全球能源技术总体创新趋势怎么样?
全球应对气候变化行动的加速使得当前能源技术创新格局正在发生深度调整,本章将基于创新投入、创新产出、创新战略演进三个角度对全球能源技术创新的总体趋势进行分析。
创新投入趋势:投入演化呈现四个阶段,投向更加倾斜可再生能源
科技决定能源的未来,科技创造未来的能源。能源技术创新在全球能源革命中起决定性作用,是各国科技创新的重点关注方向,从近40年全球能源技术研究、开发与示范(RD&D)的投入演化历程上看,总体上可分为四个阶段:
一是长期缩减阶段。IEA成员国的政府RD&D投入在1980-2000年间的投入持续减少,2000年时总投入为111亿美元,仅为1980年的47%。
二是复苏阶段。进入21世纪后随着全球能源、环境问题的凸显,主要国家普遍增加了相关投入,IEA成员国的政府总投入预算在2001-2009年间迎来了快速增长,2009年时已大幅攀升至246亿美元。
三是经济危机阶段。在全球经济危机的背景下,能源研发投入在政府支出中的优先级有所降低,以美国、日本、巴西为代表的主要投入大国纷纷削减了相关开支,使得2010-2016年间全球预算总额呈下降趋势。
四是零碳目标阶段。2016年底《巴黎协定》正式实施,协议提出的在本世纪下半叶实现净零排放的长期目标使得发展低碳能源技术成为了世界各国的迫切需要,因此IEA成员国从2017年起普遍提高了能源技术的RD&D预算。
图1 1980-2020年IEA成员国能源研究、开发与示范(RD&D)政府预算总额(单位:百万美元),资料来源:IEA
全球能源技术的研发投入侧重也在发生着深刻变革,其中,更加关注清洁能源技术、清洁能源技术发展更加倾向可再生能源领域是两大突出趋势。
一方面,IEA成员国化石燃料技术的RD&D占比在上世纪90年代之前呈上升趋势,随后开始降低,2020年时仅占7%,较1990年下降了13%,反映出全球能源研发体系中清洁能源技术的优先级得到提升。
另一方面,清洁能源技术领域的研发趋势由极度聚焦核能向核能、可再生能源协调发展的方向进行转变,从数据上看,1974年时IEA国家核能RD&D占比高达75%,可再生能源RD&D的占比仅为3%,而到了2020年核能所占比重大幅减少至21%,可再生能源所占比重则提升至20%(含氢能)。
图2 1974-2020年IEA成员国能源研究、开发与示范(RD&D)政府投向的演化趋势(单位:%),资料来源:IEA
虽然能源技术的研发投入在近年来呈现出上升趋势,但能源创新在全球创新格局中的地位仍然不高,存在较大的提升空间。从世界主要国家的总体研发结构上看,能源技术研发投入占国家研发总投入的比重均较低,以2020年为例,美国为1.2%,中国为2.2%,法国为3.7%,德国为1.4%。风险投资的行业分布情况也同样印证了能源创新的受重视程度仍有待大幅提升,以中国与美国2020年的风险投资情况进行说明,可发现中美当年收到的能源行业风险投资分别为4.38亿美元、19.8亿美元,分别仅占两国当年收到风险投资总额的0.7%、1.6%,而同年IT行业的占比分别高达40%与41%。
图3 2020年主要国家能源技术RD&D情况,数据来源:IEA、NSF、国家统计局、法国国家经济研究和统计局、德国联邦统计局
图4 2020年中美收到的风险投资的行业分布(单位:百万美元),数据来源:NSF
创新产出趋势:可再生能源创新产出快速增长,光伏是其主要来源
能源技术创新投入的增长也使得新的能源科技成果不断涌现,正在并将持续改变世界能源格局。
全文 1940 字,阅读大约需要 5 分钟 未经许可严禁以任何形式转载 南方能源观察 欢迎投稿,投稿邮箱: eomagazine@126.com 编辑 黄燕华 审核 冯洁 6月1日下午,国家发改委等九部委联合发布了《“十四五”可再生能源发展规划》(以下简称《规划》,明确了“十四五”可再生能源发展的主要目标,同时更加注重可再生能源的大规模开发、高水平消纳以及市场化发展。 大规模开发 中国已经承诺二氧化碳排放力争于2030年前达到峰值、努力争取2060年前实现碳中和,明确2030年风电和太阳能发电总装机容量达到12亿千瓦以上。截至2020年底,全国风电和光伏发电装机达到5.3...全文
可再生能源有太阳能、生物能、风能、水能、海洋能、地热能、氢能、核能等。
1、太阳能:直接来自于太阳辐射。主要内是提供热量和电能。
2、生物能:由绿色植物容通过光合作用,将太阳能转化为化学能,储存在体内,可沿食物链单向流动,最终转化为热能散失掉。通过燃烧和厌氧发酵获得沼气来取得能量。
3、风能:由太阳辐射提供能量,因冷热不均产生气压差异,导致空气水平运动——风的形成。主要是通过风力发电机来获得能量。
4、水能:由太阳辐射提供能量,产生水循环,来自海洋的暖湿空气,受热上升,太阳能转化为势能,当在高山上形成降水后,水往低处流,势能转化为动能,就是水能。主要是通过水力发电机来获得能量。
5、海洋能:包括潮汐、波浪、洋流等海水运动蕴藏的能量,也是取之不尽用之不竭的。潮汐能主要来自于月球、太阳等天体的引力,波浪、洋流的能量主要是受风的影响。主要是通过潮汐的动能来发电。
6、地热能:来自于地球内部放射性元素的衰变。可以用于地热发电和供暖。
7、氢能:通过燃烧或者是燃料电池来获得能量。
8、核能:通过核能发电站来取得能量。
扩展资料:可再生能源的特点:
可再生自然资源在现阶段自然界的特定时空条件下,能持续再生更新、繁衍增长,保持或扩大其储量,依靠种源而再生。
一旦种源消失,该资源就不能再生,从而要求科学的合理利用和保护物种种源,才可能再生,才可能“取之不尽,用之不竭”。土壤属可再生资源,是因为土壤肥力可以通过人工措施和自然过程而不断更新。
可再生能源泛指多种取之不竭的能源,严谨来说,是人类有生之年都不会耗尽的能源。可再生能源不包含现时有限的能源,如化石燃料和核能。
大部分的可再生能源其实都是太阳能的储存。可再生的意思并非提供十年的能源,而是百年甚至千年的。
参考资料:百度百科-可再生能源
一、充分利用太阳能:太阳能的利用有被动式利用(光热转换)、光化转换和光电转换三种方式,是一种使可再生能源被利用的新兴方式。使用太阳电池通过光电转换把太阳光中包含的能量转化为电能。使用太阳能热水器利用太阳光的热量加热水。利用太阳光的热量加热水并利用热水发电。利用太阳能进行海水淡化。
二、充分利用核能。核能最大的用途是发电,还可以用作其它类型的动力源、热源等。
三、充分利用地热能是由地壳抽取的天然热能,运用地热能最简单和最合乎成本效益的方法就是直接取用这些热源,运用钻探的手段来获取地热能。地热能的利用可分为地热发电和直接利用两大类。
四、充分利用水力资源。通过水力发电工程开发利用,将水流体中含有的能量天然资源,转化为人类可以利用的能源,例如水力发电。
五、充分利用风能。风力发电就是应用风能的一个典型例子,风能本身环保,低碳,但是地域限制较大,如何利用好风能一直是我们需要探讨的课题。风能可为温室气体减排带来巨大潜力。陆上风能已在许多国家得到迅速推广,更多风能并入供电系统在技术上也不存在不可逾越的障碍。
六、充分利用生物质能。依据来源的不同,可以将适合于能源利用的生物质生物质分为林业资源、农业资源、生活污水和工业有机废水、城市固体废物及畜禽粪便等五大类。其蕴藏量极大,仅地球上的植物,生产量就像当于人类消耗矿物能的20倍。在各种可再生能源中,生物质是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态和气态燃料 。
七、充分利用海洋能。海洋能是海水运动过程中产生的可再生能源,主要包括温差能、潮汐能、波浪能、潮流能、海流能、盐差能等。
八、充分利用地热能。
九、充分利用潮汐能。
十、充分利用盐差能。 盐差能是两种含盐度不同的水体相混时放出的一种能量。其广泛分布于陆地江河入海处。两种水体的含盐浓度相差越大,它们之间产生的盐差能就越多。
十一、可燃冰。因其外观象冰一样而且遇火即可燃烧,可燃冰是替代石油、天然气的一种重要能源。但暂时不可大范围使用,还在研究中。
十二、细菌发电,即利用细菌的能量发电。作为一种绿色无污染的新型能源,细菌发电经过一个世纪的发展,逐步受到世界各国的重视。
可再生能源替代主要从新能源开发入手。
新能源又称非常规能源。是指传统能源之外的各种能源形式。指刚开始开发利用或正在积极研究、有待推广的能源,如太阳能、地热能、风能、海洋能、生物质能和核聚变能等。
水能是一种可再生能源,是清洁能源,是指水体的动能、势能和压力能等能量资源。广义的水能资源包括河流水能、潮汐水能、波浪能、海流能等能量资源;狭义的水能资源指河流的水能资源。是常规能源,一次能源。水不仅可以直接被人类利用,它还是能量的载体。太阳能驱动地球上水循环,使之持续进行。地表水的流动是重要的一环,在落差大、流量大的地区,水能资源丰富。随着矿物燃料的日渐减少,水能是非常重要且前景广阔的替代资源。
部分可再生能源利用技术已经取得了长足的发展,并在世界各地形成了一定的规模。目前,生物质能、太阳能、风能以及水力发电、地热能等的利用技术已经得到了应用。
国际能源署(IEA)对2000~2030年国际电力的需求进行了研究,研究表明,来自可再生能源的发电总量年平均增长速度将最快。IEA的研究认为,在未来30年内非水利的可再生能源发电将比其他任何燃料的发电都要增长得快,年增长速度近6%,在2000~2030年间其总发电量将增加5倍,到2030年,它将提供世界总电力的4.4%,其中生物质能将占其中的80%。
目前可再生能源在一次能源中的比例总体上偏低,一方面是与不同国家的重视程度与政策有关,另一方面与可再生能源技术的成本偏高有关,尤其是技术含量较高的太阳能、生物质能、风能等。据IEA的预测研究,在未来30年可再生能源发电的成本将大幅度下降,从而增加它的竞争力。可再生能源利用的成本与多种因素有关,因而成本预测的结果具有一定的不确定性。但这些预测结果表明了可再生能源利用技术成本将呈不断下降的趋势。