如何探测煤炭地质构造
根据氧的地球物理化学特征及其在地层中的运移规律.用测氡法探测煤矿地质构造。测氡法是本世纪在放射性矿床的勘探生产中发展起来的一种新颖的核物探技术.长期以来。该技术一直被用于寻找地下深部铀矿床、查明深大断裂、了解水源、地震预报及进行环境评价等许多领域。
(一)韩城区块煤体结构类型划分
煤体结构一般被用于描述煤体受到地质应力作用所导致的宏观差异与微观差异。通常在后期构造演化过程中宏观构造和微观结构不变的煤称为原生结构煤。在后期地质演化作用下,受应力作用影响,使得煤体本身原生的宏观结构发生改变并形成各种不同的次生结构、煤体本身发生各种物理-化学变化的煤称为构造煤(袁崇孚,1986王恩营等,2008)。几十年来,人们从煤的形态、结构、成因、物理力学性质等角度出发,对煤体结构类型进行了一系列的划分(陈善庆,1989李康等,1992曹代勇等,2003,2012a琚宜文等,2004,2009张玉贵等,2008王恩营等,2009李小明,2007屈争辉,2011)。袁崇孚(1986)从瓦斯防治角度将煤体结构类型划分为原生结构煤、碎裂煤、碎粒煤和糜棱煤。琚宜文等(2004)从破坏程度、变形机制等多个角度对构造煤分类,在详细研究沁水盆地和两淮煤田构造煤的基础上,结合前人研究成果,扩展了构造煤的概念,提出了构造煤的结构-成因分类方案,将构造煤分为脆性变形、脆韧性变形和韧性变形3个序列的10类煤。然而,不同区域内,煤本身的成煤环境存在很大的差异,地质演化历史不同,受构造作用的影响也不同。因此,不同区域内煤体结构的划分应与该区本身的构造演化特征相匹配,具有自身的独特性。韩城区块受燕山期和喜马拉雅期构造运动等多期地质作用的影响,煤层变形明显、煤体结构复杂、构造煤类型多样。本书通过对区块内煤岩样品特征的宏观描述(包括煤的硬度与脆度、煤的断口、煤的裂隙发育状况、煤的结构、构造以及宏观煤岩组分等特征)并结合前人的研究成果(王双明,2008),以煤岩变形机制和煤体宏观构造、微观结构为基础,将煤体结构划分为4种类型,即原生结构煤、碎裂煤、鳞片煤和碎粒煤(图3-4)。
图3-4 研究区4种煤体结构类型
(1)原生结构煤:以半亮型煤为主,次为光亮型,光泽鲜亮,形态完整,结构均一致密,层状构造,层理清晰可见,质硬,不易破碎,敲击呈块状破碎,呈贝壳状、阶梯状断口,内、外生裂隙不发育。
(2)碎裂煤:以半亮型煤为主,光泽较亮,呈次生碎裂结构,层状构造,层理清晰可见,较易沿裂隙、节理面破裂,呈块状碎裂,断口多平整,外生裂隙和割理发育。
(3)鳞片煤:以半暗型煤为主,次为半亮型,层理不可见,次生鳞片状构造,鳞片呈层叠状,鳞片皆平行滑动方向定向层叠状排列,鳞片大多煤煤质松软,手捻易碎成片状或细粒状,裂隙和割理不发育。
(4)碎粒煤:以半暗型煤为主,次为暗淡型煤,煤体破坏严重,原生结构已完全消失,煤体呈次生碎粒结构,不同粒度的颗粒混杂堆积,一般为1~3mm的细小颗粒,煤岩全部碎粒化,煤质疏松,易碎,不同方向的小裂隙发育(表3-3)。
表3-3 韩城区块煤体结构类型划分表
结合区域地质构造分析,韩城区块由北向南发育3个主要的断裂带:薛峰北断裂带、东泽村断裂带、前高断裂带。受区域构造运动的影响,地应力由东西向转变为近南北向,煤层在构造应力作用下发生变形,形成不同类型的构造煤。通过对韩城象山矿井下原位3号、5号和11号煤岩煤体结构进行观察描述可知,3号煤的煤体结构相对简单,除原生结构煤外还有少量鳞片煤,11号煤的煤体结构稍复杂,除原生结构煤外还伴生有碎粒煤和碎裂煤,而5号煤的煤体结构复杂,四种煤体结构煤均有分布。对韩城象山矿3号、5号和11号煤煤体结构发育情况进行统计可知(表3-4),构造煤总厚度占煤层总厚度的46%。由于构造煤属于软煤,机械强度低,构造煤本身含有大量的原生煤粉,后期遭受应力破坏更易形成次生煤粉,因此,煤体结构类型是决定煤粉产出的重要因素。考虑到不同煤体结构煤对煤粉产出的影响程度不同,把原生结构煤、碎裂煤、鳞片煤和碎粒煤划为三类,Ⅰ类煤为原生结构煤、Ⅱ类煤为碎裂煤、Ⅲ类煤为鳞片煤和碎粒煤。其中,Ⅲ类煤(鳞片煤与碎粒煤)对煤粉产出的影响最大。由于Ⅲ类煤具有低强度、低渗透率、微孔隙、比表面积大等特点,煤体结构破碎程度极大,最易形成煤粉颗粒,是煤粉产出的重要来源,而原生结构煤产生的煤粉相对较少(Xueshen Zhu et al.,2013)。
表3-4 3号、5号和11号煤层中不同煤体结构类型厚度统计表
(1)褶曲构造:煤层褶曲表现为煤层底板等高线上发生弯曲,若等高线凸出方向是标高升高方向则褶曲为向斜;若等高线上突出方向是标高降低方向褶曲为背斜。
(2)断层构造:在每层等高线图上,断层是用断层面与煤层层面的交线的水平投影来表示,一般叫做断层交线或交面线。因为断层有上下两盘,所以一条断层有两条交面线,上盘交面线用“—?—“表示,下盘交面线用符号”—*—”表示。断层使煤层等高线失去连续性。通常断层表现为等高线中断缺失,中段缺失部分为无煤带,逆断层表现为煤层等高线重叠,重叠部分为煤层上下两盘重复区。
读图的方法:
(1)看图名:不论什么地质图,首先应该看图名。图名可以说明地质图件所在区域及图纸的种类,从而对图纸能反映些什么地质现象有清楚的概念。然后看图纸的比例尺,了解图纸上尺寸与实际尺寸的关系及图纸反映的地质现象的精度。
(2)判明方向:一般图纸常用箭头表示北方。如果图上没有标明方向,则图纸上的经纬线应该是上北下南,左西右东。
(3)看图例:图例是表示地形地物以及各种地质和构造现象的符号,是地质图件中不可缺少的部分。
(4)分析图中的内容:在了解地质地形图上的上述情况后,还应该了解地区地层系统建立起该地区地层系统的概念,然后看地形等高线,了解图区内的地形特征,并结合地质剖面图分析区域内的地质构造特征.
(1)倾角不变时,等高线平行等距;倾角变化,等高线间距变化;煤层走向变化,等高线为一组曲线
(2)向斜构造:呈一组曲线或封闭曲线,向斜轴两侧等高线对应出现,近轴标高低。等高线封闭时为煤盆构造,不封闭时为倾伏向斜。
(3)背斜构造:性质同向斜,只是等高线近轴部位高短轴背斜:曲线长圆形封闭穹隆构造:曲线最近圆形
(4)断层:煤层遇断层,等高线中断,正断层上下盘煤交线间无等高线,表示煤层缺失,逆断层等高线重造(当断层倾角大于煤层倾角时)。
(5)褶皱构造遇断层向斜遇正断层:上、下盘断煤交线同名等高线平距上盘大向斜遇逆断层:上、下盘断煤交线同名等高线平距下盘大背斜情况相反。
(6)断层遇断层时:如果煤层底板等高线遇断煤交线中断缺失、缺失部分为无煤区,则该断层为正断层或正断层式移位。如果煤层底板等高线遇断煤交线发生重迭,重迭部分为上下煤层重复区,则为逆断层或逆断层式移位。
(一)煤层气地质特征
1.含煤地层及煤层
沁水盆地含煤地层主要是上石炭统太原组和下二叠统山西组。本溪组和下石盒子组均只含薄煤层或煤线,无煤层气评价意义。
(1)太原组
该组以K1砂岩为底,K7砂岩之底为其上界,总体上呈北厚南薄的特点。含煤4~14层,由下至上计有16号、15号、13号、12号、11号、10号、9号、8号、7号及6号煤层。下部15号煤厚度大,横向稳定,是区内的最主要的煤层之一。全组煤层厚0.4~19.4m,平均6.36m。在北部榆次~老1井一带厚度小,仅2m左右,具东西两侧厚度增厚达10m以上。富煤带位于阳泉~榆社一带,西北部文水、交城煤层较厚,超过18m,在南部仅西南的沁水一带较厚达8m,向东、向北减薄为2~4m。整个盆地太原组的贫煤区位于太谷、沁源、古县、安泽、长子等地区,这些地区煤层厚度小于2m。
(2)山西组
以K7灰岩与太原组分界,上界为K8砂岩之底。厚度变化趋势为北厚南薄。含煤2~7层,由下至上有5号、4号、3号、2号及1号煤层,3号为主煤层。本组煤层总厚0.25~11.51m,平均4.94m,榆次~沁源~安泽~沁水向斜轴部煤层厚度小,一般在2m以内,其两侧及西南部增厚达6~8m。富煤带位于左权~榆次~武乡一带,厚度10m左右,文水亦是一聚煤中心,厚度11.15m,长治~阳城一线为南部富煤中心,特别是潘2井、晋试1井煤层较厚,在6m左右(图6-4)。
2.煤岩煤质特征
(1)宏观煤岩类型
沁水盆地各种煤层均由腐植煤构成,其宏观煤岩组分以亮煤为主,暗煤次之,镜煤和丝炭较少。煤岩组成上,光亮成分相对富集,多以条带状、线理状密集分布,具贝壳状或阶梯状断口,内生裂隙发育。暗淡成分含量相对低,且以宽条带或透镜状分布,阶梯状或参差状断口,致密均一。
依据各煤岩成分在煤层剖面上的自然组合及平均光泽强度,沁水盆地的宏观煤岩类型划分为四类:光亮型、半亮型、半暗型和暗淡型,其中山西组煤岩类型以半亮煤和半暗煤为主,太原组煤层以半亮和光亮型为主。在横向上山西组和太原组主要煤层由北向南光亮型、半光亮型煤含量增高,半暗淡型煤含量逐渐降低。
图6-4 沁水盆地太原组煤层厚度分布图
(2)显微煤岩组分
沁水盆地山西组镜质组含量在45%~70%之间,惰质组含量20%~36%;太原组镜质组含量在65%~80%之间,惰质组含量16%~30%。太原组镜质组含量高于山西组,而惰质组含量低于山西组。
显微煤岩特征在剖面上的变化具有明显的规律性,从顶部主采煤层(3号煤)到底部主采煤层(15号煤),镜质组含量逐渐增加,惰质组逐渐减少,矿物质趋向于增多,镜质组反射率明显变大,其差别有时可达一个煤级。显微煤岩特征的这种变化反映了本区的沉积环境的渐变历史及煤演化的基本趋势。
本区煤中镜质体主要由均质镜质体和基质镜质体组成,结构镜质体较少见,另外还有团块镜质体和胶质镜质体等。
山西组煤层挥发分在7.03%~38.92%之间(个别地区较高),平均为17.23%;太原组各主要煤层的挥发分一般在8.98%~21.39%之间,平均值为14.36%。显然山西组煤比太原组挥发分高。
太原组煤的灰分在4.8%~25.49%,平均为13.26%,而以霍县、沁源等地最高,西山煤田15#煤最低。山西组煤的灰分一般在2.6%~24.15%,平均11.11%,略低于太原组,灰分总的变化趋势是西高东低。
(3)煤级
沁水盆地的煤种比较齐全,从气煤到无烟煤都有,但以变质烟煤和无烟煤为主,是华北石炭—二叠系高变质煤的重要地区,无烟煤储量最多,分布面积最大。
山西组的煤级以贫煤、瘦煤和无烟煤为主,其次还有焦煤、肥煤和气煤;盆地中部主要为贫煤和无烟煤,周围被瘦煤包围,而盆地南部基本上为无烟煤,盆地西部主要为气煤和焦煤。太原组的煤级分布基本上同山西组,但气煤比山西组分布面积小。
从整个盆地煤种平面分布来看,西部以焦煤和气煤为主,东部以瘦煤和贫煤为主,北部以瘦煤、贫煤和无烟煤为主,而南部基本上为无烟煤。
3.含气性特征
沁水盆地山西组和太原组煤层的含气量总体变化特征是,从盆地周边向盆地内部含气量逐渐增高(见附图),由盆地边缘的6 m3/t左右逐渐增高到盆地轴部26~30 m3/t,反映高煤级背景下,含气量随上覆有效地层厚度增加而提高(图6-5、图6-6、图6-7)。煤变质程度对含气性的控制作用也很明显,煤级越高含气量越高,如屯留井田、寿阳矿区韩庄井田和阳城矿区,前两个地区分别为瘦煤(R max1.73%)和贫煤(Romax1.8%~2.4%),阳城矿区为无烟煤(Romax4.1%),在煤层上覆有效地层厚度相同,均为500m的条件下,最高含气量前两个地区为16.5~17m3/t,阳城矿区为38m3/t。
(二)成藏条件
1.煤层厚度大、分布稳定,热演化程度高,生气量大,含气量高
煤层总厚度大多在5m以上,区内煤层气勘探主要目的层石炭—二叠系山西组3号和太原组9号煤厚度稳定,在盆地内分布广。沁水盆地煤的变质程度普遍较高,R0值一般在1.5%~4.5%之间,煤阶主要为无烟煤Ⅲ号、贫煤和瘦煤。据热模拟实验结果,煤由褐煤热演化至瘦煤阶段时,产气量已经达到14m3/t,至无烟煤Ⅲ号时,产气率已达280m3/t,已远远超出煤层自身的吸附能力。
图6-5 寿阳矿区韩庄井田上覆有效厚度与含气量关系图
图6-6 潞安矿区屯留井田山西组3号煤上覆有效厚度与含气量关系图
图6-7 晋城潘庄井田煤层上覆有效厚度与含气量关系图
2.煤储层割理发育,构造线交汇部位裂隙发育,煤层气产出条件有利
盆地内煤层普遍发育两组割理,3号煤面割理走向在N15°~66°E之间,端割理走向N5°~84°W之间;15号煤面割理走向在N20°~30°E之间,端割理走向N3b~88b W之间;割理密度:3号煤介于173~604条/m之间,区域分布规律是由北往南割理变发育;15号煤介于530~580条/m之间,盆地范围内割理密集,分布较均匀。
煤层渗透性还与构造裂隙发育程度有关,在盆地范围内发育三组构造线,即北北东向、近南北和北东东向,它们代表着不同时期的构造运动。在不同期次构造线的交汇部位,形成了裂缝发育带,大大改善了煤储层的渗透性。
在煤层割理和构造裂隙发育区,煤层渗透性得到很大程度的改善,形成高渗区,有利于煤层气产出。在盆地南部潘庄井田,煤层试井渗透率为1.53mD,局部地区高达3~5mD。
3.煤层上覆有效厚度较大,水动力条件好,煤层气保存条件有利
由于燕山和喜山期的构造运动未使区内发生强烈构造变形,风化剥蚀作用并不强烈,在盆地周边和盆地中心仍保留了较厚的煤层上覆有效厚度,特别是樊庄区块,3号煤直接泥岩盖层厚度达50余米,因此现今的含气量仍然较高。
根据钻孔抽水试验数据,沁水煤田不同层段水文地质情况存在较大差别。由各主要含水层计算的静水压力梯度看出:煤系含水层静水压力梯度为0.21~0.62MPa/hm,平均为0.35~0.48MPa/hm;上石盒子组含水层静水压力梯度平均为0.62MPa/hm,第四系松散含水层的静水压力梯度平均为0.82MPa/hm。这些不同的数据表明,盆地各含水层之间没有形成明显的水力联系,煤系为一个近似独立封闭的水文系统,对煤层气的保存有利(表6-8)。
表6-8 沁水盆地含水层压力统计表(张培河,2002)
一般来说,简单结构不含矸石或仅局部含矸石层,较简单煤层一般含1层夹矸,矸厚小于可采厚度的5%,较复杂煤层一般含1-2层夹矸,单层矸厚较小,厚度一般小于3cm,矸石总厚不能超过煤层厚度,复杂结构煤层指含矸石2层以上,且厚度大。
多出现在厚煤层以上。另有些缺煤地区煤层结构分为极复杂,对应的夹矸为复煤层,即煤层的全层厚度大,夹矸层数多,厚度和岩性变化大,夹矸的分层厚度可能大于所规定的煤层最低可采厚度,在地质勘查和煤矿生产中应当进行分层对比的煤层。
根据构造复杂程度,煤矿勘查分为以下四个类型: 1.简单构造 区内含煤地层沿走向、倾向的产状变化不大,断层稀少,没有或很少受 火成岩的影响。主要包括 (1)煤(岩)层倾角接近水平,很少有缓波状起伏
煤层气储层是由孔隙、裂隙组成的双重结构系统(Tremain et al.,1990Kulander et al.,1993Laubach et al.,1998张慧,2001苏现波等,2009)(图4-6)。煤层被理想化为由一系列裂隙切割成规则的含微孔隙的基质块体,煤中的基质孔隙,是吸附态和游离态煤层气的主要储集场所,气体的吸附量与煤的孔隙发育程度和孔隙结构特征有关。煤基质孔隙孔径小,数量多,是孔内表面积的主要贡献者,为煤层气的储集提供了充足的空间,煤储层的裂隙系统是煤中流体渗透的主要通道。
图4-6 煤储层几何模型
一、煤储层孔隙系统
1.煤储层孔隙分类
煤孔隙特征往往以下列指标参数予以表征:孔隙大小,形态,结构,类型,孔隙度,孔容,比表面积及孔隙的分形特征。在目前技术条件下,多采用普通显微镜和扫描电镜(SEM)观测,以及压汞法及低温氮吸附法测试等方法来研究煤的孔隙特征。
煤基质孔隙有两种分类方法:成因分类和大小分类。
不同研究者对煤基质孔隙的成因分类的方案也不相同。郝琦(1987)划分的成因类型为植物组织孔、气孔、粒间孔、晶间孔、铸模孔、溶蚀孔等。张慧(2001)以煤岩显微组分和煤的变质和变形特征为基础,参照扫描电镜观察结果,按成因特征将煤的孔隙分为原生孔、变质孔、外生孔及矿物质孔等四大类十小类。此外陈萍等(2001)研究了煤孔隙的形态分类,桑树勋等(2005)分别探讨了煤中固气作用类型分类,傅雪海等对煤孔隙进行了分形及自然分类(表4-1)。孔隙的成因类型及发育特征是煤储层生气储气和渗透性能的直接反映。煤孔隙成因类型多,形态复杂,大小不等,各类孔隙都是在微区发育或微区连通,它们借助于裂隙而参与煤层气的渗流系统。
表4-1 煤岩孔隙分类
注:分类未标明者均为直径,单位为nm。(转引自汤达祯等,2010)
煤基质的孔径分类一般采用霍多特(Ходот)(1961)的分类方案。霍多特对煤的孔径结构划分是在工业吸附剂的基础上提出的,主要依据孔径与气体分子的相互作用特征。煤是复杂多孔介质,煤中孔隙是指煤体未被固体物(有机质和矿物质)充填的空间。霍多特(1961)曾经按空间尺度将煤孔隙分为大孔(>1000nm)、中孔(100~1000nm)、小孔(10~100nm)、微孔(<10nm)。气体在大孔中主要以层流和紊流方式渗透,在微孔中以毛细管凝结、物理吸附及扩散现象等方式存在。考虑到煤层气中主要成分甲烷分子的有效分子直径为0.38nm的运聚特征和分类影响范围等因素,研究者主要采用霍多特的分类。
2.煤孔隙定量描述
煤基质孔隙可用3个参数定量描述:总孔容,即单位质量煤中孔隙的总体积(cm3/g)孔面积,即单位质量煤中孔隙的表面积(cm2/g)孔隙率,即单位体积煤中孔隙所占的体积(%)。对煤层而言,按常规油气储层的分类多属致密不可渗透储层或低渗透储层,煤层气的运移又是通过裂隙实现的,基质孔隙中煤层气的运动仅是扩散。因此,煤层气的研究中一般不采用有效孔隙率这一名词,而采用裂隙孔隙率,用于评价煤层气的运移情况。绝对孔隙度则用于评价储层的储集性能。煤的总孔容一般在0.02~0.2cm3/g之间,孔面积一般在9~35cm2/g之间,孔隙率在1%~6%之间。
3.煤孔隙影响因素
煤的孔隙度、孔径分布和孔比表面积与煤级关系密切。
镜质组反射率增高,煤的孔隙度一般呈高—低—高规律变化。低煤级时煤的结构疏松,孔隙体积大,大孔占主要地位,孔隙度相对较大中煤级时,大孔隙减少高煤级时,孔隙体积小,微孔占主要地位。宁正伟等(1996)对华北焦作、淮南、安阳、唐山、平顶山等矿区石炭-二叠系45个煤样压汞及氦气的测试表明,高变质程度的贫煤、无烟煤微孔发育,占总孔隙体积的50%以上,大、中孔所占比例较低,平均小于总孔隙体积的20%。中变质程度的肥煤、焦煤、瘦煤,大、中孔发育,尤以焦煤最高,可占总孔隙体积的38%左右,微孔相对较低,小于总孔隙体积的50%。因此中演化变质程度的煤大、中孔发育,对煤层气的降压、解吸、扩散、运移有利,是煤层气储层评价中最有利的煤级。
煤的孔径分布和煤化程度有着密切的关系。根据陈鹏(2001)研究,褐煤中不同级别孔隙的分布较为均匀到长焰煤阶段,微孔显著增加,而大孔、中孔则明显减少。到中等煤化程度的烟煤阶段,其孔径分布以大孔和微孔占优势,而中孔比例较低。到高变质煤阶段如瘦煤、无烟煤,微孔占大多数,而孔径大于100nm的中孔、大孔仅占总孔容的10%左右。
孔比表面积是表征煤微孔结构的一个重要指标。一般微孔构成煤的吸附空间,对应于基质内部微孔隙,具有很大的比表面积小孔构成煤层毛细凝结和扩散区域中孔构成煤层气缓慢渗流区域大孔则构成强烈层流区域,对应于割理缝及构造裂隙等。大的比表面积表明其吸附煤层气的能力强,而比表面积的主要贡献者为微孔。一般认为,煤对气体的吸附能力随着煤级的增高而增大。按照这一规律,煤的比表面积也应当随着煤级的增高而增加。但对我国部分煤样进行低温氮测试的结果发现却不完全如此(图4-7)。可以看出,我国部分煤样低温氮测试的比表面积和煤级的关系,与煤的孔隙度和煤级的关系相类似。在中、低煤级阶段,随着煤变质程度的增高,煤的比表面积逐渐降低到无烟煤阶段,煤的比表面积又开始增加。比表面积的最小值位于烟煤与无烟煤的交界处(Ro=2.5%)。而Bustin等(1998)所进行的CO2等温吸附实验显示,煤级增高,煤样的微孔孔容和表面积先减后增,在烟煤阶段出现最小值。
图4-7 煤的比表面积与煤级的关系
二、煤储层微裂隙系统与煤储层渗透率
1.煤储层裂缝系统分类
煤的裂隙与孔隙共同构成了煤层气在煤储层内的赋存空间和运移通道。王生维等(1997)从煤层气产出特征分析的需要出发,广泛地研究了煤裂隙与孔隙的特征后,提出了适用于煤储层岩石物理研究和煤层气产出特征分析的煤储层孔隙、裂隙分类与命名方案(表4-2)。霍永忠(2004)提出了煤储层显微孔裂隙的分类方案(表4-3)。
表4-2 煤储层孔隙、裂隙系统划分及术语
(据王生维等,1997)
表4-3 煤储层显微孔—裂隙分类
(据霍永忠,2004)
在显微尺度下识别的微裂隙按照其延展性和开放性,可从实用角度划分为A、B、C、D四类(表4-4)。
表4-4 煤储层微裂隙实用分类简表
(据姚艳斌等,2007)
2.煤储层裂缝系统形成影响因素与煤孔隙受到煤变质作用影响一样,煤裂缝同样受到煤变质作用影响。张胜利(1995张胜利等,1996)研究认为,中等变质的光亮煤和半亮煤中割理最发育,这些煤层分布区是煤层气勘探开发的优选靶区。Law等(1993)认为割理频率与煤阶存在函数关系,割理频率从褐煤到中等挥发分烟煤随煤阶升高而增大,然后到无烟煤时随煤阶上升而下降。宁正伟等(1996)经过研究也发现,中等变质程度的煤层内生裂隙最为发育,提高了煤的渗透性和基质孔隙连通性,煤储层物性条件好,在勘探开发过程中易降压,有利于煤层气的解吸、扩散和运移,是最有利于煤层气开发的煤级。王生维等(1995)也认为,煤中孔隙的发育除了受控于煤相之外,还受煤阶和变质作用类型的控制微裂隙的发育受煤岩成分和煤变质双重因素的控制内生裂隙的发育除了受煤岩成分影响外,还受煤变质的制约。毕建军等(2001)通过研究认为,割理的密度主要取决于煤级,一般在镜质组反射率为1.3%左右时割理密度最大割理在高煤级阶段发生闭合主要是由于次生显微组分的充填和胶合作用所致。
随着埋藏深度的增加,煤储层受到较大的地应力作用,煤储层渗透性将变差。从美国圣胡安盆地、黑勇士盆地、皮申斯盆地煤储层绝对渗透率随深度的变化趋势,可以看出这一明显趋势(图4-8)。
图4-8 美国部分地区煤储层渗透率与埋藏深度的关系
3.煤储层渗透率
煤储层的渗透率是反映煤层中气、水的流体渗透性能的重要参数,它决定着煤层气的运移和产出。它是煤储层物性评价中最直接的评价指标。煤层气勘探初期的渗透率主要有试井渗透率和煤岩(实验室)渗透率两种。在煤储层评价时,一般将试井渗透率作为评价渗透率的首选参数,而当研究区没有试井渗透率资料时,可选取煤岩渗透率作为替代参数。试井渗透率是在现场通过试井直接测得的。对煤储层而言,多采用段塞法和注水压降法(Zuber,1998)。试井渗透率最能反映储层原始状态下的渗透性,因此是比较可靠的渗透率确定方法。
据现有资料,国外的煤储层的渗透率一般较高,一般都在10×10-3μm2以上,如拉顿盆地渗透率为(10~50)×10-3μm2,黑勇士盆地为(1~25)×10-3μm2,圣胡安盆地为(5~15)×10-3μm2,粉河盆地高达(500~1000)×10-3μm2(Zuber,1998AyersJr.,2002)。与国外相比,国内的煤储层渗透率一般都低于1×10-3μm2,较好的煤储层也一般都在(1~10)×10-3μm2之间,大于10×10-3μm2的储层很少。根据《中国煤层气资源》(叶建平,1998)数据统计,我国煤储层渗透率变化于(0.002~16.17)×10-3μm2之间,平均为1.273×10-3μm2。其中:渗透率小于0.10×10-3μm2的层次占35%,介于(0.1~1.0)×10-3μm2之间的层次占37%,大于1.0×10-3μm2的层次占28%,小于0.01×10-3μm2和大于10×10-3μm2的层次均较少(图4-9)。我国的煤层渗透率以(0.1~1.0)×10-3μm2等级为主。煤层渗透率普遍较低,即使是在目前已经投入商业化开发的沁水盆地东南部的渗透率一般也都在(1~10)×10-3μm2之间。
煤岩渗透率又称实验室渗透率,是通过实验室的常规煤岩心分析获得的。相对于试井渗透率,实验室测试的渗透率有许多局限之处。最主要的是实验室测得的渗透率由于环境条件的变化往往不能反映真实情况等。首先,实验室的渗透率一般在常温、常压下测得,与煤储层的高温、高压的原始状态不符其次,实验室渗透率由于样品大小过小而降低了测试的精度。最后,即使足够大的煤样也不能够完全反映煤储层的大的外生裂隙,因此实验室渗透率可能低估煤储层的实际渗透率另一方面,煤样运送、制样过程中也可能造成人工裂隙,这时实验室渗透率值又将高估煤储层的实际渗透率。
虽然煤岩渗透率在用于储层渗透率评价时存在许多不足之处,但由于其比较容易获得,一直作为煤储层渗透率评价的主要指标。特别是对处于煤层气勘探初期且还未实施煤层气钻井的区域进行评价时,可选择煤岩渗透率作为评价储层渗透性的重要指标。对我国山西、陕西、河南、沈阳和安徽等省煤田的大量煤岩样品的渗透率测试发现,煤岩渗透率在大部分情况下可以反映煤储层渗透率的真实情况。图4-10为选取的我国11个重点煤层气矿区的实测煤岩渗透率分布的高低箱图。各矿区的渗透率平均值一般都在(0.1~1)×10-3μm2之间,部分矿区可高达1×10-3μm2以上。
图4-9 中国主要矿区(煤田)试井渗透率分布
图4-10 中国主要煤田(盆地)煤岩实测渗透率分布箱式图
对比图4-9和图4-10可以发现,各矿区的煤岩渗透率值与试井渗透率值的取值区间基本相近,且煤岩渗透率和试井渗透率具有较好的正相关关系。因此,在对煤储层渗透率进行评价时,选择以试井渗透率值为主,而煤岩渗透率值为辅,将二者有机结合起来实现对煤储层的评价。
1、煤的工业分类中的一些基本概念
①基的概念:基准,前提条件。例如d,ad,daf,dmmf,ar分别代表干燥基、空气干燥基,干燥无灰基、干燥无矿物质基和收到基。
②煤的粘结性。是指煤粒(d<0.2mm)在隔绝空气加热后能否粘结其本身或惰性物质形成块的能力。
③煤的结焦性。是指煤粒隔绝空气加热后能否生成优质焦炭的性质。
④煤的全水分。是煤的外在水分(表面水)和内在水分之和。外在水是空气中干燥失去的水分,剩下的是内在水。
⑤挥发分。空气干燥基煤样在900℃条件下隔绝空气加热7分钟后减少的质量扣除水和二氧化碳的质量。常用干燥无灰基挥发分表示。Vdaf/%
⑥灰分:空气干燥基煤样加热到815℃完全燃烧后残余物的质量。
⑦弹筒发热量。是指单位质量的煤在充有过量氧气的弹筒中燃烧,最终产物为25的二氧化碳、氧气、氮气、硝酸、硫酸、液态水和固态灰时放出的热量。
⑧高位发热量。是指单位质量的煤在充有过量氧气的弹筒中燃烧,最终产物为25的二氧化碳、氧气、氮气、二氧化硫、液态水和固态灰时放出的热量。其数值等于弹筒发热量扣除硝酸和硫酸的形成热。
⑨低位发热量。是指单位质量的煤在充有过量氧气的弹筒中燃烧,最终产物为25的二氧化碳、氧气、氮气、二氧化硫、气态水和固态灰时放出的热量。其数值等于高位发热量扣除水的汽化热。
2、煤的用途
火力发电31%,工业锅炉31%,民用20%,炼焦8%,蒸汽机4%,煤化工3%,出口3%
3、煤的工业分类依据
根据煤化程度指标(挥发分等)和热加工工艺性质(粘结性、发热量等)。
4、中国煤炭分类表及说明
①煤的数码编号说明:十位数表示干燥无灰基挥发分的大小,个位数表示它的粘结性大小。十位数字大,表示挥发分高;个位数字大,表示粘结性高。
②无烟煤分类:3个编号。 类别 编号 挥发分Vdaf/% 氢含量Hdaf/% 无烟煤一号 01 老无烟煤 0-3.5 0-2 无烟煤二号 02 典型无烟煤 3.5-6.5 2-3 无烟煤三号 03 新无烟煤 6.5-10 3-4 ③烟煤分类:24个编号
挥发分10-20%,20-28%,28-37%,37%以上,分别为低、中、中高和高挥发分。
粘结指数G 0-5,5-20,20-50,50-65,65以上,分别为不粘、弱粘、中低粘、中高粘和强粘结性。
④褐煤分类:2个编号 类别 编号 挥发分Vdaf/% 目视比色法透光率PM 褐煤一号 51 新褐煤 37以上 ≤30 褐煤二号 52 老褐煤 37以上 30-50 ⑤中国煤的分类
14大类:褐煤、长焰煤、不粘煤、弱粘煤、1/2中粘煤、气煤、气肥煤、1/3焦煤、肥煤、焦煤、瘦煤、贫瘦煤、贫煤和无烟煤。
17小类
5、煤的可选性及评价方法
①选煤的概念
利用煤与矿物杂质物理化学性质的不同,设法除去矿物杂质,提高煤质量规格的过程。
②选煤方法
主要是重力选煤,利用煤与矿物杂质密度的不同,采用跳汰选煤或重介质洗煤。
③煤的可选性
把矿物杂质从煤中分离出来达到工业用煤要求的难易程度。用±0.1临近密度物产率表示。
④评价方法
筛分试验和浮沉试验。
煤岩学
第一节 宏观煤岩组成及煤的物理性质
1、宏观煤岩成分:肉眼可以区分的煤的基本组成单位。
①镜煤。颜色深黑,光泽最强,贝壳状断口,内生裂隙发育,呈条带状或透镜状,由植物的木质纤维组织经凝胶化作用形成,是一种简单的宏观煤岩成分。
②丝炭。颜色灰黑,纤维状结构,丝绢光泽,疏松多孔,被矿物充填后坚硬致密,比重较大,由植物的木质纤维组织经丝炭化作用形成,也是一种简单的宏观煤岩成分。
③亮煤。亮煤是复杂的宏观煤岩成分,由植物的木质纤维组织经凝胶化作用,并掺入一些由风或水带来的矿物杂质形成。光泽和亮度仅次于镜煤,断面平坦,内生裂隙不如镜煤发育,常呈较厚分层,是最常见的宏观煤岩成分。
④暗煤。暗煤是复杂的宏观煤岩成分,富含壳质组、惰质组或矿物质,光泽暗淡,灰黑色,致密坚硬,比重大,韧性大,不易破碎,断面粗糙,一般不发育内生裂隙。较为常见。
2、宏观煤岩类型
按宏观煤岩成分组合及其反映出来的平均光泽强度划分为4种宏观煤岩类型。
①光亮煤。主要由镜煤和亮煤组成(大于80%)。
②半亮煤。亮煤和镜煤占多数(50-80%)。
③半暗煤。亮煤和镜煤占20-50%,硬度、韧性、比重较大。
④暗淡煤。镜煤与亮煤小于20%,硬度、韧性、比重大。
二、煤的物理性质
1、光学性质
①颜色:表色、粉色、体色、反射色、反射荧光色
表色指普通白光照射下煤表面反射的颜色。
粉色指煤研成粉末或用钢针刻划煤表面形成条痕的颜色。又称条痕色。
体色指把煤表面磨光,在显微镜下观察反射光的颜色。
反射荧光色:把煤表面磨光,用蓝光或紫外光激发后呈现的颜色。 煤类 表色 粉色 体色 反射色 反射荧光色 褐煤 褐色 褐色 煤级越高,透光性越差 煤级越高,反射色越浅 煤级越高,荧光色越弱 低阶烟煤 黑色 深褐色 高阶烟煤 黑色 黑色 无烟煤 黑色 深黑色 ②光泽。煤的新鲜断面的反光能力。与煤成因、煤岩成分、煤化程度和风化程度有关。镜煤→亮煤→暗煤→丝炭,光泽减弱。随煤级增高,光泽增强。
③反射率、折射率和吸收率
煤的反射率是在垂直照明条件下,煤岩组分磨光面的反射光强度与入射光强度之比。
煤的折射率是在光线入射煤的界面时,入射角和折射角的正弦之比。
煤的吸收率是被吸收的光能与入射光能量之比。
2、机械性质
①硬度。抵抗硬物压入表面的能力,分为刻划硬度、压痕硬度和磨损硬度。
刻划硬度指用标准矿物刻划煤得到的相对硬度。
压痕硬度指用专门的仪器测定的煤的显微硬度。
抗磨硬度指用煤磨光面上耐磨阻力的大小表示的硬度。
②脆度。物体受外力作用后破碎的性质。脆度大,韧性差,与硬度不直接相关。焦煤脆度最大。
③可磨性。研磨的难易程度。煤的可磨性系数指风干状态下将相同重量的标准煤样和试验煤样由相同粒度研磨到相同细度所消耗的能量比。
④压缩性。煤在恒温加压下体积变化的百分数。
⑤断口。煤受力后断开的截面。
⑥比重、密度。
⑦比表面积。每克煤具有的总表面积。M2/g
可采用湿润法、BET法、Langmuir等温吸附法、气相色谱法。褐煤和无烟煤比表面积最大。
⑧孔隙率。煤中孔隙和裂隙总体积与煤总体积之比,又称孔隙度。
⑨导电性。通常用电阻率表示。与煤化程度、水、矿物质、孔隙度和风化程度有关。
⑩磁性。煤是抗磁性物质。
⑾导热性。煤的比热介于水和矿物之间。水比热大,矿物比热小。
三、煤中的裂隙
1、内生裂隙:凝胶化物质在温度、压力作用下均匀收缩产生内张力而形成的裂隙。与层理面垂直发育两组。
2、外生裂隙:后期构造应力作用的产物,与层理面呈不同角度相交,裂隙内有煤屑。
四、煤的结构与构造
1、煤的结构分为原生结构和次生结构。原生结构指煤化作用过程中未经构造运动作用形成的煤结构。次生结构指煤层遭受构造运动后的结构,包括碎裂、碎粒、縻棱结构。
2、煤的构造
煤作为一种沉积岩,具有沉积构造,包括层理、波痕等;有些不具有层理特征,呈块状构造。原生构造经构造运动后产生次生构造,如滑动镜面、鳞片状构造、揉皱构造等。
第二节 煤的显微组成
一、煤的有机显微组分
1、镜质组。由植物的木质纤维组织在还原条件下经凝胶化作用形成。镜质组分为结构镜质体、无结构镜质体和碎屑镜质体。保存有植物细胞结构的称为结构镜质体,没有植物细胞结构的称为无结构镜质体,呈碎屑状分布的称为碎屑镜质体。
2、惰质组。又称丝质组,是木质纤维组织在氧化环境下经丝炭化作用形成。C含量高,芳构化程度高,较硬,反射率高,挥发分低,无粘结性。
3、壳质组。又称稳定组,类脂组。壳质组还有大量脂肪族成分,氢含量高,加热时产生大量的焦油和气体。粘结性较差或没有,具有荧光性。
二、煤的无机显微组分
1、煤中矿物质来源
①原生矿物。植物通过根吸收的矿物质。
②同生矿物。由风、水携带与泥炭同时沉积的矿物质。
③后生矿物。煤层形成后,由于水或岩浆的侵入形成于煤体内的矿物。
2、煤中矿物质种类
粘土矿、碳酸盐矿、氧化物、硫化物、氢氧化物等。
第三节 煤岩学应用
1、根据煤层剖面、生物化石、煤核可以推断煤层沉积史。
2、根据煤层形成曲线可以推断沉积历史。
3、利用同等深度不同变质程度可以推断构造运动史。
第四节 煤岩学研究方法
一、宏观研究方法
肉眼观察煤层剖面,绘制煤岩柱状图,描述分层名称、厚度、结构、构造、矿物质等。
二、显微研究方法
1、显微煤岩组分定量
煤粒d≤1mm,平均d=0.8mm
2cm 颗粒数约为25×25=625
2cm
测量步距0.6mm时,测量点数是33×33=1089。统计原则:以目镜十字丝交点下组分进行统计,十字丝交点下没有显微组分的不统计。判断原则:如果十字丝交点落在组分边界时,按充满某个象限的组分参与统计。
2、显微煤岩类型定量
目镜插入网格微尺,网格数20,网格尺寸0.5mm×0.5mm,测量步距0.6mm。统计原则:网格与煤粒交叉点数在10个以上时参与统计。数据点的判断原则:①矿物点数<20%且无硫化物时,该数据点定为显微煤岩;②矿物点数>50%或硫化物点数>15%重叠点数时,该点定为矿物体;③其它数据点定为微矿质煤。
3、显微组分和显微煤岩类型综合分析
在目镜中插入网格微尺,以网格微尺某一点作为十字丝,综合前面的统计和判断依据进行统计和分析。
三、煤的反射率测定
显微光度计
四、仪器设备
1、自动显微光度计
根据灰度值计算出反射率,判断煤化程度、显微组分或煤岩类型。
2、扫描电子显微镜:用于研究固体的表面形态。
3、核磁共振:特定的原子核在特定的外加磁场中,只吸收特定频率的射频能量。用于研究煤分子的化学结构。芳香度改变,相当于外加磁场改变,被吸收的射频频率也改变。
4、电子顺磁共振
第五章 含煤沉积体系
1、 含煤岩系的概念
是指充填于盆地内含有煤层的具有共生关系的沉积总体。含煤岩系的颜色主要由灰色、灰绿色和黑色组成,岩石类型包括砂、泥岩、炭质泥岩、灰岩、煤等。
2、 煤层形成的条件
煤层的前身是泥炭层,泥炭层的形成和保存与沼泽中的水位密切相关,根据植物遗体的堆积速度和沼泽水面的上升速度对比,可分为三种情况,又称为三种补偿方式:过度补偿、均衡补偿和欠补偿。
3、 煤层的结构
煤层包含煤分层和岩石夹层,煤层内不含夹石层者称为简单结构煤层,煤层内含夹石层者称为复杂结构煤层。
4、 煤层的底板和顶板
煤层底板以泥岩、粘土岩最为常见,富含植物根茎化石,俗称根土岩;如果底板为砾岩或石灰岩,则为植物遗体异地沉积。根土岩含有伊利石、蒙脱石、高岭石和其他粘土矿物,呈灰白色。
煤层顶板的岩石类型有多种,最常见的是泥岩、砂岩和石灰岩,与沉积环境有关。例如,我国华北石炭二叠纪含煤岩系太原组是海进型充填序列,成煤环境主要为泻湖-障壁岛体系,发育石灰岩顶板。华北地区山西组为海退型充填序列,成煤环境主要为三角洲、河流体系,煤层顶板为湖相泥岩、冲击相砂岩。
5、 煤层中的结核、包体和化石
顶板为海相沉积物的煤层,煤层中、顶部常见黄铁矿结核,煤层下半部常见硅质结核。
泥炭中混入外来漂砾,形成包体。
煤层中有时可见到动植物化石。
6、 煤层厚度、形态及其控制因素
煤层总厚度、有益厚度、可采厚度、可采煤层、厚度级别
煤层形态控制因素:泥炭沼泽基底形状、沉积环境(冲积扇、河流、湖泊、三角洲、泻湖-障壁岛)、同期构造变动(河流或湖泊相碎屑沉积体侵入煤层产生煤层分叉现象、基底发生断裂、褶皱)、后期构造变动(褶皱、断裂、岩浆侵入、岩溶陷落柱)
7、 含煤沉积体系
山地冲积扇地带沉积体系成煤特征:扇间、扇内或扇前盆地可形成煤层,侧向连续性差
河流沉积体系成煤特征:岸后沼泽和废弃河道有利于形成煤层
湖泊沉积体系成煤特征:湖泊淤浅过程中,沉积粒度下细上粗
三角洲沉积体系成煤特征:上三角洲平原地带,近河岸由于决口扇沉积而出现煤层分岔和灰分增高现象,多形成低硫煤;下三角洲平原,受海水和潮汐影响明显,煤层顶板多为海相沉积,硫分含量高。
泻湖-障壁岛沉积体系成煤特征:泻湖淤浅沼泽化形成煤层,厚度变化较大,煤层硫分含量较高。
第六章 聚煤盆地与聚煤规律
1、根据聚煤盆地的形成条件,分为凹陷型聚煤盆地,断陷型聚煤盆地和构造侵蚀型聚煤盆地。
①我国华北石炭二叠纪聚煤盆地是一个比较典型的波状凹陷型聚煤盆地。盆地南侧是秦岭-大别山构造带,盆地北侧是阴山构造带,总体是一个西北向东南方向缓倾斜的簸箕状盆地,呈现“东西向分带,南北向迁移”的格局。
②断陷型聚煤盆地。由断裂作用和断块沉陷作用形成。
③侵蚀型聚煤盆地。基底为具有剥蚀面的凹地。
2、聚煤盆地的演化
①聚煤盆地的演化受古植物、古气候、古地理和古构造的影响。
②盆地内存在不均匀沉降现象。
③聚煤盆地在构造运动、海水进退和气候影响下,具有侧向迁移现象。
涉及的词汇:海进、海退、海退退覆、超覆、进积(海退时)、退积(海进时)、沉积基准面
3、聚煤规律
在古植物、古气候、古地理和古构造影响下,聚煤作用总是发生于盆地中的一定部位,在时空上表现出一定的规律性。
①富煤带。指煤层发育较好、相对富集的块段,在空间上具有带状分布的特点。
②富煤中心。富煤带内煤层厚度较大的部位。
一般情况下,大型盆地富煤带呈圆形或椭圆形,受地质构造控制时沿构造线延展方向展布。
4、成煤作用研究
受海水影响的煤中,硫含量高,黄铁矿含量高,富集云母、白云石、方解石和磷灰石等矿物。
具有海相顶板的煤层,由于是深水环境,暗煤发育。
第七章 煤的伴生矿产资源
第一节 油页岩
油页岩中的有机物质几乎完全由藻类遗体组成,油页岩的形成环境主要为静水沉积还原环境。
第二节 煤层气
D.1 构造复杂程度划分为四种类型
D.1.1 简单构造:含煤地层沿走向,倾向的产状变化不大,断层稀少,没有或很少受岩浆岩的影响。
主要包括:l 产状接近水平,很少有缓波状起伏;l 缓倾斜至倾斜的简单单斜、向斜或背斜;l 为数不多和方向单一的宽缓褶皱。
D.1.2 中等构造:含煤地层沿走向、倾向的产状有一定变化,断层较发育,有时局部受岩浆岩的一定影响。
主要包括:l 产状平缓,沿走向和倾向均发育宽缓褶皱,或伴有一定数量的断层;l 简单的单斜、向斜或背斜,伴有较多断层,或局部有小规模的褶曲及倒转;l 急倾斜或倒转的单斜、向斜和背斜;或为形态简单的褶皱,伴有稀少断层。
D.1.3 复杂构造:含煤地层沿走向、倾向的产状变化很大,断层发育,有时受岩浆的严重影响,
主要包括:l 受几组断层严重破坏的断块构造;l 在单斜、向斜或背斜的基础上,次一级褶曲和断层均很发育;l 紧密褶皱,伴有一定数量的断层。
D.1.4 极复杂构造:含煤地层的产状变化极大,断层极发育,有时受岩浆的严重破坏。
主要包括:l 紧密褶皱、断层密集;l 形态复杂特殊的褶皱,断层发育;l 断层发育,受岩浆的严重破坏。
一、名词解释:
1、煤炭地质勘查:是对煤矿床进行调查研究和获取地质信息的过程,是查明煤炭矿产资源和煤炭储量及生产所需的其他基础地质信息的过程。
2、勘查技术手段:是指为完成勘查任务所采用的各种工程和技术方法的总称。
3、地震勘探:是利用地震学的方法研究人工激发的弹性波在不同地层中的传播规律,如波的速度、波的衰减和波的形状,以及在界面的反射、折射等来研究地层埋深、构造形态以及岩性组成等的一种地球物理方法。
4、含煤率:是指勘探区内见可采煤厚的钻孔数与见煤层位的钻孔数的比值,或者沿走向或倾向巷道内可采煤体总长度(总面积或总体积)与巷道的总长度(总面积或总体积)的比值。
5、瓦斯地质:是把瓦斯作为一个地质体,用地质学的方法研究煤体中瓦斯的形成、运移、赋存和分布规律,并运用这些规律为煤矿安全生产服务的科学。
6、岩溶塌陷:在石灰岩等可溶性岩层地区,由于地下水的溶蚀作用而产生的塌陷现象。
7、矿井原始地质编录:在煤矿建井和生产过程中随着井巷工程的不断揭露和矿井勘探,矿井地质工作者能够观测和描述煤系地层中许多地质现象,利用文字和图表把这些原始地质现象真实地、全面地、系统地记录下来的工作,叫做矿井原始地质编录。
二、填空:
1、矿井地质编录的要求:经常、及时;真实、准确、全面;认真详细;系统统一;重点突出;宏观观测与微观观测相结合
2、煤炭地质勘查工作,通常要经过立项、资料收集、编制和审查设计、勘查施工和“三边(边勘查施工、边分析研究资料、边调整修改设计)”工作、地质编录、综合研究、编制和审查地质报告、地质报告印制等工作程序和方法步骤。
3、煤炭地质勘查根据煤炭地质勘查工作的特点和与煤矿设计、建设及开采的关系,一般可分为资源勘查和开发勘探两大阶段。
4、断层对煤矿生产的影响主要表现为: 1)影响井田划分2)影响井田开拓方式3)影响采区和工作面布置4)影响安全生产5)增加煤炭损失量6)增加巷道掘进量7)影响煤矿综合经济效益
5、根据温度状况,地壳上部可分为三个带。1)变温带2)恒温带3)增温带
6、岩浆侵入体与围岩的接触面,常呈一定厚度的接触带,接触关系有以下三种情况:l)急变接触2)渐变接触3)混合接触
7、矿井地质条件和名称用带注脚的四位罗马数字表示:第一位数表示矿井地质条件类别;第二位数(用横杠与第一位数隔开)表示地质构造的复杂程度,并以复杂程度最高的地质因素代号(a 、b 、c)作注脚来表明断层(a)的、褶皱(b)和岩浆侵入对煤层的影响(c)。如断层的复杂程度为Ⅰ,褶皱的复杂程度为Ⅱ,岩浆侵人对煤层的影响为Ⅱ时,则整个地质构造的复杂程度为Ⅱ,以Ⅱbc表示,如三者的复杂程度均为Ⅲ时,则以Ⅲabc表示;第三位表示煤层的稳定程度,注脚代号为d ;第四位表示其他开采地质条件,其注脚代号顶板为e,倾角为f,其他地质因素为g。
8、煤炭地质勘查工作成按照先近后远、先浅后深、先易后难的顺序,立足当前、考虑长远,安排好各种不同性质、程度的勘查工作;在做好重点开发矿区勘查工作的同时,积极开展预查(找煤)和扩大现有生产矿区的勘查工作。
9、探明的(可研)经济基础储量(111b)探明的(可研)边际经济基础储量代码(2M21)。
10、矿井地质勘探的特点:具有继承性和补充性、直接为采掘生产服务、针对性和局部性、具有一系列优越条件。
11、瓦斯的主体成分CH4是无色、无嗅、无味和无毒气体,不助燃,但具有燃烧性和爆炸性。
12、根据构造复杂程度,煤矿床勘查类型分为:简单构造、中等构造、复杂构造、极复杂构造。
13、根据煤层稳定程度分为:稳定煤层、较稳定煤层、不稳定煤层、极不稳定煤层。
三、简答:
1、描述煤与瓦斯突出情况主要有哪些指标?
1)突出强度2)突出频度3)突出压力4)始突深度5)突出类型
2、影响瓦斯涌出量的因素?
1)煤、岩的瓦斯含量2)开采规模3)开采顺序与开采方法4)生产工艺5)地面大气变化6).矿井风量的变化
3、竖井编录主要有以下几种?
1).井筒展开图编录方法
2).井筒柱状剖面图编录方法
3).井底水平切面图编录方法
4、矿井原始地质资料整理程序和内容?
1).检查补充和誊清原始地质记录
2).清绘原始地质图件
3).建立原始地质资料档案
4).填绘地质图件
5、合理选择资源/储量估算方法的要求?
能正确反映煤层的自然产状和特征;满足设计、开采部门的要求;估算方法简单、迅速、精确。
6、有哪几种地质说明书?
根据不同的采掘阶段,矿井地质说明书可分为建井地质说明书、开拓区域(或水平延深)地质说明书、采区地质说明书、掘进地质说明书和工作面回采地质说明书五种。
7、固体矿产资源勘查有哪些技术手段?
采用的技术手段主要有遥感地质调查、地质填图、山地工程、钻探工程、地球物理勘探(包括地面物探和测井)等五种。
8、固体矿产勘查划分为哪些阶段?
根据煤炭资源勘查的特点和与煤炭工业基本建设程序相适应的原则,将煤炭地质勘查的程序划分为预查、普查、详查和勘探四个阶段。
9、煤炭储量估算时,地质误差包括哪些内容?
①造误差②煤层对比误差③边界线误差
四、论述:
1、断层出现前可能出现的征兆?
1)煤岩层产状发生急剧变化:断层附近的煤岩层,由于受断层两盘相对运动影响,往往会发生显著变化。
2)煤层厚度发生变化,煤层顶、底板出现不平行现象:煤层受断层影响易发生塑性变形,使厚度改变。
3)接近断层时,煤层和顶、底板中裂隙显著增加,并具有一定的规律性。
4)在大断层附近常伴生一系列小断层,这些小断层是预兆大断层的重要标志。
5)瓦斯涌出量增加:断层可以赋村瓦斯,当巷道揭露到断层附近时,断层中的瓦斯就可以通过煤岩层中的裂隙进入到巷道。
6)涌水量增加:滴水、淋水要注意。
2、生产勘察是矿井地质的一项经常性工作,贯穿于煤矿开采整个过程,具有什么特点?
①生产勘查直接为采掘工程服务,勘查任务单纯、解决问题具体;
②生产勘查工程布置灵活机动、因地制宜,强调其针对性和实用性,不宜苛求其规范性和勘查网度;
③勘查手段可用钻探、巷探、物探,井上与井下相结合、钻探与巷探相结合;
④生产勘查往往是局部的小工程,无须详细设计,只需提交一份简单说明勘查目的、要求和数量的任务书,报请主管部门批准后即可施工。竣工不需要提交专门地质报告,只需要利用其提供的地质资料修改图件、编制和补充地质说明书。
3、陷落柱有哪些井下特点?
(1)柱面的垂直剖面为两条折线;(2)平面形状为一封闭曲线;(3)剖面形状为梯形,上小下大;(4)柱面沉积物:铁质、钙质、泥质;(5)柱高与岩溶大小、地下水排泄条件有关;(6)柱内特征:a 碎石具棱角,岩性杂乱,颗粒大小不一等。b 柱内一般无水。c 煤层牵引现象不明显。
4、划分资源/储量块段时应注意哪些问题?
①划分各类型块段,原则上是以达到相应控制程度的勘查线、煤层底板等高线或主要构造线为边界。
②跨越断层划定探明的和控制的块段时,均应在断层的两侧各划出30~50m的范围作为推断的块段。不允许跨越断层划定探明的或控制的块段。
③小构造或陷落柱发育的地段,不应划定探明的或控制的块段。探明的或控制的块段不得直接以推定的老窑采空区边界、风化带边界或插入划定的煤层可采边界为边界。
④露天勘查各级别块段的划分,不受初期采区内平行等距剖面加密的影响。
5、在煤炭资源勘查工作中,煤矿床勘查类型的实际指导意义主要有哪些?
①煤矿床勘查类型可作为选择基本勘查工程线距及合理布置勘查工程和确定勘查程度的参考依据。不同勘查类型的煤矿床,具有不同的地质特点,可采用不同的勘查方法。
②不同的煤矿床勘查类型也可作为评价煤矿床的依据,它与矿井规模、开采技术条件有密切关系。一般构造简单或构造中等,煤层稳定或较稳定,资源/储量丰富的煤矿床宜建设大型矿井;构造复杂、煤层不稳定的煤矿床,只宜建设小型矿井。
③不同的煤矿床勘查类型,反映勘查的难易程度不同,因而影响勘查成本高低和国家投资的多少。一般构造简单、煤层稳定的煤矿床,勘查效率高,获得的资源/储量多,勘查费用低;构造复杂、煤层不稳定的煤矿床,勘查效率低,获得的资源/储量也少,勘查费用高。