弃物综合处理

矿业生产中排弃的废石、煤矸石、尾矿等,多含有有害物质,会造成对环境的污染。通过在废尾矿堆表面喷水或用泥土、岩块、草帘等覆盖,可以减少粉尘、尾矿的飞扬;在废渣堆表面喷洒化学药剂,可形成一层固结硬壳,起到抗风和防水的作用。对具有放射性的废石、尾矿采用挖坑深埋或者回填矿井等方式处理。

从容的季节
妩媚的手套
2025-08-24 15:32:10
煤炭地下开采初期井巷及平垌的开挖产生部分废土石方,煤炭开采过程中产生大量的煤矸石。井巷及平垌的开挖产生的废土石方一般可用于基础建设土石原料或工业广场场地平整,对生态环境影响不大。而煤炭开采过程中产生大量的煤矸石,堆放地表将对生态环境产生一定影响,主要包括占用大量土地破坏地表植被,煤矸石堆随风起尘或散发出少量的废气,降雨时雨水冲刷煤矸石堆表层导致大量有害物质随雨水进入土壤或河流影响生态环境等。

为了充分开采利用煤炭资源,同时保护好生态环境,针对煤炭资源地下开采矿井存在的主要生态环境影响,可采取以下几个方面的生态保护措施。

煤矸石地面堆放影响防治措施

(1)改进采煤工艺,减少煤矸石排放量

开采过程中可改革巷道布置方式,多布置煤巷和半煤岩巷道,改革采煤工艺和方法,合理确定开采厚度,以减少矸石排放量和矿井建设费用,减少顶底板岩层的混入量,以降低原煤的含矸量和洗矸量,结合的综合开采方式,变全垮落式管理顶板为充填式或半充填半垮落式管理顶板,充分利用矸石充填采空区和废弃巷道,既可减少地表下沉量,又减少了矸石的排放量,同时还降低了导水裂隙带高度,减轻对含水层的影响,对保护矿区生态系统较为有利。

(2)综合利用煤矸石,消除地面煤矸石山

煤矸石在地面随意堆放不仅占用大量土地,而且对生态环境产生一系列影响。但是煤矸石是一种较好的建筑材料原料,目前利用煤矸石制砖是较为普遍制砖工艺。并且国家产业政策及地方均鼓励综合利用煤矸石制砖或其它建筑材料。因此煤炭开采过程中,可将运出地面的煤矸石充分用于制砖,不仅可真正实现变废为宝,而且还避免或减轻煤矸石大量堆放对环境造成的不良影响。

采空塌陷区生态保护措施

采空区塌陷直接破坏地表形态,影响塌陷区的植被,影响农田耕作,容易造成地表水体随裂缝进入矿井影响安全,影响村庄的安全,可能直接破坏塌陷区的建筑等。针对采空区塌陷问题可采取以下措施尽量避免或减少塌陷量。

(1)合理设计,采用科学的开采工艺,尽量减少对顶板围岩的破坏。

(2)在有村庄、河流、水库或大型建筑的区域开采时,预留保安煤柱,尽量用煤矸石填充采空区。

(3)加强地表变形监测,若发现异常,应立即采取相应措施。

(4)对已经发生塌陷的区域,应进行地表平整、恢复,若有地表水经过塌陷区,应将其从非塌陷区进行导流,避免地表水体直接进入矿井。

(5)对塌陷区进行植被恢复或复垦,减少塌陷区水土流失量。

矿井涌水对生态环境影响防治措施

矿井涌水不仅导致地下水资源的巨大浪费,疏干了采区以上地层的含水层,造成地下水位下降,影响地表植被的正常生长。而且直接排放,进入土壤将对其土壤及地表植被产生一定影响,渗入地下或地表河流将对地下或地表河流水生生态产生一定影响。为避免或减缓矿井涌水造成资源浪费,对环境造成不良影响,可采取以下措施。

(1)搞好矿井井田范围内的截流排水工作,尽量避免或减少降雨时雨水或其它水体汇集进入井田范围。

(2)对不可避免的矿井涌水,必须进行处理,可在矿井内建沉淀处理仓,初次沉淀处理后抽至地面,建地面沉淀池进行沉淀中和处理达标后排放或综合利用。

(3)经处理达标后的矿井涌水,应尽量综合回收利用,可用于煤矿区工业广场洒水降尘,矿井用水,也可用于工业广场绿化或浇灌采空区地表植被,提高涌水的回收利用率。

其它生态保护措施

应加强工业广场绿化,对工业广场煤台、煤矸石临时堆场,应定期洒水,减少扬尘产生量,减少扬尘对周边环境的影响;工业广场内的各种噪声设备应合理布局,尽量安装在室内,并安装减振垫,降低噪声,避免其对区域野生动物产生不良影响。

明亮的画板
粗心的镜子
2025-08-24 15:32:10

一、煤炭赋存的地质环境状况

1.地质概况

地质学中的鄂尔多斯盆地是指中朝板块西部连片分布中生界(特别是二叠系和侏罗系)的广阔范围。长期以来,地质工作者把它看作是一个独立的、自成体系的中生代沉积盆地。本书所研究的鄂尔多斯能源基地的范围与地质学中的鄂尔多斯盆地范围基本一致,大致在北纬34°~41°20',东经105°30'~111°30'。具体的地理边界为东起吕梁山,西抵桌子山、贺兰山、六盘山一线。南到秦岭北坡,北达阴山南麓,跨陕西、甘肃、宁夏、内蒙古、山西5省(区)。面积约40万km2。

鄂尔多斯盆地是一个不稳定的克拉通内部盆地,盆地基底形成后,在其后的盖层发展演化过程中,先后经历了坳拉槽—克拉通坳陷(内部和周边)—板内多旋回的陆相盆地及其前渊—周边断陷等盆地原型的多次演化,现在的鄂尔多斯盆地是上述若干个盆地原型的叠加(孙肇才等,1990)。从中生界开始,基底地层对于盖层的影响就已经很不明显,并且表层褶皱在盆地内部也极不发育。所以盆地内中生界以上的地层产状大都比较平缓,断裂和裂隙比较少。

鄂尔多斯盆地的基底岩系分为两类,一类是由变粒岩岩相(麻粒岩、浅粒岩、混合花岗岩及片麻状花岗岩等)组成的太古宇另一类是由绿岩岩相组成为主(绿片岩、千枚岩、大理岩和变质伪火山岩)的中古元古界。基底岩系之上的沉积盖层年代自中元古界至第三系(古、新近系),累积最大厚度超过10000m。其中,中古元古代在全盆地范围内沉积了厚达1500m的长城系石英砂岩和蓟县系合叠层石的硅质灰岩。早古生代在盆地中部沉积了400~700m的碳酸岩海相沉积,在南缘和西缘同期沉积达4500m。晚石炭至早二叠世早期,在本区形成了一个统一的以煤系地层为特征的滨海相沉积,沉积厚度为150~530m。晚三叠世盆地范围内部形成内陆差异沉降盆地,包括了5个明显的陆相碎屑岩沉积旋回,即晚三叠世延长组,早中侏罗世延安组、中侏罗世直罗-安定组、早白垩世志丹群下部及上部(孙肇才,1990)。早白垩世末期的燕山中期运动,导致本区同中国东部滨太平洋区一起,在晚白垩世至第三纪(古、新近系)期间,作为一个统一的受力单元,在开阔褶皱基础上发生大面积垂直隆起。就在这个隆起背景上,形成了环鄂尔多斯中生代盆地的以汾、渭、银川和河套为代表的新生代地堑系,并在其中沉积了厚达数千米至万米的以新第三系(新近系)为主的地堑型沉积。而盆地中心部位的晚白垩世至第三纪(古、新近纪)地层大面积缺失。

第四纪以来,鄂尔多斯盆地中南部大部分地区沉积了大厚度的黄土而其北部却由于隆起剥蚀而没有黄土沉积。

鄂尔多斯盆地南部大部分为黄土高原。黄土高原的地形外貌在很大程度上受古地貌的控制。基底平坦而未受流水切割的部分为黄土塬,而受到较强侵蚀的塬地则变为破碎塬。在陕北的南部和甘肃陇东地区的塬地保存较完好,如著名的洛川塬和董志塬。在流水和重力作用下,黄土地层连同基底遭到严重切割的地貌成为黄土梁和峁。另外,由于流水侵蚀还可形成狭窄的黄土冲沟和宽浅的黄土涧地,使梁峁起伏,沟壑纵横,地形支离破碎,是人为活动频繁、植被破坏与水土流失最为严重的地区。

鄂尔多斯北部隆起的高平原地区由于气候干旱,长期受风力侵蚀,形成众多的新月形流动沙丘和半固定、固定沙地。北部有库布齐沙漠,南部有毛乌素沙地,东部为黄土丘陵。库布齐沙漠为延伸在黄河南岸的东西带状沙漠,大部分流动和半流动沙丘边沿水分较好。毛乌素沙地多为固定和半固定沙丘,水分条件较好,形成了沙丘间灌草地。

2.煤炭赋存的地质环境

鄂尔多斯盆地煤炭资源丰富,已探明储量近4000亿t,占全国总储量的39%。含煤地层包括石炭系、二叠系、三叠系和中下侏罗统的延安组。

(1)侏罗纪煤田

含煤岩系为下中侏罗统的延安组,由砂、泥岩类及煤层组成,其中泥岩、粉砂岩约占70%左右,透水性弱,其上覆直罗组、下伏富县组均为弱透水岩层。侏罗纪地层中地下水的补给、径流条件差,以风化裂隙为主,构造裂隙不很发育,风化带深度约40~60m,风化带以下岩层的富水性很快衰减。矿井涌水量在一定深度后不仅不再随开采深度的增加而增大,而且会减少,风化带以下地下水径流滞缓,水质很差,矿化度高。矿床水文地质类型一般属水文地质条件简单的裂隙充水型。但在有第四系松散砂层(萨拉乌苏组)广泛分布及烧变岩分布区,水文地质条件往往变得比较复杂,特别在开采浅部煤层时、可能形成比较严重的水文地质和地质环境问题。按照矿井充水强度及水文地质条件的差异,可将侏罗纪煤田划分为4个水文地质分区:①黄土高原梁峁区。主要分布于盆地北部。区内地形切割强烈,上部无松散岩层覆盖或砂层巢零星分布,降水量少而集中,不利于地下水的补给与汇集,岩层富水微弱,矿床充水以大气降水为主,矿井涌水量很小,矿床水文地质条件简单。②烧变岩分布区。沿主要煤层走向呈带状分布,深度一般在60m以浅,宽度受煤层层数、间距、倾角、地形等因素控制。岩层空隙发育,透水性能好,其富水性取决于补给面积和含水层被沟谷切割程度,当分布面积较大或上覆有较广泛的第四纪砂层时,富水性较强,对浅部煤层开采有影响,也常是当地重要的供水水源。③第四系砂层覆盖区。砂层出露于地面且广泛覆盖于煤系之上,厚度数米至数十米,甚至更厚。区内大气降水虽然较少,但砂层的入渗条件很好,可以在大范围内获得大气降水的就近渗入补给,然后汇集到砂层厚度较大且古地形低洼处,以泉或蒸发的形式排泄,在矿井开采浅部煤层时常是最主要的充水水源,可能出现涌水、涌砂问题。该区浅部煤层开采矿床水文地质条件中等至复杂居多。砂层水和烧变岩水往往有密切的水力联系,赋存有宝贵的水资源,但不适当的采煤和采水都可以导致大面积补给区的破坏和水质的污染及生态环境的恶化。因此,在煤田开发中应将采煤、保水和生态环境的保护作为一项系统工程统一规划。④一般地区。不用上述3个水文地质分区的其他地区。该区煤系地层地下水的补给条件不好,含水微弱,矿床水文地质条件属简单,少数中等,矿井涌水量多数为每小时1m3至数十立方米。

(2)陕北三叠纪煤田

该煤田位于盆地中部的黄土梁峁地区。地下水在黄土梁区接受大气降水的少量补给,在沟谷中排泄,径流浅,水量小,岩层富水性弱,风化带以下岩层富水性更弱,矿化度很高,水文地质条件多为简单,属裂隙充水矿床。

(3)石炭、二叠纪煤田

分布于盆地东、南、西部盆缘地区的石炭二叠纪煤田,煤系基底为奥陶、寒武系灰岩,是区域性的强含水层,煤系本身含水比较微弱,属裂隙-喀斯特充水矿床。其矿床水文地质条件的复杂程度,取决于煤系基底灰岩水是否成为向矿井充水的水源及其充水途径和方式。现分区叙述如下:①东部地区。包括准格尔煤田和河东煤田。煤系下伏灰岩强含水层的地下水位埋藏很深,常在许多矿区的可采煤层之下,煤系地层含水微弱,矿床水文地质条件简单,奥陶系灰岩水为矿区的主要供水水源。从长远看,当煤层开采延伸到奥陶系灰岩水位以下时,灰岩水将威胁到下部煤层的开采。②南部渭北煤田。奥灰水地下水位标高为380m左右,而煤层赋存标高从东至西逐渐始升。如在东部太原组煤层的开采普遍受到奥灰水的威胁,而西部铜川矿区的多数煤层则均赋存在灰岩地下水位以上。在渭北煤田,由于奥灰与煤系的接触关系为缓角度不整合,使得不同地区煤系下伏的灰岩岩性和富水性不同,形成不同的水文地质条件分区。380m水位标高以上的煤层,其矿床水文地质条件多为简单至中等,而380m水位标高以下的煤层,水文地质条件属中等至复杂。奥陶系、寒武系灰岩沿煤田南部边缘有部分山露或隐伏于第四系之下,接受大气降水直接或间接补给,灰岩和强径流带也沿煤田的南部边缘分布于浅部地区。故开采浅部煤层时,矿井涌水量大,开采深部煤层时突水的可能性增大,但水量则有可能减少。在韩城矿区北部,黄河水与灰岩水之间有一定的水力联系。灰岩水是当地工农业的最主要水源、要考虑矿坑水的综合利用和排供结合。③西部地区。煤系与奥陶系灰岩之间有厚度较大的羊虎沟组弱含水层存在,奥灰水不能进入矿井,煤系含水比较微弱,矿床水文地质条件多属以裂隙充水为主的简单至中等类型(王双明,1996)。

二、煤炭开发过程中的地质环境状况变化

煤炭开发引起的地质环境问题受矿山所处的自然地理环境、地形地貌、地层构造、水文气象、植被,以及矿产工业类型、开发方式等经济活动特征等因素的影响。目前鄂尔多斯盆地煤矿地质环境问题十分严重。地下开采和露天开采对矿区地质环境影响方式和程度不同。该区煤矿以地下开采为主,其产量约占煤炭产量的96%。尤以地下采煤导致的地质环境问题最为严重,主要地质环境问题以煤矿业导致的地质环境问题结果作为分类的主要原则,可以分为资源毁损、地质灾害和环境污染三大类型及众多的表现形式(表3-2)(徐友宁,2006)。

根据总结资料与实地调查,结合重点区大柳塔矿区及铜川矿区实际情况,我们重点介绍以下5个突出的地质环境问题:①地面塌陷及地裂缝②煤矸石压占土地及污染水土环境③地下水系统破坏及污染④水土流失与土地沙化⑤资源枯竭型矿业城市环境恶化。

1.地面塌陷与地裂缝

地下开采形成的地面塌陷、地裂缝造成耕地破坏,公路塌陷,铁轨扭曲,建筑物裂缝,以及洼地积水沿裂隙下渗引发矿井透水等事故。在干旱地区由于地表水系受到破坏,导致矿区生产、生活,以及农业用水发生困难。同时,还可诱发山地开裂形成滑坡。

表3-2 煤炭开采的主要地质环境问题

地面塌陷和地裂缝在大中型地下开采的煤矿区最为普遍,灾害也最为严重。如甘肃的华亭煤矿,宁夏的石嘴山、石炭井煤矿和陕西的渭北韩城—铜川,以及神府—东胜煤田矿区。

由于黄土高原人口密集,地面塌陷对土地的破坏主要是对农田的破坏。陕西渭北地区的铜川、韩城、蒲白、澄合等矿务局各矿区位于黄土台塬,该区是陕西渭北优质农业产区和我国优质苹果生产基地,这些国有大中型老煤矿区几十年地下开采导致了地面塌陷、地裂缝,以及山体开裂,成为西北地区煤矿开发对农业生产破坏最为严重地区之一。陕西省采空区地面塌陷总面积约110km2,主要分布于渭北及陕北煤矿区。不完全累计,1999年底,铜川矿区地面塌陷63.82km2,占到全省地面塌陷区55.38%,其中80%为耕地。煤矿区的地面塌陷最为严重,这是因为煤层厚度较金属矿体要大,过采区的空间较金属及其他非金属矿山要大得多,且上覆岩层多为松软的页岩、粉砂岩及泥质岩层。煤矿地表塌陷和地裂缝的范围及深度与采煤方法、工作面开采面积、采区回采率,以及煤层产状等多种因素有关。一般而言,埋深愈浅,开采面积越大,地面塌陷、裂缝范围及深度也越大。榆林神府矿区大砭窑煤矿开采5#煤层,煤层4~6m,埋深90~100m,1992年5月5日,矿井上方发生地面塌陷12000m2,陷落深度0.7m。宁夏石嘴山市石嘴山煤矿开采面积5.15km2,而塌陷面积已达6.97km2,是其开采面积的135%,形成深达8~20m地表塌陷凹地,部分地段的裂缝宽达1m。矿区铁路运输基地高出塌陷区10~20m,使得矿山企业每年用于铁路垫路费高达100万元,穿越矿区的109国道被迫改道。

陕西省煤矿采空区地面塌陷总面积约110km2(表3-3),主要分布于渭北及陕北煤矿区。其中铜川市老矿区因开采较早,地面塌陷比较严重,到1999年底,不完全统计其地面塌陷63.82km2,占到全省地面塌陷区55.38%,其中80%为耕地。而神木县近几年煤矿开发力度不断增大,加之煤层埋藏较浅,地面塌陷程度增大,截至2001年,该县乡镇煤矿造成地面塌陷达5.32km2。

表3-3 鄂尔多斯能源基地陕西境内煤矿区地面塌陷

(据西北地矿所)

陕西省渭北煤田的铜川、黄陵、合阳、白水、韩城各矿区、陕北神府煤田的大柳塔、大砭窑、洋桃瑁、沙川沟、刘占沟、新民矿等矿区,均出现有不同程度的地面塌陷、地裂缝及山体滑坡,造成大面积的农田被毁、房屋开裂、铁轨扭曲、公路塌陷、矿井涌水等。2001年7月,特大暴雨使黄陵店头陕煤建五处矿区仓村三组的1.2hm2耕地发生地面塌陷、地裂缝,地裂缝最宽可达15m,塌陷落差达7.45m,60%耕地已无法复垦,农田搁荒,预计经济损失达270万元。铜川煤矿区地裂缝5400余条,以王石凹煤矿为例,在1∶5000的地形图上填绘的裂缝就有70多条,总长度近7000余米。神府矿区大柳塔矿201工作面煤层埋藏浅,1995年7月10日开始回采,放顶后地表形成裂缝,实测裂缝区面积为5742.5m2。第一期开采计划完成后,预计未来大柳塔矿采空区总面积5.8hm2,可能发生地裂缝区域总面积约5.45hm2。裂缝区与采空区面积之比为0.94。目前塌陷面积达到7.7km2。20世纪90年代,甘肃窑街矿区矿井地面占地598.1hm2。地面塌陷20处共计443.54hm2,地面塌陷面积比80年代扩大了48.4%,每年以14.47hm2的速度扩大,10年间因塌陷引起的特大型山体滑坡等灾难性地质事故数起。80年代造成水土流失面积449~550hm2,90年代达到663~720hm2。

2.煤矸石压占土地及污染水土环境

煤矸石是采煤和选煤过程中的废弃物,通常占煤矿产量的12%~20%,是煤矿最大的固体废弃物之一,其堆积会压占土地植被。陕西黄陵店头地处黄土高原地带,小流域地区的森林植被良好,但是部分煤矿排放的煤矸石堆积在山坡上,压占了生长良好的杂木林。陕西韩城下峪口黄河滩地湿地芦苇茂密,生态环境良好,但是下峪口煤矿排放煤矸石填滩造地,却压占并破坏了黄河湿地生态资源与环境,应引起有关部门的高度重视。煤炭资源大面积连续开采,造成了难以恢复的地下水破坏,同时导致地表河流流量锐减,生态环境破坏。1997年以来,陕西神府煤田开发区已有包括窟野河在内的许多河流出现断流。

煤矸石堆积长期占压土地。截至2000年,铜川矿务局下属12个矿山,煤矸石累计堆存量1264.99万t,大小矸石山150余处,其中100万t以上的矸石山35处,矸石压占2.37km2。

堆积的矸石山易发生自燃,产生大量硫化氢等有害气体,对周边村民身体健康产生很大危害。据有关资料,每平方米矸石山自燃一昼夜可排放CO10.8kg,SO26.5kg,H2S和NO22kg等。依据国家卫生标准规定,居民区大气环境中有害物质的最高允许浓度SO2日均浓度为0.15mg/m3、H2S为0.01mg/m3,显然,煤矸石自燃区的大气环境污染超过了国家标准,必然危害居民身体健康。

陕西铜川矿务局下属共有13个矿井,其中6个矿井煤矸石堆存在自燃(图3-2),矸石山周围SO2,TSP,苯并芘等都严重超标,据有关资料在自燃矸石山周围工作过5年以上的职工患有不同程度的肺气肿。陕西韩城桑树坪矿矸石山自燃造成空气中SO2和CO2严重超标,其中SO2浓度平均超标16倍,CO2浓度平均超标20倍。在这种空气环境下,甚至发生了工人昏倒在排矸场的现象。

图3-2 铜川矿务局王石凹煤矿正在冒烟的矸石山

煤矸石不仅造成大气污染,矸石山淋滤水还会造成临近地表水源、地下水,以及矸石山下伏土壤的污染。本次调查在铜川矿务局金华山煤矿采集的矸石山淋滤水样,颜色发黑,经检测发现是酸性水,pH值为2.82,COD为812.5mg/L,悬浮物含量128.0mg/L,重金属含量汞、镉、铜、镍、锌、锰均超标在三里洞煤矿采集的矸石山淋滤水pH值为1.77,COD为621.6mg/L,TDS含量达160.658g/L,水化学类型为Mg·SO4型这些矸石山淋滤水流入地表水体或渗入土壤,都会造成一定程度的污染。

3.地下水系统破坏及污染

鄂尔多斯能源基地煤炭开采区大多为严重缺水地区。矿井疏干排水造成地下水均衡系统的破坏,地下水位下降,水量减少。煤矿酸性及高矿化度井水造成地下水污染,加剧了水资源危机。煤炭资源大面积连续开采,造成了难以恢复的地下水破坏,同时导致地表河流流量锐减,生态环境破坏。1997年以来,陕西神府煤田开发区的不少河流断流,如2000年窟野河断流75d,2001年断流106d。由于煤矿采空区裂缝遍布,最宽达2m多,局部地区地面下降2~3m,导致原流量达7344m3/d的双沟河已完全干涸,400多亩水田变为旱地,杨树等植被大片枯死。

陕西渭北铜川、蒲白、澄合和韩城等煤矿是矿井突水主要发生地,素有渭北“黑腰带”之称的铜川、蒲白、澄合、韩城四大煤矿区又是高瓦斯矿区,1975年5月11日,铜川矿务局焦坪煤矿前卫矿井发生重大瓦斯煤尘爆炸事故,死亡101人,受伤15人,全井造成严重破坏。2001年4月,铜川、韩城两起瓦斯爆炸造成86人死亡的重大恶性事故,社会影响极坏。

陕西省的矿井突水主要发生在渭北铜川、蒲白、澄合和韩城等煤矿区。1989年,上述4个矿务局27个煤矿31处自然矿井,受地下水威胁的矿井占32.3%。据不完全统计共计发生矿坑突水36次,其中1975~1982年该区发生奥灰岩土石事故29次,占其矿井突水事故地80.56%。该区矿井下水灾主要来源于奥灰岩岩溶水和古窑采空区积水。1960年1月19日,铜川矿务局李家塔煤矿发生老窑突水53476m3,淹没巷道18条,总长1880m,直接经济损失7142元,死亡14人。20世纪60年代以前,该区带主要矿井巷道还位于+380m水平面上,70年代后,蒲白、韩城、澄合等新建矿区部分开拓巷道位于+380m水平面之下。1974年以后,象山、马沟渠、桑树坪、董家河、权家河、二矿、马村矿相继发生奥灰岩突水事故29次,淹没巷道万余米,致被迫停产,重掘巷道的巨大损失,直接经济损失近2000万元。

宁夏石嘴山煤矿区因地面塌陷,地裂缝交错,地面低凹积水,地表水沿裂隙进入地下巷道,使矿区多次发生突水事件,造成人员伤亡和巨大的经济损失(表3-4)。

表3-4 宁夏石嘴山煤矿矿井突水一览表

陕西黄陵县店头沮水河两岸分布着十几家个体小煤矿,不顾后果在河道下采煤,在8km2范围内形成4处较大的塌陷区,均横跨沮水河床,地裂缝达20cm,最大塌陷区面积达1000m2以上,大片耕地塌陷,民房出现裂缝,饮水井水量和水质发生变化。1998年9月13日个体小煤矿牛武矿非法开采沮河河床保安煤柱,并越界穿过沮水河,同个体水沟小窑多处相互打通,发生矿井透水,最终导致苍村一号斜井西采区被淹,使陕西黄陵矿业公司一号煤矿主平硐在1999年“3.24”发生重大突水事故,涌水量瞬间增至800m3/h,迅速淹没了3条平硐。小煤窑无序采煤不仅造成自己淹井停产,也给黄陵矿业公司造成直接经济损失3401万元,间接经济损失3100万元。同时,沮水河河水在上游进入煤矿采空区后,又在下游报废小煤窑井口流出排入沮水河,给居民生产和生活带来了很大困难。黄陵个体煤矿无序开采诱发的矿井突水事故再一次说明采矿业的发展必须遵循可持续发展原则,合理布局,加强矿业秩序的日常监督管理,才能使整个采矿业沿着健康的轨道发展。

长期以来,由于技术水平所限和认识不足,矿井水被当作水害加以防治,矿井水被白白排掉而未加以综合利用和保护。2000年,西北地区国有矿井煤产量3785万t,平均吨煤排水量1.3t,其他矿井煤产量5209万t,平均吨煤排水量0.324t。西北地区的煤矿主要位于干旱、半干旱地区,矿区水资源匮乏,毫无节制的排水不仅大大破坏了地下水资源,增加了吨煤成本,而且还导致地面塌陷、地下水资源流失、水质恶化,还可能造成地下突然涌水淹井事故。

煤矿矿井水多属酸性水,未加处理直接排放,加剧了干旱地区矿山用水危机。陕西、宁夏、内蒙古部分矿井水pH值均小于6,陕西铜川李家塔矿井水pH值更低为3。酸性矿井水直接排放会破坏河流水生生物生存环境,抑制矿区植被生长。甘肃、宁夏、内蒙古西部大部分矿井及陕西中部和东部等矿井水是高矿化度水,一般矿化度均大于1000mg/L。

2002年7月在陕西渭北煤矿区的一些矿务局调查时发现,陕西白水部分矿山存在将坑道废水直接排入地下岩溶裂隙,导致岩溶水污染,此问题应引起有关部门的高度重视,尽快采取措施保护岩溶水,使地下水资源不受污染。

4.水土流失与土地沙化

水土流失导致的土壤侵蚀是生态恶化的重要原因。黄土区、黄土与风沙过渡区的矿区水土流失量最大。陕西的铜川、韩城、神府煤矿区宁夏的石嘴山、石炭井煤矿区陕蒙神府—内蒙古东胜水土流失都十分严重。有关环境报告资料预测,陕西神府—内蒙古东胜矿区平均侵蚀模数按1.21万t/km2·a,面积按3024km2计算年土壤侵蚀量为3659.04万t。据几个矿区开发前后不同时期的遥感资料以及河流、库坝、泥沙资料综合分析和计算表明,煤矿开采后水土流失量一般为开采前的2倍左右。内蒙古的乌达等矿区,侵蚀模数达10000~30000t/km2·a,是开采前水土流失量的3.0~4.5倍。陕西黄陵矿区建矿前土壤侵蚀模数为500t/km2·a,建矿5年后,土壤侵蚀模数已达1000t/km2·a。随着矿区的开发水土流失问题日益严重,不仅破坏了生态环境,还直接威胁矿区安全。例如,陕西神木中鸡煤矿由于矿渣倾入河道,占据河床2/3的面积,1984年8月雨季时河水受阻回流,造成特大淹井事故。

煤炭开采形成的地面塌陷造成浅层地下水系统破坏,使塌陷区植被枯死,为土地沙漠化的活化提供了条件。其次,露天煤矿、交通及天然气管道工程建设占用大量耕地,破坏植被,使表土疏松,使部分原已固定和半固定沙丘活化。戈壁沙漠区煤矿废渣堆放,风化加剧了土地沙化。

陕西神府煤田矿区大规模开发以及地方、个体沿河沟两岸乱挖滥采,破坏植被,导致沙土裸露,加剧水土流失和土地沙化。自80年代中期开发以来,毁坏耕地666.7hm2,堆放废渣6000多万t,破坏植被4946.7hm2,增加入黄泥沙2019万t。据“神府东胜矿区环境影响报告书”提供的预测结果,若不采取必要的防沙措施,矿区生产能力达到3000万t规模时,将新增沙漠化面积129.64km2,煤矿开发导致的沙漠化面积为自然发展产生沙漠化面积的1.53倍,新增入河泥砂量480万t,比现有条件下进河泥砂量增加13.7%。

5.煤炭资源枯竭与城市环境恶化

鄂尔多斯现有煤田有些开发较早,可以追溯到20世纪五六十年代。起初,由于技术落后,造成资源浪费,加之很多矿区达到服务年限,到现在已无资源可采。如铜川矿务局是1955年在旧同官煤矿的基础上发展起来的大型煤炭企业。全局在册职工30041人,离退休人员32691人,职工家属约21.6万人。由于生产矿井大多数是50年代末60年代初建成投产的,受当时地质条件和开采条件所限,所建矿井煤炭储量、井田范围、生产能力小,服务年限短。80年代以来先后有9对矿井报废,实施关闭,核减设计能力396万t。目前全局8对生产核定能力965万t/a,均无接续矿井。东区部分矿井资源枯竭,人多负担重,生产成本高,正在申请实施国家资源枯竭矿井关闭破产项目。生产发展接续问题日益突出,企业生存发展面临严峻挑战。矿业城市的可持续发展受到地方政府及相关学者的关注。煤炭资源枯竭的直接后果是矿业城市面临转型,大量问题需要解决,如人员安置、环境改善、寻找新的主打产业等。

三、煤炭开发引起的地质环境问题对煤炭开采的影响

大规模的煤炭开发活动不但极大地破坏了当地的地质环境和生态环境,也在很大程度上制约了煤炭开采活动的正常进行,主要表现在以下几个方面:

(1)采煤塌陷及地裂缝造成水资源量减少、地下水体污染,影响矿区采煤活动的正常运行

采煤塌陷造成含水层结构破坏,使原来水平径流为主的潜水,沿导水裂隙垂直渗漏,转化为矿坑水在采矿疏干水过程中又被排出到地表,在总量上影响地下水资源。采煤塌陷形成塌陷坑、自上而下的贯通裂隙,使当地本就稀缺的地表水、地下水进入矿坑而被污染,使地下水质受到影响,进而影响到地下水的可用资源量。如在神府东胜矿区,采煤塌陷一方面使萨拉乌苏组含水层中地下水与细沙大量涌入矿坑,造成井下突水溃沙事故另一方面矿坑排水需大量排放地下水,既浪费了宝贵的水资源,又破坏了矿区的水环境(张发旺,2007)。

另外,采煤塌陷对水环境造成影响的最重要因素是塌陷裂缝。其存在不但增加了包气带水分的蒸发,造成地表沟泉、河流等的干涸,而且增加了污染物的入渗通道,从而导致土壤水和地下水体的污染。

西北煤矿区水资源原本缺乏,再加上塌陷及地裂缝造成的可用水资源量的减少,使矿井用水、洗煤厂用水、矿区生活用水等均面临严峻挑战。

(2)煤层及煤矸石自燃不但浪费了大量煤炭资源,而且影响煤炭开采

鄂尔多斯盆地北部的侏罗系煤田分布区,煤层埋藏浅深度只有0~60m,并且气候干旱,植被稀少,形成了有利于煤田大规模自燃的气候条件。因此煤层及煤矸石自燃大面积分布,如乌海煤田、神东煤田等。煤层及煤矸石自燃不仅会烧掉宝贵的煤炭资源,并且会影响煤炭开采、污染空气,造成巨大经济损失。

(3)矿坑突水事故不但破坏了地表水和地下水资源,往往也会淹没矿井巷道,严重影响煤炭开采,造成重大人员伤亡和经济损失

在我国,大部分石炭-二叠系煤炭开采时会受到水量丰富的奥陶系灰岩水的威胁。由于水量巨大,流速快,水压高,奥陶系灰岩水造成的突水事故往往十分巨大,如1984年6月发生的开滦范各庄煤矿发生的世界罕见的特大奥陶系灰岩水突水事故,突水4d内把范各庄煤矿淹没,又突入相邻的吕家坨煤矿并将其全部淹没,并向另一相邻矿林西矿渗水,经过4个月才完成封堵工作,造成的经济损失达5亿元以上。在鄂尔多斯盆地,石炭-二叠系煤层主要分布在铜川、蒲白、澄合和韩城一线,历史上共发生矿坑突水事故40余次。如1960年1月19日铜川矿务局李家塔煤矿发生老窑突水53476m3,淹没巷道18条,死亡14人。

陕西黄陵县店头沮水河两岸个体小煤矿无序生产,1998年9月至1999年3月造成一系列突水事故,给黄陵矿业公司造成的直接经济损失就有3401万元,间接经济损失3100万元。