煤的开采有哪几种方法?
采煤方法种类很多,目前世界主要产煤国家使用的采e5a48de588b6e799bee5baa6e997aee7ad9431333264643733煤方法,总的划分为壁式和柱式两大类。
壁式采煤法的特点:是煤壁较长、工作面的两端巷道分别做为入风和回风、运煤和运料用,采出的煤炭平行于煤壁方向运出工作面,我国多采用壁式采煤法开采煤层。
柱式采煤法的特点:是煤壁短呈方柱形,同时开采的工作面数较多,采出的煤炭垂直于工作面方向运出。
我国当前常用的采煤方法主要有:
1、走向长壁采煤法:长壁工作面沿走向推进的采煤方法。
2、倾斜长壁采煤法:长壁工作面沿倾斜推进的采煤方法
3、倾斜分层采煤法:厚煤层沿倾斜面划分分层的采煤方法。
4、长壁放顶煤采煤法:开采6米以上缓斜后缓斜厚煤层时,先采出煤层底部长壁工作面的煤,随即放采上部顶煤的采煤方法。
5、掩护支架采煤法:在急斜煤层,沿走向布置采煤工作面,用掩护支架将采空区和工作空间隔开,向俯斜推进的采煤方法。
6、伪倾斜柔性掩护支架采煤法:在急斜煤层中,伪倾斜布置采煤工作面,用柔性掩护支架将采空区和工作空间隔开沿走向推进的采煤方法。
7、倒台阶采煤方法:在急斜煤层的阶段或区段内,布置下部超前的台阶形工作面,并沿走向推进的采煤方法。
8、正台阶采煤法:在急斜煤层的阶段或区段内,沿伪斜方向布置成上部超前的台阶形工作面,并沿走向推进的采煤方法。
9、水平分层采煤法:急斜厚煤层沿水平面划分分层的采煤方法。
10、斜切分层采煤法:急斜厚煤层中沿与水平面成25度至30度的斜面划分分层的采煤方法。
11、房柱式采煤法:沿巷道每隔一定距离先采煤房直至边界,再后退采出煤房之间煤柱的采煤方法。
12、房式采煤法:沿巷道每隔一定距离开采煤房,在煤房之间保留煤柱以支撑顶板的采煤方法。
13、仓储采煤法:急斜煤层中将落采的煤
暂存于已采空间中,待仓房内的煤体采完后,再依次放出存煤的采煤方法。
煤炭利用与开采技术
是一种黑色、像岩石的物质。在距今3亿年前的古生代石炭纪,气候潮湿温和,大量植物腐败分解沉落于沼泽,形成泥煤,随着时间、压力、温度、地层变迁及地球变化的影响,形成煤。煤有三种主要类型:褐煤、烟煤、无烟煤。除了木材以外,煤是人类最古老的燃料。
我国西汉已经正式用煤炼铁,河南等地的煤田已经开始开采。对采煤技术有较详细记载的书是《天工开物》。书中曾说:“凡取煤经久者,从土面能辨有无之色。然后挖掘。深至五丈许,方始得煤。初见煤端时,毒气灼人。有将巨竹凿去中节,尖锐其末,插入炭中,其毒烟从竹中透上,人从其下施攫拾取者。或一井而下,炭纵横广有,则随其左右阔取。其上支板以防压崩耳”。可见我国自古已有了较科学的掘井采煤与排除煤层中瓦斯的技术。
煤的开采有两种主要方法:露天开采和地下开采。在煤层接近地表的.地方,可用剥离覆盖层的方法,露天开采。露天煤矿可用大型机械开采,产量高、成本低。煤层埋藏较深的地方只有用地下开采法,传统的地下开采有三种方法:竖井开采、斜井和横井开采。
人工挖掘采煤方式已经落后,现在地下开采大多使用机械。传统的开采法是将开采坑道支撑起来,然后挖掘、钻孔、爆破、装载,最后将煤运到地上。还有一种连续开采法,是用机械不断地挖掘和钻孔,再用其它机械将煤输出坑道。这种方式每分种大约可生产12吨煤。
采出的煤还要经过品质分析、分选大小、清洗、破碎等过程。煤的处理方式根据用途而定。
在20世纪初,英国领导着全世界的采煤业。1913年,英国煤的年产量达l亿吨之多。随后,德国、波兰也跟了上来。第二次世界大战后,美国开始大量输出廉价煤。但随着石油的大量开采,煤发日渐被取而代之。但70年代由于出现了中东石油危机,煤又重新引起人们的注意。今天在世界上所使用伪能源有三分之一是从煤而来。目前,全世界煤藏量仍很丰富,若以现代化的方法开采,这种既可靠又经济的能源可供应世界能源需求的一半以上。许多国家在研究提高煤的利用技术,其中把煤进行气化和液化是发展现代煤炭利用技术的重点。
1、露天开采。当矿层接近地表时,使用露天开采的方式较为经济。矿层上方的土称为表土。在尚未开发的表土带中埋设炸药,接着使用挖泥机、挖土机、卡车等设备移除表土。这些表土则被填入之前已开采的矿坑中。表土移除后,矿层将会暴露出来;这时将矿块钻碎或炸碎,使用卡车将矿砂运往选煤厂做进一步处理。当矿石开采完毕,在隔壁重复同样的步骤。露天开采的方式可比地下开采的方式获得较大比率的煤矿,因为较多的矿层被利用。世界上大概有40%的煤矿采用这种开采方式。
2、地下开采。大部分矿层均远离地表,因此无法使用露天开采的方式。地下开采目前占世界煤矿生产的60%。在矿坑,通常使用房柱法在矿层中推进,梁柱用来支持矿坑。共有四种主要的地下开采法:
长壁开采–长约300米以上的采掘面。一台精密的采矿机在矿层隧道中前后移动。松动的矿石掉入输送带中,并移到工作区域。
连续开采–利用一台有碳化钨钻头的机器从矿层中刮下煤矿。在"房柱法"系统中操作–在一系列约10米的房间区域中工作。
爆破开采–传统的开采方式。使用炸药打碎矿层,将矿石收集放在矿车或运输带中。
短壁开采–使用连续开采的机器。类似长壁开采有着可移动的坑顶支撑。
煤的开采是一项最艰苦的工作,当前正在花较大的力量来改善工作条件.由于煤炭资源的埋藏深度不同,开采方式一般相应地也有矿井开采(埋藏较深)和露天开采(埋藏较浅)之分.其中,可露天开采的资源量在总资源中的比重大小,是衡量开采条件优劣的重要指标,中国可露天开采的储量仅占7.5%,美国为32%,澳大利亚为35%矿井开采条件的好坏与煤矿中含瓦斯的多少成反比,中国煤矿中含瓦斯比例高,高瓦斯和有瓦斯突出的矿井占40%以上.中国采煤以矿井开采为主,如山西\山东\徐州及东北地区大数采用这一开采方式,也有露天开采,如朔州平朔煤矿——全国最大的露天煤矿.
三分之二以上的地下煤炭生产由使用连续采矿机械的房柱法开采。有钨合金钻头的连续开采机一面前一面从表面上破煤,然后再运输到等候接送的汽车上运送到输送带被转移到地面。采煤机前进一段距离,停止移动而后支撑被放入。这个过程反复,直到煤层开采完。不使用爆破手段。
另一种地下采煤方法,是长壁开采法,占了百分之二十左右的生产。这种方法使用横跨400至600英尺的煤层(长壁)的切割机。这台机器上有一个旋转缸钨钻头切下煤,而后煤炭送入输送系统,再由其带出来的矿井。屋顶由大型钢铁支持,附于机器。由于机器向前推动,屋顶支撑也前进。近80 %的煤炭开采可使用这种方法。
在煤矿建设和生产过程中,各种类型的水源水会通过不同的途径进入巷道和工作面, 为了保证采矿安全,防止水害发生,需将矿井涌水排出。据不完全统计,在采煤过程中, 2004 年全国煤矿矿井水排放约30 亿m³,平均每吨煤涌水量约为2m³。资源化利用率仅占22%左右。
瓦斯抽放与矿井通风
在煤炭开采前和开采中抽放瓦斯气, 是保证煤矿安全的重要措施。但将抽放的瓦斯排入大气,会产生强烈的温室效应,瓦斯中所含甲烷的温室效应比二氧化碳大20 倍。另外煤矿在生产过程中, 井下巷道每秒钟都需要数十万乃至数百万立方米的空气,它们主要是通过矿井通风来完成, 矿井通风同样含有瓦斯,并且还有大量粉尘。据近几年有关评价估算, 全国煤层瓦斯资源量为3×106 。2002 年中国重点煤矿煤层瓦斯产生量为9773.37,其中利用瓦斯量为517.49 ,利用率5%左右。
开采造成的生态破坏
传统煤炭开采忽略其它共生、伴生矿物的开采、加工、利用, 造成了资源的浪费。中国煤系共生、伴生20 多种矿产,绝大多数没有利用, 另外矿物的随意存放丢弃还会造成环境污染,破坏生态环境。
煤炭开采破坏了地壳内部原有的力学平衡状态。引起地表塌陷, 原有生态系统受到破坏。这种破坏使原有土地收益的减少或丧失,同时也造成地表水利设施的破坏和生态环境恶化。每年因开采引起的地表塌陷面积已达40万hm2,且平均每年以1.5 万hm2 的速度增加。
采煤方法种类很多,世界主要产煤国家使用的采煤方法,总的划分为壁式和柱式两大类。这两种不同类型的采煤方法,无论从采煤系统,还是回采工艺都有很大的区别。
根据不同的矿山地质及技术条件,可有不同的采煤系统与采煤工艺相配合,从而构成多种多样的采煤方法。如在不同的地质及技术条件下,可以采用长壁采煤法、柱式采煤法或其他采煤法,而长壁与柱式采煤法在采煤系统与采煤工艺方面差别很大。由此可以认为:采煤方法就是采煤工艺和回采巷道布置两部分走成。 1、走向长壁采煤法,长壁工作面沿走向推进的采煤方法。
2、倾斜长壁采煤法,长壁工作面沿倾斜推进的采煤方法。
3、倾斜分层采煤法,厚煤层沿倾斜面划分分层的采煤方法。
4、长壁放顶煤采煤法,开采6米以上缓斜后缓斜厚煤层时,先采出煤层底部长壁工作面的煤,随即放采上部顶煤的采煤方法。
5、掩护支架采煤法。在急斜煤层,沿走向布置采煤工作面,用掩护支架将采空区和工作空间隔开,向俯斜推进的采煤方法。
6、伪倾斜柔性掩护支架采煤法。在急斜煤层中,伪倾斜布置采煤工作面,用柔性掩护支架将采空区和工作空间隔开沿走向推进的采煤方法。
7、倒台阶采煤方法。在急斜煤层的阶段或区段内,布置下部超前的台阶形工作面,并沿走向推进的采煤方法。
8、正台阶采煤法。在急斜煤层的阶段或区段内,沿伪斜方向布置成上部超前的台阶形工作面,并沿走向推进的采煤方法。
9、水平分层采煤法。急斜厚煤层沿水平面划分分层的采煤方法。
10、斜切分层采煤法。急斜厚煤层中沿与水平面成25度至30度的斜面划分分层的采煤方法。
11、房柱式采煤法沿巷道每隔一定距离先采煤房直至边界,再后退采出煤房之间煤柱的采煤方法。
12、房式采煤法。沿巷道每隔一定距离开采煤房,在煤房之间保留煤柱以支撑顶板的采煤方法。
13、仓储采煤法。急斜煤层中将落采的煤 暂存于已采空间中,待仓房内的煤体采完后,再依次放出存煤的采煤方法。
北美最大的地底采矿区,每年出产超过两千万吨煤炭。在这个庞大的矿区里,每天都有200多名矿工在地理作业。为了确保矿场的24小时持续运作,他们分白班和夜班,白班工作八小时后进行交班,晚班人员进入升降机前往200米深的地底。他们抵达矿井底部后,还需要坐上矿坑小火车,行驶八公里的路程才能到达采矿区。半小时后,矿工们抵达煤层开采区,就可以开始进行采煤作业。
第一、首先是用这部大型连续采煤机,靠着一个五米长的切割滚筒专用煤层开挖出长长的矿坑通道。采煤机每次往前开挖几米就必须要暂停,然后用气动支撑气撑住坑底。挖矿还会产生高爆性的煤尘,它会附着在刚挖开的岩石表面只要一点火星就会引起爆炸,为了降煤尘封住,矿工会不停的在岩壁上喷洒盐粉,同时还要避免高爆性的沼气浓度过高,如果没有及时排除沼气,也会有可能发生爆炸。
第二、接着就是轮到这不长壁式采煤机来踩没了,它的切削刃长达三米,每分钟能从煤层消夏50吨煤矿,这相当于每秒开采一吨的煤,足以供应一个普通家庭近三个月的用电量。而这个四米高的煤层蕴藏了300万吨的煤矿。但煤矿开采是个危险的工作,最大的危险来自坑顶与支架,他们很不稳定,矿工们需要随时留意,确保不会被掉落的东西砸到。机器用超大的液压挡板来防止矿顶坍塌,每次机器前进,挡板也会跟着移动。接下来这些混合岩石的煤矿通过输送带被快速送至地面上的选煤厂来除去煤矿中的岩石、泥土以及杂志,这部分占了原物料的30%,每天输送带会送来10万吨的煤矿,他们被直接送进选煤厂,为了确保能顺利处理这些煤矿。
第三、首先用水清洗掉煤矿上的泥土,再移到大小进行分级。为了分离煤炭和石头,接着将物料倒进大型浮选槽。由于石头比煤炭中,石头会沉到水底,而煤炭则会浮在表面,此时煤炭都是湿漉漉的,所以需要把它们倒入脱水机中。这个工业脱水机高速旋转煤炭,直到列出掉多余的水分为止。这些水会流入一个大水槽,再过滤掉杂质后会当做泥浆废液排放。然后,工厂会把不同尺寸的煤炭重新放在一起,将它们压碎成相近的大小后,再倒入大型储煤斗。接着运煤火车会停在储煤斗下方,空管工人开启槽管,让下面每一个车厢都装满六吨的煤炭。满载的运煤火车可以将1万多吨煤炭运送至北美各地的发电站。采煤一直以来是全球最危险的工作之一,矿工们必须冒着弟弟坑道塌方、爆炸以及毒气的风险才能挖出这一宝贵资源。虽然如今采矿比以往安全,但仍具有相当大的危险性。
采区是井下生产的基本单元,矿山开拓和采区巷道布置是井下开采的重要组成部分。采区内布置一系列巷道和若干回采工作面,建成从工作面到井下大巷的运输、通风、供电、压气、煤仓等生产系统。视煤层赋存条件,可在单一煤层中布置采区,或在几个相邻煤层中联合布置采区。为维持矿井持续生产,在回采的同时,需及时进行开拓工作和准备新采区,形成新工作面。此外,还要布置联通井下各采区的开拓井巷,形成全矿性的井下生产系统(见采区巷道布置)。
通过井下运输系统,将采出的煤和矸石运到地面,把人员、材料、装备从地面运到井下工作地点。矿井通风系统不断供给井下新鲜空气,利用各种通风结构设施,迫使风流到达井下每个作业点,供井下人员呼吸、降温及稀释瓦斯等有害气体;乏风通过回风井巷排出地面(见矿井通风、矿内空气、矿井热害)。井下各工作地点所需的电力、压气动力、防尘等安全措施及用水,分别以专用管线,从地面变电站、压风机房以及贮水池输送到井下去(见矿山动力供应、矿山供电系统);井下涌水则需在井底设集中水仓、水泵房,通过排水管排到地面(见矿山排水);充填、井下防火等特需的充填材料、泥浆须另设专用的设备和输送系统。露天开采须增设剥离、排土、堆土装备,以及相应容量的排土场;采深不大时,无需通风措施。基础理论 岩石力学 和地压控制理论一起,是指导采煤生产的重要理论基础。随着开采引起的围岩岩体中应力重新分布,使围岩、煤体和各种人工支撑物产生变形、塌落、破坏、地表发生沉降等力学现象,直接影响井下巷道和地表建筑物的稳定与作业安全。19世纪后期,已有人试图运用简单的力学定理,建立各种假说,来解释一些地压现象。20世纪30年代开始了以连续介质力学为理论基础的研究。随后,又开展了视岩体为连续介质各向异性体的研究,50年代后,开展了视岩体为非连续介质的弱面体研究、有限元法研究和极限平衡条件研究等。与此同时,相似材料模拟、光弹性模拟、数学模拟等各种研究方法和声、光、电学仪器设备等实验手段也获得了显著进展(见地压观测)。这些研究工作为更好地解决工作面支架设计、巷道维护、三下采煤以及具有冲击地压、煤、岩与瓦斯突出危险煤层的开采等各种实际问题,提供了理论基础。
系统工程学 在煤矿开采应用方面的研究也取得显著进展。首先在露天开采中应用,目前已扩展到地下开采,但都还处于初期阶段。煤炭生产是个复杂的大系统,它是由采煤、掘进、运输、提升、通风、排水、动力供应、地面生产系统等许多生产环节组成的,各环节间具有独立性,在工艺技术上、材料上、动力上、信息上又具有相关性,在整体上互相依存又互相制约。运用运筹学、电子计算机等工具,对大系统的要素、组织结构、信息交换和反馈控制等进行分析研究,达到最优设计、最优控制和最优管理的目标,保证产量或成本费用最低,技术经济指标最好(见计算机在采矿工业中的应用)。
矿山地压及其控制,系统工程在采煤中的应用,以及其他有关学科理论研究上的进展,已促使煤矿设计、生产管理更好地和现代科学技术相结合,采煤学科的内容和体系进入了大幅度更新期。术发展地下采煤 生产的发展,推动了采煤技术的进步,18世纪以来,地下采煤技术经历过两个发展阶段:
①第一个发展阶段 18世纪肇始于英国,使采煤从手工生产过渡到单一生产工序的机械化生产。首先以蒸汽为动力的提升绞车、水泵、扇风机,取代了辘轳提升、水斗戽水和自然通风。20世纪初到40年代后期,陆续出现了风镐、电钻、 凿岩机、 链板输送机、气动装岩机、电动装载机、带式输送机、自动卸载矿车等采掘设备和大功率的电动绞车、水泵、扇风机等技术装备,但采掘工作面仍以使用电钻的爆破落煤技术和凿岩机为主。中国自1875年起,相继建立了基隆、开平两个煤矿,实现了矿井提升、矿井通风、排水等几个主要辅助生产工序的机械化作业,这是中国近代采煤工业的开始。
②第二个发展阶段 采掘工作面从单一生产工序的机械化,发展为全部工序的综合机械化。20世纪40年代后期至50年代,英国、苏联分别研制出用于地下长壁工作面的联合采煤机,可同时完成落煤、装煤两道繁重工序的作业。与摩擦式或液压式单体支柱,以及稍后研制出的可弯曲输送机一起,构成了配套的普通机械化采煤设备(即普通采煤机组)。至60年代初,液压自移支架取代了单体支柱,构成了综合采煤机组,从而使工作面生产的采煤、装煤、运煤、支护、采空区处理等所有工序,实现了连续、协调一致的综合机械化。到1982年,采煤综合机械化程度:联邦德国为98%,英国为92%,苏联为67%,波兰为77.8%。
矿井生产的日趋集中,生产规模的日益扩大,推动了矿井运输、矿井提升等环节的进一步技术改造。一些装备正朝着大型、强力、高速的方向发展。已出现了2000吨/时的钢芯强力带式输送机,35吨的提升罐笼,有效载重达50吨的箕斗,以及每秒供风量为300米3的扇风机等。 在地下采煤方法方面,世界上大多数产煤国家采用长壁工作面采煤法(见壁式采煤法)。美国由于煤层平缓,顶板坚硬,适宜用连续采煤机开采,主要用工作面短的房柱法采煤(见柱式采煤法),效率高,但煤炭损失多。
露天采煤 19世纪70年代,出现了勺斗容积为3~4米3的动力铲和以铁道或汽车配合使用的采、装、运设备,20世纪30年代,在软岩露天矿发展了能力大、效率高的连续开采新工艺,50年代得到推广。60年代以来,露天采煤规模、技术装备发展迅速,各种工艺方式都已形成配套的设备组合和系列,单机设备能力不断提高,并陆续出现了容量更大、生产能力更高的超重型装备:斗容137米3、卸载半径近100米的机械铲斗容168米3、卸载半径为180米,并已用电子计算机监控的吊斗铲日产20余万米3的轮斗铲载重达200~350吨系列的自翻车和自卸汽车;以及带宽3.6米,最长作业线98.65公里,最大生产能力每小时达48000米3的带式输送机等。系统工程和电子计算技术开始用于露天矿的单机控制、系统监控、全矿以至全公司的组织管理,使全世界露天采煤占全部煤产量的百分比,由60年代的30%提高到1980年的40%,苏联为32.6%,美国达55.3%,中国也正在大力发展露天采煤。