兰州氢气需求量大吗
头条聚焦
甘肃2025年氢能产值将达百亿!风光发电+氢储能为主!
2023-01-05 17:08 来源:氢能汇 点击:10
2023年1月3日,甘肃省人民政府办公厅发布关于氢能产业发展的指导意见,提出到2025年,氢能产业创新能力显著提高,基础设施加快建设,实现多元化应用场景示范,初步形成有规模有效益的氢能产业发展格局,建成可再生能源制氢能力达到20万吨/年左右的制氢、储氢基地,建成一批氢气充装站及加氢站,开展短距离气态配送体系、长距离液氢输送和管道输氢综合互补的输氢网络体系建设。引进培育氢能企业20家以上,年产值达到100亿元。
在产业布局上,建设“一个走廊,两个示范区,两个基地”:
一个氢能走廊:沿“一带一路”通道节点城市布局可再生能源制氢及就近消纳体系,打造甘肃氢能走廊。
两个示范区:基于河西地区可再生能源优势,依托酒泉、张掖先行先试,建设绿氢生产及综合利用先行示范区。在陇东地区,以庆阳为核心,基于多种能源富集的优势,布局氢能—多能互补综合能源示范区。
两个基地:借助建设“兰白两区”契机,发挥高校、科研院所聚集和人才优势,打造氢能产业创新基地。依托兰州、定西及周边地区制造业优势,布局氢能装备制造业基地,重点发展氢能基础材料和氢能装备制造产业。
甘肃省将依托资源合理布局制氢基地,在可再生能源富集的河西地区,开展可再生能源电解水制氢试点示范,逐步扩大制氢规模,建成具有一定规模的绿氢生产基地。在工业副产氢较多的兰州及陇东地区,根据市场需求,利用工业副产氢提纯制氢。
在氢能运输领域,推进短距离高压管束车运输和长距离低温液态运输,开展天然气管道掺氢、纯氢管道输氢等应用试点。
以需求为导向统筹布局加氢站。支持在现有加油加气站基础上改扩建加氢站,探索四合一(加油、加气、加氢、充电)等综合站和站内制储加(制氢、储氢、加氢)一体化加氢站建设新模式。支持在高速公路服务区内布局建设“分布式光伏+制氢、储氢、加氢”一体化示范应用。
在应用场景拓展上,鼓励冶金行业探索绿氢冶金技术研发应用。探索液氢在航天领域的应用。在天然气短缺的市州,探索天然气掺氢及以氢作为高品质热源的应用。
发挥氢能储能容量大、调节周期长、建设周期短的优势,重点在河西地区布局大规模可再生能源制氢储氢一体化示范工程,培育“风光发电+氢储能”一体化应用模式,探索氢储能与波动性可再生能源发电协同运行的商业化运营模式,对比研究氢储能与电池储能、熔盐储能等其他储能方式单独或混合储能的技术特点和经济性。
探索布局发电领域示范应用。结合增量配电改革和综合能源服务试点,因地制宜开展氢电融合的微电网示范和氢能热电联供应用示范。在可再生能源基地,开展氢燃料电池、氢内燃机等发电技术应用示范。鼓励在偏远地区开展氢燃料电池分布式发电示范应用。结合我省大数据产业发展,鼓励开展氢燃料电池备用电源示范应用。
因为直接用可再生能源发电导致电网的调峰压力非常大,巨大。弃风弃光弃水问题很严重。储能是提高电网调节能力的最佳手段之一。目前应用最多的是抽水蓄能,其次也有储热、电化学电池、压缩空气的各种技术路线。
本质上电制氢也是储能的一种。在电网下调峰能力不足的时候(即出现弃电的时候),将弃电部分用来制氢,或者在夜间负荷低的时候,用低价电制氢,在需要的时候,不管是发电还是直接燃烧,取用储存的能量。
用氢作为能源发电,两步过程中能量难免会有损失,但是其实仔细琢磨一下,还是可行的,主要是得采用廉价易得的电能来电解之制氢,像大规模的太阳能、风能都是很好的清洁能源。
提高电解制氢的效率后,能量从太阳能转移到氢能源里。由于氢气能量密度大,移动性好,不受天气影响,所以用氢气作为汽车的驱动能源还是很不错的选择,清洁环保。这其中最主要的还是得提高制氢的效率和氢转化为电和动力的效率。
可再生能源制氢的用处
可再生能源制氢有它的优势,采用了可再生能源,以风光水等等可再生能源为载体,以氢气作为一个二次能源的载体,在能源转型中可以和电力互为补充,以实现工业、建筑、电力、交通运输等产业互联。
目前广泛使用的氢源主来自化石燃料、电解水和化工副产氢。此外,生物质制氢、核能制氢和光催化制氢正在研究,还没达到工业化应用的水平。可再生能源制氢只能选择电解水制氢,化石燃料制氢和化工副产氢都是有碳排放的。
《方案》要求,到2025年,新型储能由商业化初期步入规模化发展阶段,具备大规模商业化应用条件。新型储能技术创新能力显著提高,核心技术装备自主可控水平大幅提升,标准体系基本完善,产业体系日趋完备,市场环境和商业模式基本成熟。其中,电化学储能技术性能进一步提升,系统成本降低30%以上;火电与核电机组抽汽蓄能等依托常规电源的新型储能技术、百兆瓦级压缩空气储能技术实现工程化应用;兆瓦级飞轮储能等机械储能技术逐步成熟;氢储能、热(冷)储能等长时间尺度储能技术取得突破。到2030年,新型储能全面市场化发展。新型储能核心技术装备自主可控,技术创新和产业水平稳居全球前列,市场机制、商业模式、标准体系成熟健全,与电力系统各环节深度融合发展,基本满足构建新型电力系统需求,全面支撑能源领域碳达峰目标如期实现。
《方案》提出,加大力度发展电源侧新型储能。推动系统友好型新能源电站建设。在新能源资源富集地区,如内蒙古、新疆、甘肃、青海等,以及其他新能源高渗透率地区,重点布局一批配置合理新型储能的系统友好型新能源电站,推动高精度长时间尺度功率预测、智能调度控制等创新技术应用,保障新能源高效消纳利用,提升新能源并网友好性和容量支撑能力。支撑高比例可再生能源基地外送。依托存量和“十四五”新增跨省跨区输电通道,在东北、华北、西北、西南等地区充分发挥大规模新型储能作用,通过“风光水火储一体化”多能互补模式,促进大规模新能源跨省区外送消纳,提升通道利用率和可再生能源电量占比。促进沙漠戈壁荒漠大型风电光伏基地开发消纳。配合沙漠、戈壁、荒漠等地区大型风电光伏基地开发,研究新型储能的配置技术、合理规模和运行方式,探索利用可再生能源制氢,支撑大规模新能源外送。促进大规模海上风电开发消纳。结合广东、福建、江苏、浙江、山东等地区大规模海上风电基地开发,开展海上风电配置新型储能研究,降低海上风电汇集输电通道的容量需求,提升海上风电消纳利用水平和容量支撑能力。提升常规电源调节能力。推动煤电合理配置新型储能,开展抽汽蓄能示范,提升运行特性和整体效益。探索开展新型储能配合核电调峰调频及多场景应用。探索利用退役火电机组既有厂址和输变电设施建设新型储能或风光储设施。
《方案》还提出,探索推广共享储能模式。鼓励新能源电站以自建、租用或购买等形式配置储能,发挥储能“一站多用”的共享作用。积极支持各类主体开展共享储能、云储能等创新商业模式的应用示范,试点建设共享储能交易平台和运营监控系统。
《方案》明确,开展钠离子电池、新型锂离子电池、铅炭电池、液流电池、压缩空气、氢(氨)储能、热(冷)储能等关键核心技术、装备和集成优化设计研究。拓展氢(氨)储能、热(冷)储能等应用领域,开展依托可再生能源制氢(氨)的氢(氨)储能、利用废弃矿坑储能等试点示范。针对新能源消纳和系统调峰问题,推动大容量、中长时间尺度储能技术示范。重点试点示范压缩空气、液流电池、高效储热等日到周、周到季时间尺度储能技术,以及可再生能源制氢、制氨等更长周期储能技术,满足多时间尺度应用需求。
3月23日,国家发改委发布《氢能产业发展中长期规划(2021-2035 年)》。规划明确,氢能是未来国家能源体系的重要组成部分和用能终端实现绿色低碳转型的重要载体,氢能产业是战略性新兴产业和未来产业重点发展方向。
根据规划,到2025年,形成较为完善的氢能产业发展制度政策环境,产业创新能力显著提高,基本掌握核心技术和制造工艺,初步建立较为完整的供应链和产业体系。燃料电池车辆保有量约5万辆,部署建设一批加氢站。可再生能源制氢量达到10-20万吨/年,成为新增氢能消费的重要组成部分, 实现二氧化碳减排100-200万吨/年。
到2030年,形成较为完备的氢能产业技术创新体系、清洁能源制氢及供应体系,产业布局合理有序,可再生能源制氢广泛应用,有力支撑碳达峰目标实现。
到2035年,形成氢能产业体系,构建涵盖交通、储能、工业等领域的多元氢能应用生态。可再生能源制氢在终端能源消费中的比重明显提升,对能源绿色转型发展起到重要支撑作用。
规划提出,立足本地氢能供应能力、产业环境和市场空间等基础条件,结合道路运输行业发展特点,重点推进氢燃料电池中重型车辆应用,有序拓展氢燃料电池等新能源客、货汽车市场应用空间,逐步建立燃料电池电动汽车与锂电池纯电动汽车的互补发展模式。积极探索燃料电池在船舶、航空器等领域的应用,推动大型氢能航空器研发,不断提升交通领域氢能应用市场规模。
我国可再生能源制氢将会在2030年实现平价,相信大家对于氢能还没有一个具体的了解。随着我国的发展和经济实力的不断提高,科学技术也是变得越来越高级,对于很多资源也是实现了可以再生,因为现在很多资源在使用的过程中会对我们的环境产生破坏,比如煤炭。所以说我们也是在不断的开发出新的洁净能源。氢能就是这些能源当中的一种,在未来,它具有非常好的发展前景,所以在未来的生活当中,氢能可能会作为我们最主要的使用能源出现。
首先我们要对氢能源有一定的了解,氢能源就是可再生的二次能源,它能够通过一些可再生的方式从其他反应那里制出来氢能源,这也是它之所以是清洁能源的主要原因,因为我们知道,很多能源是不可再生的,就比如说煤炭,如果说我们对于煤炭过度开采的话,那么肯定会出现匮乏的现象,因为煤炭作为自然资源,它是长期储藏在地下的并且不会再生。如果我们对它过度使用的话,肯定有一天会出现灭绝的现象,氢能并不会,它属于可再生能源,我们使用完以后可以从其他的反应当中来制取这样就能够达到一个循环的作用,也是出于这个角度亲能才会被作为是清洁能源被开发。
当氢能实现平价以后将会有非同凡响的意义,首先对于我们国家来说就会实现一更高级的能源使用形式。因为氢能是可再生的清洁能源。所以说在未来将会让我们的科学研究变得更加高效,且清洁将不会再对我们的生活环境产生破坏。在近几年因为过于注重国家的发展,而忽略了能源对于环境的破坏,导致我们现在的生态环境已经发生了质的改变,温室效应的影响也是越来越严重。所以氢能能的出现将会在很大程度上改变这样的局面,并且也会被其他国家所效仿,这就是氢能最大的用处。
其次就是在它实现平价之后,将会有更多的人能够使用的起亲能,在之前我们仅有煤炭的时候,很多人就因为经济实力的原因,没有使用煤炭的经济条件。再到现在大家都普遍使用天然气,也仍然有一些贫困地区依然无法享受到这一待遇。那么在未来,如果说氢能能够实现平价的话,我国的大部分居民都会有生活条件来使用如此清洁的可再生能源,这将会对大家的生活和各方面带来很多的便利,并且还会节省大家的金钱,对于提高我们国家的居民水平有很大的帮助。
7月29日,由中国电力企业联合会指导、协鑫(集团)控股有限公司(下称协鑫集团)主办的氢能产业发展论坛暨协鑫氢能战略发布会在京举行。中国能源研究会副理事长吴吟表示,能源行业排放占到全球温室气体排放总量的2/3,实现双碳目标的关键在能源。能源低碳发展有两大路径:化石能源低碳利用和大力发展可再生能源。当前,G20集团中已经有9个国家和地区发布了氢能发展战略,还有7个国家和地区正在开展前期研究。氢能产业呈现出良好发展态势, 科技 进步日新月异、应用场景层出不穷,未来氢能将在钢铁、能源、交通和建筑等领域广泛应用。
根据中国氢能联盟预测,到2030年,我国氢气的年需求量将达到3715万吨左右,在终端能源消费中占比约5%;到2060年,我国氢气的年需求将增至1.3亿吨左右,在终端能源消费中占比约20%。
中国电力企业联合会专职副理事长安洪光表示,通过新能源与氢能的耦合,可助力高比例清洁能源电力系统的稳定运行,解决长时间清洁能源处理和负荷需求的平衡问题,帮助难以减排领域深度脱碳。在他看来,“十四五”时期,将是我国碳达峰“窗口期”、氢能产业发展的发力期,也是氢能市场的培育期和氢能技术的追赶期。
随着减碳行动的开展和各项政策的加持,氢能发展势不可挡。据不完全统计,迄今已有河南、山西、湖北、安徽等超过30个省市对氢能产业发展作出了明确部署,有的还制定了详细的时间表、路线图和任务书。可再生能源制氢、燃料电池 汽车 示范城市群、加氢站建设等项目成行业投资热点。
氢从何处来?在碳达峰、碳中和目标下,回答好这一问题尤为重要。
根据不同的制取方式和碳排放量,氢能被分为灰氢、蓝氢和绿氢。2020年我国氢气来源中,62%为煤制氢,19%天然气制氢,仅有1%的可再生能源制氢,氢来源亟待“绿化”。中国工程院原副院长杜祥琬强调,氢能产业要实现高质量、可持续发展,其核心准则是从源头做到可持续,将波动性、间歇性的风能、太阳能转换为氢能,有利于储能和传输,具有零排放、零污染和可持续优势。
高成本是当前可再生能源制氢大规模推广的主要难题。“降低氢能使用成本是产业发展的关键所在。”在中国石油和化学工业规划院新能源发展研究中心主任刘思明看来,我国氢能产业急需模式创新,依托海外优质天然气资源,转化为氢气具有成本竞争力,国内京津冀、长三角、珠三角氢能产业率先发展,用氢也应避免长距离陆运。他认为,未来国内氢能市场将以“工业副产氢+短距离运输”模式为主,海外将以“优质资源转化蓝氢+长距离化学品载体运输”模式为主。
会议现场,协鑫集团旗下协鑫新能源正式对外发布公司氢能战略。根据规划,协鑫新能源氢能战略由蓝氢和绿氢两部分构成。具体而言,蓝氢目标――首期建成年产230万吨合成氨,逐步扩能至每年400万吨生产规模,可供应国内70万吨蓝氢;绿氢目标――计划到2025年建设100座综合能源站,达到40万吨年产能。
协鑫集团董事长朱共山表示,从空间结构上讲,在东部、南部等负荷中心发展蓝氢,在中西部地区等新能源大基地发展绿氢,一蓝一绿,协同发展。“协鑫新能源将打造不依赖补贴,完全市场化的零碳 科技 先锋企业,做全球综合实力领先的绿氢与蓝氢综合运营服务商。”
1.1中国氢能经济发展初期:中国工业副产氢产量充足
中国当前化工工业基础具有强大和广泛的制氢基础,2015年国内副产氢(by-product production)的商用剩余量约为38万吨/年,是190万辆燃料电池车一年的燃料使用量(按每辆车年行驶两万公里计算)。中国另有198万吨/年的潜在专业制氢 (captive production) 产能可做后续氢源供应。不考虑物流运输问题,上述约240万吨氢源供应都无需新增资本投入。所以,在中国氢能经济发展的初期阶段,中国工业制氢基础有能力提供充足且廉价氢气资源。
1.2中国氢经济发展中期:煤制氢加碳捕捉技术将成为主流制氢路线
中国煤炭资源丰富且相对廉价,故将来煤制氢很有可能成为中国规模化制氢的主要途径。但煤制氢工艺过程二氧化碳排放水平高,所以需要引入二氧化碳捕捉技术(Carbon Capture and Storage, CCS),以降低碳排放。
目前二氧化碳捕捉技术(CCS)主要应用于火电和化工生产中,其工艺过程涉及三个步骤:二氧化碳的捕捉和分离,二氧化碳的输送,以及二氧化碳的封存。据美国环境保护局的统计数据,二氧化碳捕捉技术(CCS)的应用可以减少火电厂80%-90%的二氧化碳排放量。
二氧化碳捕捉技术(CCS)在国际上早已被深入研究和实践。2014年加拿大建成了世界上首个商业化的二氧化碳捕捉项目—边界大坝火电厂。该项目在火电厂的基础上整合了二氧化碳捕捉装置,降低了发电过程中的碳排放量。而国内的神华集团也早在2009年就在鄂尔多斯建设二氧化碳捕集和封存项目,近期神华集团已经在鄂尔多斯成功示范30万吨二氧化碳封存技术。
随着二氧化碳捕捉技术(CCS)的逐步成熟,煤制氢加二氧化碳捕捉技术的制氢工艺路线也会日益清晰,将为中国氢能经济中长期发展提供充足的氢气资源。
1.3中国氢能经济发展后期:可再生能源制氢将实现能源的清洁生产与利用
国家能源局发布的《2015年度全国可再生能源电力发展监测评价报告》显示,2015年我国弃风电量339亿千瓦时,同比增加213亿千瓦时,甘肃、新疆和吉林的弃风率均超过30%;西北地区出现了较为严重的弃光现象,甘肃弃光电量26亿千瓦时、弃光率31%,新疆弃光电量18亿千瓦时、弃光率26%。西南地区弃水现象也同样严重,四川弃水电量达到102亿千瓦时,云南弃水电量152.6亿千瓦时。据此推算,2015年我国至少有642亿千万时的可再生能源没有利用。如这些可再生能源用来电解制氢,则可以制备160.5亿立方米的氢气(按照制备每立方米氢气耗费4度电来计算)。
目前弃光、弃风和弃水发电的成本价格为0.15元/度,据此计算出的电解水制氢成本为1.5元/立方米,这已经远低于利用上网电电解水制氢的成本,且与化石燃料(煤、焦炭和天然气)制氢的成本上限接近。所以,未来氢能产业链下游储运等环节一旦取得突破,新能源支持的大规模电解水制氢的市场份额将出现增长,氢能成本也会进一步降低。
2. 氢能在能源市场的多种应用场景将降低氢能的整体使用成本
目前市场对氢能使用存在一个明显的误区,即将氢能的应用范围局限于传统化工生产领域这一单一应用场景,由此而担忧氢能基础设施投入开销巨大,且使用成本高昂。事实上,氢能作为储能介质能够横跨电力、供热和燃料三个领域,促使能源供应端融合,提升能源使用效率,其应用模式可以抽象为以下三个方面:
a.
电能到电能的转换(power to power):电解制氢实现电能向氢能的转化,必要时氢能可通过燃料电池再次转化为电能。
b. 电能到燃气的转换(power to gas):电解制氢后,将氢气直接混入天然气管道,或者合成甲烷后混入天然气管道;混合天然气在终端作为燃料提供热能。
c.
电能到燃料的转换(power to fuel):电解制氢后,氢气作为燃料电池车的燃料,为汽车提供动力。
而氢能作为能源载体的具体应用模式涉及新能源制氢补充发电、燃料电池汽车、分布式发电等领域。所以氢能的应用场景具有很强的多样性,如未来能够形成电力、供热和燃料相互交叉的应用网络,将大幅降低其使用成本。
1、蒸汽甲烷重整
蒸汽甲烷重整(SMR)是一种从主要是甲烷的天然气中生产氢气的方法。它是目前最便宜的工业氢气来源。世界上近50%的氢气是通过这种方法生产的。该过程包括在蒸汽和镍催化剂存在下将气体加热到700–1100°C之间。
产生的吸热反应分解甲烷分子并形成一氧化碳CO和氢气H2。然后一氧化碳气体可以与蒸汽一起通过氧化铁或其他氧化物并进行水煤气变换反应以获得更多量的H2.这个过程的缺点是它的副产品是CO2、CO和其他温室气体的主要大气释放。
根据原料(天然气、富气、石脑油等)的质量,生产一吨氢气还会产生9至12吨CO2,这是一种可能被捕获的温室气体。
根据原料(天然气、富气、石脑油等)的质量,生产一吨氢气还会产生9至12吨CO2,这是一种可能被捕获的温室气体。
2、甲烷热解
说明甲烷热解的输入和输出,这是一种生产氢气且无温室气体的高效一步法
甲烷的热解是从天然气中生产氢气的过程。通过流过“气泡塔”中的熔融金属催化剂,氢气分离在一个步骤中进行。这是一种“无温室气体”方法,用于测量潜在的低成本氢气生产,以衡量其扩大规模和大规模运营的能力。 该过程在更高的温度(1065°C或1950°F)下进行。
3、电解
电解包括使用电将水分解成氢气和氧气。水的电解效率为70-80%(转化损失为20-30%) ,而天然气的蒸汽重整的热效率在70-85%之间。 电解的电效率预计将在2030年之前达到82-86% ,同时随着该领域的进展继续加快,同时也保持耐用性。
水电解可以在50–80°C之间运行,而蒸汽甲烷重整需要700–1100°C之间的温度。 两种方法的区别在于使用的一次能源;电力(用于电解)或天然气(用于蒸汽甲烷重整)。
环境影响
截至2020年,大部分氢气由化石燃料生产,导致二氧化碳排放。当排放物释放到大气中时,这通常被称为灰氢,当通过碳捕获和储存(CCS)捕获排放物时,这通常被称为蓝氢。
假设美国上游和中游的甲烷泄漏率和生产通过蒸汽甲烷重整器(SMR)改装了二氧化碳捕获装置。使用具有二氧化碳捕获功能的自热重整器(ATR)可以在令人满意的能源效率下实现更高的捕获率,并且生命周期评估表明,与具有二氧化碳捕获功能的SMR相比,此类工厂的温室气体排放量更低。
经评估,在欧洲应用ATR技术与二氧化碳的综合捕获相比,其温室气体排放量低于燃烧天然气,例如,H21项目报告称,由于二氧化碳强度降低了68%,因此温室气体排放量减少了68%。天然气与更适合捕获二氧化碳的反应器类型相结合。
使用较新的无污染技术甲烷热解生产的氢气通常被称为绿松石氢气。高质量的氢气直接由天然气生产,相关的无污染固体碳不会释放到大气中,然后可以出售用于工业用途或储存在垃圾填埋场。
由可再生能源生产的氢气通常被称为绿色氢气。有两种从可再生能源生产氢气的实用方法。一种是电制气,其中电力用于电解水制氢,另一种是利用垃圾填埋气在蒸汽重整器中制氢。当由风能或太阳能等可再生能源生产时,氢燃料是一种可再生燃料。
通过电解由核能产生的氢有时被视为绿色氢的一个子集,但也可以称为粉红色氢。奥斯卡港核电站于2022年1月达成协议,以每天公斤的数量级供应商业粉红色氢气。