建材秒知道
登录
建材号 > 能源科技 > 正文

矿物分哪几种

羞涩的戒指
刻苦的大碗
2023-01-30 20:49:05

矿物分哪几种

最佳答案
贪玩的奇迹
慈祥的枕头
2025-08-29 15:02:43

矿物分为下列大类:自然元素矿物﹑硫化物及其类似化合物矿物﹑卤化物矿物﹑氧化物及氢氧化物矿物﹑含氧盐矿物(包括硅酸盐﹑硼酸盐﹑碳酸盐﹑磷酸盐﹑砷酸盐﹑钒酸盐﹑硫酸盐﹑钨酸盐﹑钼酸盐﹑硝酸盐﹑铬酸以上各类化合物加上单质矿物共十八类。

矿物是具有一定化学组成的天然化合物,它具有稳定的相界面和结晶习性。由内部结晶习性决定了矿物的晶型和对称性;由化学键的性质决定了矿物的硬度、光泽和导电性质;由矿物的化学成分、结合的紧密度决定了矿物的颜色和比重等。在识别矿物时,矿物的形态和物理性质由于其易于鉴定而成为鉴定矿物最常用的标志。

矿物一般是自然产出且内部质点(原子、离子)排列有序的均匀固体。其化学成分一定并可用化学式表达。所谓自然产出是指地球中的矿物都是由地质作用形成。

扩展资料:

矿物的化学性质:

1、晶体结构

化学组成和晶体结构是每种矿物的基本特征,是决定矿物形态和物理性质以及成因的根本因素,也是矿物分类的依据﹐矿物的利用也与它们密不可分。

2、化学组成

化学元素是组成矿物的物质基础。人们对地壳中产出的矿物研究较为充分。地壳中各种元素的平均含量(克拉克值)不同。氧﹑硅﹑铝﹑铁﹑钙﹑钠﹑钾﹑镁八种元素就占了地壳总重量的97%,其中氧约占地壳总重量的一半(49%),硅占地壳总重的1/4以上(26%)。

3、原子与配位数

共价键的矿物(如自然金属﹑卤化物及氧化物矿物等)晶体结构中,原子常呈最紧密堆积(见晶体),配位数即原子或离子周围最邻近的原子或异号离子数,取决于阴阳离子半径的比值。

4、成分和结构

一定的化学成分和一定的晶体结构构成一个矿物种。但化学成分可在一定范围内变化。矿物成分变化的原因,除那些不参加晶格的机械混入物﹑胶体吸附物质的存在外,最主要的是晶格中质点的替代,即类质同象替代,它是矿物中普遍存在的现象。

参考资料来源:百度百科-矿物

最新回答
直率的鸵鸟
俊秀的百褶裙
2025-08-29 15:02:43

地球是一个由不同物质和不同状态的同心圈层构造所组成的球体。这些圈层可以分为外部圈层和内部圈层。外部圈层是指地球表面以外的圈层,按照不同的特点可以分为大气圈、水圈和生物圈。内部圈层是指从地球表面往里直到地球中心的各圈层,有表及里可以分为地壳、地幔、地核。地壳是由岩石构成的,也就是说,岩石组成地球的外壳,覆盖在地球的表面。

B、(岩石) 覆盖在地球上的坚固部分称为岩石。岩石有各式各样的种类,通常我们所称呼的石头,就是岩石破碎之后的样子。岩石是在各种不同的地质作用下产生的,是由一种或多种矿物有规律地组合而成的矿物集合体。如花岗岩由石英、长石、云母等多种矿物组成。根据成因,岩石可分三大类:即由岩浆活动形成的岩浆岩;由外力作用形成的沉积岩;由变质作用形成的变质岩。研究岩石有很重要的意义:(土)人类需要各种矿产,而矿产与岩石密切相关;(2)岩石是研究各种地质构造和地貌的物质基础;(3)岩石是研究地壳历史的依据。

(岩浆岩) 也称“火成岩”。地壳深处或来自地幔的熔融岩浆,受某些地质构造的影响,侵入到地壳中或上升到地表凝结而成的岩石:在距地表相当深的地方开始凝结的称为“深成岩”,如橄榄岩、辉岩、花岗岩等;喷出地表或在地表附近凝结的称为“喷出岩”,如玄武岩、流纹岩等;介于深成岩和喷出岩之间的是“浅成岩”,如花岗岩、正长斑岩等。

三种常见的岩浆岩:

1.花岗岩 是分布最广的深成侵入岩。主要矿物成分是石英、长石和黑云母,颜色较浅,以灰白色和肉红色最为常见,具有等粒状和块状构造。花岗岩既美观抗压强度又高,是优质建筑材料。

2.橄榄岩 侵入岩的一种。主要矿物成分是橄榄石及辉石,深绿色或绿黑色,比重大,粒状结构。是铂及铬矿的惟一母岩,镍、金刚石、石棉、菱铁矿、滑石等也同这类岩石有关。

3.玄武岩 一种分布最广的喷出岩。矿物成分以斜长石、辉石为主,黑色或灰黑色,具有气孔构造和杏仁状构造,玄武岩本身可用作优良耐磨的铸石原料。

(沉积岩) 又叫“水成岩”。是在常温常压条件下岩石遭受风化作用的破坏产物,或生物作用和火山作用的产物,经过长时间的日晒、雨淋、风吹、浪打,会逐渐破碎成为砂砾或泥土。在风、流水、冰川、海浪等外力作用下,这些破碎的物质又被搬运到湖泊、海洋等低洼地区堆积或沉积下来,形成沉积物。随着时间的推移,沉积物越来越厚,压力越来越大,于是空隙逐渐缩小,水分逐渐排出,再加上可溶物的胶结作用,沉积物便慢慢固结而成岩石,这就是沉积岩。沉积岩分布极广,占陆地面积的75%,是构成地壳表层的主要岩石。

四种常见的沉积岩:

1.砾岩 一种颗粒直径大于2毫米的卵石、砾石等岩石和矿物胶结而成的岩石,多呈厚层块状,层理不明显,其中砾石的排列有一定的规律性。

2.砂岩 颗粒直径为0.1~2毫米的砂粒胶结而成的岩石。分布很广,主要成分是石英、长石等,颜色常为白色、灰色、淡红色和黄色。

3.页岩 由各种黏土经压紧和胶结而成的岩石。是沉积岩分布最广的一种岩石,层理明显,可以分裂成薄片,有各种颜色,如黑色、红色、灰色、黄色等。

4.石灰岩 俗称“青石”,是一种在海、湖盆地中生成灰色或灰白色沉积岩。主要由方解石的微粒组成,遇稀盐酸会发生化学反应,放出气泡。石灰岩的颜色多为白色、灰色及黑灰色,呈致密块状。

变质岩: 地壳中的火成岩或沉积岩,由于地壳运动、岩浆活动等所造成的物理、化学条件的变化,使其成分、结构、构造发生一系列改变,这种促成岩石发生改变的作用称为变质作用。由变质作用形成的新岩石叫做变质岩,例如由石英砂岩变质而成的石英岩,由页岩变质而成的板岩,由石灰岩、白云岩变质而成的大理岩。变质岩常有片理构造。

三种常见的变质岩:

1.大理岩 由石灰岩或白云岩重结晶变质而成。颗粒比:石灰岩粗,矿物成分主要为方解石,遇酸剧烈反应,一般为白色,如含不同杂质,就有各种不同的颜色。大理岩硬度不大,容易雕刻,磨光后非常美观,常用来做工艺装饰品和建筑石材。

2.板岩 由页岩和黏土变质而成。颗粒极细,矿物成分只有在显微镜下才能看到。敲击时发出清脆的响声,具有明显的板状构造。板面微具光泽,颜色多种多样,有灰、黑、灰绿、紫、红等,可用做屋瓦和写字石板。

3.片麻岩 多由岩浆岩变质而成。晶粒较粗,主要矿物成分为石英、长石、黑云母、角闪石等。矿物颗粒黑白相间,呈连续条带状排列,形成片麻构造。岩性坚,但极易风化破碎。

C、(矿物) 是地壳内外各种岩石和矿石的组成部分,是具有一定的化学成分和物理性质的自然均一体。大部分矿物是固体,也有的是液体(如自然汞、石油)或气体(如C02、H:S等)。

矿物学家把所有矿物分为有机矿物和无机矿物两种:前者种类比较少,主要是碳氢氧化合物,如:琥珀等。后者在地球上数量众多,由于每年都有几十至几百种新矿物被发现,据统计,目前已有三四千种。许多种矿物是我们日常生活离不开的,例如:中小学生几乎天天都用铅笔,制造笔心的石墨就是矿物的一种。我们每餐都用的食盐也是天然石盐矿物的一种,可以说人类时时刻刻都离不开矿物。

有机矿物的化学成分是碳氢化合物,无机矿物的化学成分比较复杂,门捷列夫周期表中的一百多个化学元素,都可以组成无机矿物。既可以是一个元素独立存在,也可以是多个元素的组合。一个元素独立存在的矿物较普遍,如:Fe(铁)元素可以形成自然铁矿物,Ag(银)元素可以形成自然银矿物,Au(金)元素可以形成自然金矿物等。两个以上的元素组合可以形成几千种矿物,最简单的如两个元素Si(硅)和O,可以组成Si02,由这两个元素组成的矿物可以是石英、柯石英和鳞石英等。Fe和O两个元素可以组成亦磁铁矿、赤铁矿以及磁铁矿等,亦铁矿和磁铁矿都是炼铁的主要原料。三个元素组成的矿物就更多了,例如:CusFeS4是斑铜矿、CuFeS2是黄铜矿、CoAsS是辉砷钴矿等。

(地壳里为什么有各种各样的矿物) 在自然界里,我们可以见到各式各样的矿物:有的质地坚硬,有的柔软;有的色泽鲜明,有的平淡无奇;形象不一,种类繁多。然而不管有多少种,总超不出自然界的各种元素。这些元素在地壳的长期演化过程中,不断化合、分解、迁移,终于造成今天我们看到的三千多种矿物,它们是构成地壳的物质基础。

(岩石与矿物的区别) 岩石是由一种或多种矿物组成的固体,但它并不具备矿物的基本特性。岩石与矿物之间的区别就好像飞机模型和制造这些模型的材料之间的区别。正如岩石的构成要素是矿物一样,飞机模型的构成要素是轮胎、机翼、发动机和其他组成部分。岩石的基本特点是所有的岩石都是混合物。

煤、石油、天然气属于可燃性有机岩,而不是矿物。

(矿物是怎样形成的) 形成矿物的途径,一条是通过岩浆的活动。在岩浆里有着地球上的各种元素。这些元素,在岩浆的高温熔融的条件下,发生化学变化,形成了多种化合物和一些单质。由于地下各处岩浆的化学成分不一样,还因为岩浆在冷却时,温度、压力等条件都在发生变化,而一定环境只适于一定的矿物生成,因此,由于岩浆冷却形成的矿物,种类是很多的。还有一条途径是通过水和大气,有时还有生物的作用,使已经形成的矿物发生化学变化,或者使溶解在水中的元素或化合物之间互相作用并沉淀堆积起来,造成各种次生的矿物。例如高岭石是长石、云母等与水作用,风化变成的。

(矿物的外表特征和物理性质) 各种矿物都具有一定的外表特征和物理性质,它可以用来作为识别矿物的依据。

(矿物的形状) 矿物的形状是各种各样的。有些矿物能形成整齐的晶体,如食盐是立方体,水晶是六面体,云母是六边形的片状。有些矿物则呈不规则的葡萄状、粒状、纤维状、放射状等,我们经常看到的矿物多半是一些不规则的块状。

(矿物的颜色) 矿物具有各种颜色,有些矿物的名字就是根据它的颜色命名的,如黑云母是黑色,赤铁矿是棕红色,黄铜矿是黄色。有些矿物是无色的,如水晶等。

(矿物的解理与断口) 有些矿物被敲打后,常沿一定方向裂开,形成光滑平面,这种性质叫解理。如方解石受力后按三个方向裂开,形成具有光滑表面的菱形体小块;云母可按一定方向揭成一叶叶的薄片。另一些不具解理的矿物被敲打后,常形成各种形状的破裂面,叫做断口,如石英常有贝壳状断口。

(矿物的硬度) 矿物的软硬程度叫做硬度。一般用两种不同的矿物互相刻划,来比较矿物的相对硬度。德国矿物学家弗里德里希.莫斯用这种互相刻划的方法,于1812年形成了十种普通矿物(从最软到最硬)的等级(见图表:教学参考P98)。

D、(矿产) 一切埋藏在地下或分布于地表(包括地表水体)的可供人类开采的天然矿物资源,被广泛称为矿产。按工业上的不同用途,矿产可分为三大类:

(1)金属矿产 指经冶炼从中提取金属元素的矿产。可分为以下几种:1)钢铁基本原料金属矿产,如铁、锰、铬;2)有色金属矿产,如铜、铅、锌、铝、镁、金、银;3)稀有金属矿产,如锂、铷、铍;4)分散元素矿产,如锗、硒;5)放射性元素矿产,如铀、镭。

(2)非金属矿产 指经简单加工可提出非金属原料或直接可应用的矿产。可分为以下几种:1)冶金辅助原料矿产,如菱镁矿、耐火黏土、硅石等;2)特种非金属矿产,如金刚石、水晶、石棉、云母等;3)化工原料非金属矿产,如磷、硫、钠盐、天然碱等;4)建筑材料非金属矿产。

(3)燃料矿产 如煤、油页岩、石油、天然气等。

(矿产的开采) 分布在地表的和埋藏得比较浅的,可以露天开采;埋藏得比较深的,需要开凿矿井,在地下开采。我国开采、利用矿产有悠久的历史。早在2000年前,就知道利用煤做燃料冶炼铜、铁。我国还是世界上利用石油和天然气最早的国家,“石油”一词最早见于宋代著名科学家沈括的著作。

(太阳能) 是另一种广泛利用的清洁能源。太阳是光明的象征,46亿年来太阳一直照耀着地球,送来光和热。将阳光聚焦,可以将光能转化为热能。在日照充足的地方,人们在生产和生活中已大量使用太阳灶、太阳能热水器和干燥器。

(地热) 地球自身提供的能源。地球开始形成的时候曾经是一个炽热的行星,在漫长的地质年代里,地球表面逐渐冷却,但内部仍然保存了大量的热能。同时,地球内部放射性元素在不断地蜕变,这种化学反应也在不断地释放热量。由于地幔和地壳热传导比较慢,地壳以下的温度逐步上升,越接近地核温度越高。在大多数地区,每下降100米温度要上升2~3摄氏度。表面上看这个数字不大,但是,聚沙成塔,地下热就是一个十分可观的能量来源。据估计,仅仅地面以下3千米范围内的地热资源就相当于3万亿吨煤提供的热量,差不多等于全世界煤炭开采量的1 000倍。

(不可再生的能源) 矿物燃料和核燃料统称不可再生的能源,它们都要经过若干世纪的蓄积才能形成,不可能在几代人的生活期间补充起来。

[可再生的能源] 包括木材、水能、潮汐能、风能、地热、太阳能以及水中的氢等。这类能源能自行更新,天然地补充。水力发电很少污染大气,潮汐能和风能也是潜力很大的无污染能源。在水能、潮汐能、风能、地热能等天然能源中,人类最理想的能源是太阳能和氢燃料。它们是取之不尽、用之不竭的清洁能,只要找到经济有效的应用技术,它们的优越性是其他能源所不能比拟的 地球是一个由不同物质和不同状态的同心圈层构造所组成的球体。这些圈层可以分为外部圈层和内部圈层。外部圈层是指地球表面以外的圈层,按照不同的特点可以分为大气圈、水圈和生物圈。内部圈层是指从地球表面往里直到地球中心的各圈层,有表及里可以分为地壳、地幔、地核。地壳是由岩石构成的,也就是说,岩石组成地球的外壳,覆盖在地球的表面。

B、(岩石) 覆盖在地球上的坚固部分称为岩石。岩石有各式各样的种类,通常我们所称呼的石头,就是岩石破碎之后的样子。岩石是在各种不同的地质作用下产生的,是由一种或多种矿物有规律地组合而成的矿物集合体。如花岗岩由石英、长石、云母等多种矿物组成。根据成因,岩石可分三大类:即由岩浆活动形成的岩浆岩;由外力作用形成的沉积岩;由变质作用形成的变质岩。研究岩石有很重要的意义:(土)人类需要各种矿产,而矿产与岩石密切相关;(2)岩石是研究各种地质构造和地貌的物质基础;(3)岩石是研究地壳历史的依据。

(岩浆岩) 也称“火成岩”。地壳深处或来自地幔的熔融岩浆,受某些地质构造的影响,侵入到地壳中或上升到地表凝结而成的岩石:在距地表相当深的地方开始凝结的称为“深成岩”,如橄榄岩、辉岩、花岗岩等;喷出地表或在地表附近凝结的称为“喷出岩”,如玄武岩、流纹岩等;介于深成岩和喷出岩之间的是“浅成岩”,如花岗岩、正长斑岩等。

三种常见的岩浆岩:

1.花岗岩 是分布最广的深成侵入岩。主要矿物成分是石英、长石和黑云母,颜色较浅,以灰白色和肉红色最为常见,具有等粒状和块状构造。花岗岩既美观抗压强度又高,是优质建筑材料。

2.橄榄岩 侵入岩的一种。主要矿物成分是橄榄石及辉石,深绿色或绿黑色,比重大,粒状结构。是铂及铬矿的惟一母岩,镍、金刚石、石棉、菱铁矿、滑石等也同这类岩石有关。

3.玄武岩 一种分布最广的喷出岩。矿物成分以斜长石、辉石为主,黑色或灰黑色,具有气孔构造和杏仁状构造,玄武岩本身可用作优良耐磨的铸石原料。

(沉积岩) 又叫“水成岩”。是在常温常压条件下岩石遭受风化作用的破坏产物,或生物作用和火山作用的产物,经过长时间的日晒、雨淋、风吹、浪打,会逐渐破碎成为砂砾或泥土。在风、流水、冰川、海浪等外力作用下,这些破碎的物质又被搬运到湖泊、海洋等低洼地区堆积或沉积下来,形成沉积物。随着时间的推移,沉积物越来越厚,压力越来越大,于是空隙逐渐缩小,水分逐渐排出,再加上可溶物的胶结作用,沉积物便慢慢固结而成岩石,这就是沉积岩。沉积岩分布极广,占陆地面积的75%,是构成地壳表层的主要岩石。

四种常见的沉积岩:

1.砾岩 一种颗粒直径大于2毫米的卵石、砾石等岩石和矿物胶结而成的岩石,多呈厚层块状,层理不明显,其中砾石的排列有一定的规律性。

2.砂岩 颗粒直径为0.1~2毫米的砂粒胶结而成的岩石。分布很广,主要成分是石英、长石等,颜色常为白色、灰色、淡红色和黄色。

3.页岩 由各种黏土经压紧和胶结而成的岩石。是沉积岩分布最广的一种岩石,层理明显,可以分裂成薄片,有各种颜色,如黑色、红色、灰色、黄色等。

4.石灰岩 俗称“青石”,是一种在海、湖盆地中生成灰色或灰白色沉积岩。主要由方解石的微粒组成,遇稀盐酸会发生化学反应,放出气泡。石灰岩的颜色多为白色、灰色及黑灰色,呈致密块状。

变质岩: 地壳中的火成岩或沉积岩,由于地壳运动、岩浆活动等所造成的物理、化学条件的变化,使其成分、结构、构造发生一系列改变,这种促成岩石发生改变的作用称为变质作用。由变质作用形成的新岩石叫做变质岩,例如由石英砂岩变质而成的石英岩,由页岩变质而成的板岩,由石灰岩、白云岩变质而成的大理岩。变质岩常有片理构造。

三种常见的变质岩:

1.大理岩 由石灰岩或白云岩重结晶变质而成。颗粒比:石灰岩粗,矿物成分主要为方解石,遇酸剧烈反应,一般为白色,如含不同杂质,就有各种不同的颜色。大理岩硬度不大,容易雕刻,磨光后非常美观,常用来做工艺装饰品和建筑石材。

2.板岩 由页岩和黏土变质而成。颗粒极细,矿物成分只有在显微镜下才能看到。敲击时发出清脆的响声,具有明显的板状构造。板面微具光泽,颜色多种多样,有灰、黑、灰绿、紫、红等,可用做屋瓦和写字石板。

3.片麻岩 多由岩浆岩变质而成。晶粒较粗,主要矿物成分为石英、长石、黑云母、角闪石等。矿物颗粒黑白相间,呈连续条带状排列,形成片麻构造。岩性坚,但极易风化破碎。

C、(矿物) 是地壳内外各种岩石和矿石的组成部分,是具有一定的化学成分和物理性质的自然均一体。大部分矿物是固体,也有的是液体(如自然汞、石油)或气体(如C02、H:S等)。

矿物学家把所有矿物分为有机矿物和无机矿物两种:前者种类比较少,主要是碳氢氧化合物,如:琥珀等。后者在地球上数量众多,由于每年都有几十至几百种新矿物被发现,据统计,目前已有三四千种。许多种矿物是我们日常生活离不开的,例如:中小学生几乎天天都用铅笔,制造笔心的石墨就是矿物的一种。我们每餐都用的食盐也是天然石盐矿物的一种,可以说人类时时刻刻都离不开矿物。

有机矿物的化学成分是碳氢化合物,无机矿物的化学成分比较复杂,门捷列夫周期表中的一百多个化学元素,都可以组成无机矿物。既可以是一个元素独立存在,也可以是多个元素的组合。一个元素独立存在的矿物较普遍,如:Fe(铁)元素可以形成自然铁矿物,Ag(银)元素可以形成自然银矿物,Au(金)元素可以形成自然金矿物等。两个以上的元素组合可以形成几千种矿物,最简单的如两个元素Si(硅)和O,可以组成Si02,由这两个元素组成的矿物可以是石英、柯石英和鳞石英等。Fe和O两个元素可以组成亦磁铁矿、赤铁矿以及磁铁矿等,亦铁矿和磁铁矿都是炼铁的主要原料。三个元素组成的矿物就更多了,例如:CusFeS4是斑铜矿、CuFeS2是黄铜矿、CoAsS是辉砷钴矿等。

(地壳里为什么有各种各样的矿物) 在自然界里,我们可以见到各式各样的矿物:有的质地坚硬,有的柔软;有的色泽鲜明,有的平淡无奇;形象不一,种类繁多。然而不管有多少种,总超不出自然界的各种元素。这些元素在地壳的长期演化过程中,不断化合、分解、迁移,终于造成今天我们看到的三千多种矿物,它们是构成地壳的物质基础。

(岩石与矿物的区别) 岩石是由一种或多种矿物组成的固体,但它并不具备矿物的基本特性。岩石与矿物之间的区别就好像飞机模型和制造这些模型的材料之间的区别。正如岩石的构成要素是矿物一样,飞机模型的构成要素是轮胎、机翼、发动机和其他组成部分。岩石的基本特点是所有的岩石都是混合物。

煤、石油、天然气属于可燃性有机岩,而不是矿物。

(矿物是怎样形成的) 形成矿物的途径,一条是通过岩浆的活动。在岩浆里有着地球上的各种元素。这些元素,在岩浆的高温熔融的条件下,发生化学变化,形成了多种化合物和一些单质。由于地下各处岩浆的化学成分不一样,还因为岩浆在冷却时,温度、压力等条件都在发生变化,而一定环境只适于一定的矿物生成,因此,由于岩浆冷却形成的矿物,种类是很多的。还有一条途径是通过水和大气,有时还有生物的作用,使已经形成的矿物发生化学变化,或者使溶解在水中的元素或化合物之间互相作用并沉淀堆积起来,造成各种次生的矿物。例如高岭石是长石、云母等与水作用,风化变成的。

(矿物的外表特征和物理性质) 各种矿物都具有一定的外表特征和物理性质,它可以用来作为识别矿物的依据。

(矿物的形状) 矿物的形状是各种各样的。有些矿物能形成整齐的晶体,如食盐是立方体,水晶是六面体,云母是六边形的片状。有些矿物则呈不规则的葡萄状、粒状、纤维状、放射状等,我们经常看到的矿物多半是一些不规则的块状。

(矿物的颜色) 矿物具有各种颜色,有些矿物的名字就是根据它的颜色命名的,如黑云母是黑色,赤铁矿是棕红色,黄铜矿是黄色。有些矿物是无色的,如水晶等。

(矿物的解理与断口) 有些矿物被敲打后,常沿一定方向裂开,形成光滑平面,这种性质叫解理。如方解石受力后按三个方向裂开,形成具有光滑表面的菱形体小块;云母可按一定方向揭成一叶叶的薄片。另一些不具解理的矿物被敲打后,常形成各种形状的破裂面,叫做断口,如石英常有贝壳状断口。

(矿物的硬度) 矿物的软硬程度叫做硬度。一般用两种不同的矿物互相刻划,来比较矿物的相对硬度。德国矿物学家弗里德里希.莫斯用这种互相刻划的方法,于1812年形成了十种普通矿物(从最软到最硬)的等级(见图表:教学参考P98)。

D、(矿产) 一切埋藏在地下或分布于地表(包括地表水体)的可供人类开采的天然矿物资源,被广泛称为矿产。按工业上的不同用途,矿产可分为三大类:

(1)金属矿产 指经冶炼从中提取金属元素的矿产。可分为以下几种:1)钢铁基本原料金属矿产,如铁、锰、铬;2)有色金属矿产,如铜、铅、锌、铝、镁、金、银;3)稀有金属矿产,如锂、铷、铍;4)分散元素矿产,如锗、硒;5)放射性元素矿产,如铀、镭。

(2)非金属矿产 指经简单加工可提出非金属原料或直接可应用的矿产。可分为以下几种:1)冶金辅助原料矿产,如菱镁矿、耐火黏土、硅石等;2)特种非金属矿产,如金刚石、水晶、石棉、云母等;3)化工原料非金属矿产,如磷、硫、钠盐、天然碱等;4)建筑材料非金属矿产。

(3)燃料矿产 如煤、油页岩、石油、天然气等。

(矿产的开采) 分布在地表的和埋藏得比较浅的,可以露天开采;埋藏得比较深的,需要开凿矿井,在地下开采。我国开采、利用矿产有悠久的历史。早在2000年前,就知道利用煤做燃料冶炼铜、铁。我国还是世界上利用石油和天然气最早的国家,“石油”一词最早见于宋代著名科学家沈括的著作。

(太阳能) 是另一种广泛利用的清洁能源。太阳是光明的象征,46亿年来太阳一直照耀着地球,送来光和热。将阳光聚焦,可以将光能转化为热能。在日照充足的地方,人们在生产和生活中已大量使用太阳灶、太阳能热水器和干燥器。

(地热) 地球自身提供的能源。地球开始形成的时候曾经是一个炽热的行星,在漫长的地质年代里,地球表面逐渐冷却,但内部仍然保存了大量的热能。同时,地球内部放射性元素在不断地蜕变,这种化学反应也在不断地释放热量。由于地幔和地壳热传导比较慢,地壳以下的温度逐步上升,越接近地核温度越高。在大多数地区,每下降100米温度要上升2~3摄氏度。表面上看这个数字不大,但是,聚沙成塔,地下热就是一个十分可观的能量来源。据估计,仅仅地面以下3千米范围内的地热资源就相当于3万亿吨煤提供的热量,差不多等于全世界煤炭开采量的1 000倍。

(不可再生的能源) 矿物燃料和核燃料统称不可再生的能源,它们都要经过若干世纪的蓄积才能形成,不可能在几代人的生活期间补充起来。

[可再生的能源] 包括木材、水能、潮汐能、风能、地热、太阳能以及水中的氢等。这类能源能自行更新,天然地补充。水力发电很少污染大气,潮汐能和风能也是潜力很大的无污染能源。在水能、潮汐能、风能、地热能等天然能源中,人类最理想的能源是太阳能和氢燃料。它们是取之不尽、用之不竭的清洁能,只要找到经济有效的应用技术,它们的优越性是其他能源所不能比拟的

虚心的时光
烂漫的火车
2025-08-29 15:02:43
赤铁矿(Hematite)化学成分为Fe2O3、属六方晶系的氧化物矿物。与等轴晶系的磁赤铁矿(γ-Fe2O3)成同质多象。单晶体常呈菱面体和板状。集合体形态多样,有片状、鳞片状(显晶质)、粒状、鲕状、肾状、土状、致密块状等。颜色呈红褐、钢灰至铁黑等色,条痕均为樱红色。金属至半金属光泽。摩斯硬度5.5~6.5,比重4.9~5.3。呈铁黑色、金属光泽的片状赤铁矿集合体称为镜铁矿。呈灰色、金属光泽的鳞片状赤铁矿集合体称为云母赤铁矿,中国古称“云子铁”。呈红褐色、光泽暗淡的称为赭石,中国古称“代赭”,而以“赭石”泛指赤铁矿。呈鲕状或肾状的赤铁矿称为鲕状或肾状赤铁矿。

赤铁矿是自然界分布极广的铁矿物,是重要的炼铁原料,也可用作红色颜料。

唠叨的大碗
多情的小天鹅
2025-08-29 15:02:43
赤铁矿是自然界分布极广的铁矿物,是重要的炼铁原料,也可用作红色颜料。赤铁矿化学成分为Fe2O3、属六方晶系的氧化物矿物。与等轴晶系的磁赤铁矿(γ-Fe2O3)成同质多象。单晶体常呈菱面体和板状。集合体形态多样,有片状、鳞片状(显晶质)、粒状、鲕状、肾状、土状、致密块状等。颜色呈红褐、钢灰至铁黑等色,条痕均为樱红色。金属至半金属光泽。

赤铁矿就是氧化铁,它又重又硬。赤铁矿含铁量高达70%并且可以大量产出,因而是最重要的铁矿石。赤铁矿的名字缘于它发出的暗红色。它的化学成分为α-Fe2O3,晶体属六方晶系的氧化物矿物。赤铁矿是氧化铁的主要矿物形式,铁主要由赤铁矿冶炼。

赤铁矿有几种形态,人们根据它们的不同形态,又给它们起了不同的名字。如亮闪闪钢灰色晶体叫镜铁矿;鳞片状的叫云母赤铁矿;松软土状的叫赭石;很多球状聚在一起的叫肾铁矿;纤维状的叫笔铁矿等。

老实的小猫咪
幸福的耳机
2025-08-29 15:02:43
1、氧化二铁。赤铁矿化学成分为Fe2O3、晶体属三方晶系的氧化物矿物。赤铁矿就是氧化铁,它又重又硬。赤铁矿含铁量高达70%并且可以大量产出,因而是最重要的铁矿石。赤铁矿的名字缘于它发出的暗红色。

2、它是一种铁的氧化物,是铁的主要矿石矿物。虽然,其他的金属逐渐地代替铁的地位,但是铁仍旧是最重要的金属。

自然的砖头
潇洒的钻石
2025-08-29 15:02:43

自18世纪中叶英国首先开始工业革命以来,技术进步与工业化彼此助推,彻底改变了世界经济的基本格局,资源和环境发生了翻天覆地的变化。工业化的直接结果是人民生活质量的提高,并表现在一国或一地的人均家用电器、小汽车拥有量、基础设施、人均居住面积提高或改善等方面。本节以经济增长与能源、金属矿产、水泥消费以及环境保护等方面的关系分析为基础,分析经济增长与资源环境变化的一般规律,为满足我国经济社会可持续发展对资源与环境的需求奠定基础。

一、经济增长与能源消费

18世纪60年代蒸汽机的发明与使用,标志着人类社会开始进入工业化社会。在工业革命以来的200多年里,社会财富的积累超过几千年农业社会积累的总和。大机器的广泛运用使人们能够便利地大规模开发利用能源和矿产资源,并将之转化为社会财富。在人类社会财富快速增长的同时,也出现了人口膨胀、资源耗竭和环境污染等问题,并成为人类社会可持续发展的制约因素。经济发展与能源消费关系主要表现为能源消费总量持续增加、能源结构不断优化、能源强度逐步下降等。

——能源消费总量持续增加。从发展趋势看,一个国家的国内生产总值与能源生产和消费密切相关。发达国家能够实现现代化的一个重要原因,是大规模开发和利用能源资源。产品越丰富,社会越富裕,能源的生产和消费量也越大。工业革命以来,全世界的能源消费总量持续增长。石油消费总量是个典型的例子。石油规模化采掘始于1857年美国得克萨斯。根据BP世界能源统计2009年公布的数据,到2008年底,全球共消费石油约1560亿吨,其中前40年只消费了约2亿吨,20世纪上半叶50年消费了不到100亿吨,最近50多年则消费了1460亿吨(表1和图1)。

表1 1998~2008年全球能源消费一览表 单位:百万吨油当量

图1 1983~2008年全球能源消费变化趋势图

(据BP世界能源统计2009)

——伴随产业结构升级,能源结构逐步优化。随着技术进步和社会文明进程的加快,在产业结构升级的同时,能源结构逐步优化:农业社会能源以薪柴为主;工业革命以来,能源构成发生了较大的变化,欧洲国家工业化最早要用木材炼铁,随着原料中废钢比重的增加,现在炼钢采用电炉了;火车最初是用煤的,现在的高速火车已经用电了。从总体上看,工业革命以来,能源构成经历了从薪柴—煤炭→煤炭—石油→油气—煤炭为主的演变过程。随着全球环境保护运动的兴起,可再生能源发展受到世界各国的高度重视,特别是近年来防止温室气体排放引起全球气候变暖成为环境外交的国际热点,可再生能源得到快速发展,在能源中的比例逐步提高。据有关研究,未来能源结构变化大致如图2所示。

图2 世界一次能源构成及其发展预测(1940~2100年)

(据W.E.Schollnbeger和J.R.Frisch.未来的资源危机.1982)

——随着工业化的完成,世界各国单位GDP能耗逐步下降。在英、美等国工业化时并没有出现全球性能源短缺。换句话说,早期工业化国家在工业化过程中没有明显的资源环境约束,是一种没有或者很少约束条件下的自然发展。日本工业化快速发展时期,正好赶上世界第一次石油危机,1973年提出了资源约束下的经济增长,通过科技创新和结构调整降低单位GDP能耗,完成了工业化的历史任务(图3)。由于实现工业化的支撑技术不同,人均能耗及其峰值也不同。实证研究表明,早期工业化国家人均能源消费量较大时增长才趋缓,后发展国家人均能源消费峰值明显低于前者。例如,发达国家人均GDP在1万美元前,能源消费增长较快:1万美元时韩国人均能耗4.07吨标准煤(1997年),日本4.25吨标准煤(1980年),美国8吨标准煤(1960年)。国务院发展研究中心的冯飞研究员根据有关研究资料,画出了各国能源强度变化的概念模型(图4)。

图3 英、美、日及发展中国家单位GDP能耗曲线

(冯飞.电力技术经济.2007年第3期)

图4 世界主要国家能源强度的变化曲线

(冯飞.电力技术经济.2007年第3期)

二、经济增长与主要金属矿产消费

与能源消费的规律大致相同,随着全球经济规模的扩大,金属矿产消费总量持续增加,并表现为矿产消费与人均收入呈正相关关系。

——金属矿产消费量持续增长。全球主要矿产品消费总量不断增长,表现为在一些国家工业化时增长速度较快,如第二次世界大战后资源消费快速增长,1973年到2000年前呈波动式上升。发达国家矿产品需求下降,部分是因为完成了城市化,部分是因为高耗材产业转移到发展中国家;铅却是个例外,主要与其毒性较大、日益被其他材料替代有关(图5)。

图5 全球矿产品消费增长趋势

(王安建,王高尚等.全球矿产资源战略研究2001年度报告.中国地质科学院全球矿产资源战略研究中心.2001)

——人均钢铁消费强度随人均收入增加而变化。从人均钢铁消费量的变化可以发现,先行工业化国家在工业化早期(人均GDP为3000~15000美元),人均消耗增加很快,后期(人均GDP超过15000美元)人均主要资源消耗出现增长放缓甚至绝对量下降的情形。简单地说,一国或一地人均矿产资源消费强度经历“(低)较快上升—(高)平稳—(较低)缓慢下降”三个阶段(图6)。

图6 1968年世界各国钢铁消费量和人均GDP关系

(马建明.对矿产资源(矿产品)需求预测的思考.2006)

——人均钢材消费量与人均GDP关系密切。从总体上看,人均GDP与人均钢材消费呈正相关关系。从人均钢材消费量与人均GDP关系图(图7)上可见:其一,不同收入水平的国家和地区大致集中在两个区域:图的左下角主要是发展中国家和地区,主要特征是人均GDP和人均钢材消费量均较低。发达国家和地区出现在图的右中部,其特征是人均GDP和人均钢材消费均较高。其二,韩国和中国台湾例外,人均20000美元(PPP)时人均钢材消费约800千克。究其原因,因为重化工业是韩国与中国台湾的主导产业,出口导向是其发展战略,且出口产品的钢材强度较高。虽然日、意、奥、德等国人均GDP与其他发达国家类似,但人均钢材消费较高,因为这几个国家机电产品出口量也较大。

图7 人均钢材消费量与人均GDP的关系

(陆晓明.矿产需求与经济发展关系研究.我国矿产需求预测、资源保障分析及可持续发展对策建议.2006)

三、经济增长与水泥消费

水泥是城市发展和基础设施建设必需的物资,原料来自非金属矿的石灰石,以及工业和生活的部分废物。随着科技进步和经济发展,非金属矿产品广泛应用于建筑、冶金、化工、轻工、石油、地质、机械、农业、医药、首饰和环境保护等领域,成为不可替代的材料,受到世界多数国家的日益重视和人们的青睐。

在工业化和城市化进程中,水泥消费量呈现一定的规律。以美国为例。从1900年起,美国水泥产量和表观消费量呈缓慢上升趋势。据美国经济部国贸局资料,到2008年,美国水泥产量8100万吨,表观消费量9252万吨。从1955年起,美国水泥净进口持续增长,到2008年累计净进口量达1152万吨。1906年到2008年,美国水泥累计产量为50.28亿吨,累计表观消费量54.40亿吨(图8)。

图8 1900年以来美国水泥产量和表观消费量的变化

四、城市化进程中的土地用途变化

不可再生、不可移动的土地是城市发展最基本的条件。城市化的实质之一是对土地等自然资源利用方式从粗放型向集约型转化、集约化程度从低级向高级的发展过程。

各国工业化时土地用途变化情况不同。英国工业革命伴随着以圈地运动为标志的农业革命。早期的圈地运动把耕地变成牧羊场,后期则伴随耕地数量的增加。1793~1815年,由于对法战争贸易中断,垦荒达到高峰。到1830年,曾经称为荒地的土地在英国基本不复存在。

美国耕地面积也有一个变化过程。南北战争及其以后,美国相继颁布了《宅地法》、《荒芜土地法》等法案,大批移民向西拓植,来自国内外的移民不断增加。从1862年到1926年,联邦政府共颁发了139万公顷土地所有权证,面积约为2.3亿英亩。美国农业耕地面积从1870年的4.07亿英亩增加到1914年的9.1亿英亩(图9)

主要工业国家近现代工业史。

。据世界银行数据统计,2005年美国的耕地面积减少到0.43亿英亩,仍为世界上耕地面积最多的国家。

图9 美国农用地随着国民生产总值的变化情况

(道格拉斯·诺斯(North,D.).美国的工业化,载于波斯坦、哈巴库克(Postan,M.M.,Habakkuk,H.J.):剑桥欧洲经济史(第六卷).北京:经济科学出版社.2002)

日本工业化时耕地面积变化表现为数量先不断减少而后减少变慢的特点(图10)。在1960、1970和1980年的耕地减少量分别为5000公顷、36000公顷和53000公顷,1980年后每年的减少约13000公顷,反映工业化完成与建设占地减少的一致性。日本经历了一个耕地开发、保护和控制的过程,耕地减少与国土面积小、人均耕地少密切相关。1959年日本农林水产省颁布《日本农用地转用标准》,目的在于确保优良农地,维持农业生产力,适当限制农地转用。

图10 1960年以来日本国民生产总值和可耕地面积的变化

(南亮进.日本的经济发展.北京:经济管理出版社.1992.108)

根据美国学者莱斯特·布朗的研究,在日本、韩国和我国台湾省的工业化过程中,损失了三分之一以上的可耕地,这一点尤其需要引起我国决策者的特别重视。

五、经济发展与环境保护

研究表明,人均收入与污染物排放之间呈倒U型关系(库兹涅茨曲线)。如果经济增长最终能带来环境质量改善,就不必减缓经济增长来保护环境。正因为如此,环境学家和经济学家不断对库兹涅茨曲线揭示的规律进行验证。下面引用其中的一些研究结果。

作为1992年世界发展报告背景研究(IBRD,1992)的一部分,一些专家估计了10个环境指标与人均收入之间的关系。这些指标是:缺乏干净水、缺乏城市卫生设施、城区悬浮颗粒物水平、二氧化硫浓度、1961年到1986年森林面积的变化和年采伐率、河水中溶解氧和大肠杆菌、人均市政废物、人均二氧化碳排放量等。研究结果表明,部分指标确实与库兹涅茨曲线吻合,包括:缺乏干净水和城市卫生设施的状况随收入升高而逐步改善,但收入的升高带来水质的恶化,引起全球气候变化的温室气体明显地随收入而升高;市政废物的产生和排放也是如此。以一个国家的人均排放量表示的二氧化硫(SO2)、氧化氮(NOX)以及悬浮颗粒物(SPM),它们与人均收入水平的关系符合倒U形曲线揭示的规律。

还有一些专家利用该报告中世界经济增长和人口增长的资料,评估森林采伐和SO2排放之间的关系,并对1990年到2025年的全球变化趋势进行预测。对SO2的研究表明,拐点出现在人均GDP3000美元。全球SO2排放总量将从1990年的3.83亿吨增加到2025年的11.81亿吨;人均SO2排放量从1990年的73千克增加到2025年的142千克。森林覆盖从1990年的4040万平方千米,降到2016年的最低值3720万平方千米,2025年又增加到3760万平方千米。因为森林砍伐导致生物多样性的损失,在生物演化尺度上,这一过程是不可逆的

罗杰·珀曼著,侯元兆等译.自然资源与环境经济学.北京:中国经济出版社.2002

六、世界经济增长与资源环境关系的启示

1.没有一个国家能依赖本土资源实现工业化

由于自然资源地理分布的不均匀性,没有一个国家能依赖本土资源实现工业化。一般地,一些国家某些矿产相对丰富,而另一些国家则相当贫乏;一个国家内的差异也可以表现得淋漓尽致。如盛产石油的科威特,除油气资源外,其他矿产的经济利用价值不大。只有幅员辽阔的国家才有可能资源总量丰富、矿产种类齐全,如美国、俄罗斯、中国、印度、澳大利亚、加拿大和巴西等。即使这些资源大国,也可能存在结构不理想,甚至结构性短缺问题。

以石油为例。世界石油资源丰富,但分布极不均匀。据2000年美国地质调查局(USGS)的评估,在现有经济技术条件下,世界石油最终可采储量约3567.45亿吨,主要分布于中东,可采石油资源1356.78亿吨,占全球石油总资源的38%;其次是前苏联和北美地区,分别为617.27和590.29亿吨,占17.3%和16.5%;欧洲地区最少,仅141.33亿吨,不足全球最终可采石油资源的4%。迄今,全球尚有1280亿吨左右的石油资源有待发现。

根据英国石油公司(BP)2009年6月发布的全球能源统计报告,如果扣除加拿大油砂储量不计,截至2008年底,全球已探明石油储量为12580亿桶,主要分布在中东,剩余探明可采储量为7541亿桶,占全球总剩余可采储量的59.9%;其他几个地区的剩余探明可采储量,均不足全球总剩余可采储量的10%(表2)。

表2 全球石油剩余探明储量 单位:10亿桶

又如固体矿产资源。全球矿产资源的分布非常不均匀。有关研究表明,金属矿产资源总储量的46%集中在矿产地仅占0.25%的极少数大矿中,且集中在少数国家。具体说,大约25种矿产主要集中在3~5个国家。例如,煤炭储量的76.2%集中在美国、德国、俄罗斯、南非、澳大利亚、中国和印度。铁矿90%的储量分布在俄罗斯、美国、巴西、澳大利亚、加拿大、印度、南非、瑞典、法国、委内瑞拉和利比亚,前5国的储量占80%。锰矿资源储量的94%集中分布在南非、俄罗斯、墨西哥、加蓬、澳大利亚、巴西和印度等国,其中南非和俄罗斯共占储量的88%;南非、哈萨克斯坦、津巴布韦、芬兰、印度、巴西、土耳其和菲律宾8国占有世界铬铁矿储量的96%,而前4国则占91.6%。

世界上大多数铁、锰、铬等矿产资源集中分布在少数大型或特大型矿床中。如超大型铁矿有俄罗斯的库尔斯克,探明储量426亿吨,其中富矿储量为261亿吨;富矿石探明及预测储量约820亿吨,600m深度以浅的资源量估计有2900亿吨。乌克兰的克里沃罗格铁矿盆地,保有储量201亿吨;巴西米纳斯—吉斯拉“铁四边形”地区,有100个铁矿床,储量220亿吨;巴西卡拉贾斯铁矿区,富铁矿石探明储量达177亿吨。澳大利亚哈默斯利铁矿区,赤铁矿、赤铁矿-针铁矿矿石品位高,含铁54%~62%,褐铁矿矿石含铁50%~54%,储量共计320亿吨,品位54%~64%的有249亿吨,可露天开采。10亿吨以上的超大型锰矿有加蓬莫安达含锰层,南非卡拉哈里马马特旺型矿石,墨西哥莫兰哥含锰层和加拿大拉皮德—克里克铁-锰层。在加蓬,莫安达含锰层已探明储量2.2亿吨,平均品位50%;卡拉哈里锰矿田马马特旺型矿石储量约132.04亿吨,其中可采储量4.74亿吨,平均品位约39%,如加上卡塞尔斯型矿床的3.4亿吨可采储量,平均品位48%,卡拉哈里锰矿田合计拥有136.13亿吨估计储量,其中可采储量8.13亿吨。

资源产地的持续勘探、开发才能保证全球资源的稳定供应;生产地和消费地的错位并不影响矿产资源的勘探、开发、加工等矿业发展;特别是像我国这样的发展中大国,将资源供应完全寄托在国外市场,既不现实也不可能。所谓不现实是因为资源供应存在不安全因素,所谓不可能是因为没有一个国家能满足中国这么大的市场需求。摸清家底、立足国内应成为我国保障矿产品供应安全的指导方针和立足点。

2.资源强度呈现倒U型或反S型特征

实证研究表明,资源强度(单位GDP的金属消费量)一般呈倒U型曲线特征,人均金属消费量与人均GDP之间呈“S”型曲线的增长关系(图11)。在人均GDP达到1000美元后,一国或一地在工业化过程中进入一个能源资源消费的“爬坡”阶段。

图11 矿产资源单位GDP消耗的倒U型模式和人均消费的S型模式

人均金属消费量与人均GDP之间呈“S”型曲线的增长关系。具体原因主要有:第一,随着经济增长,经济结构特别是产业结构的变化使资源消耗弹性先增后降。在一国经济进入工业化快速增长之前,以农业和轻纺工业为主的“温饱型”产业往往是经济增长的主导行业,资源消耗强度较低。进入工业化后,资源消费开始持续增长,并在重化工业主导的工业化中后期达到历史最高水平。此后,随着重化工业增速放慢,比重减小,服务业增长速度加快,单位产出的资源消耗强度持续回落,并保持较长时间的稳定状态。第二,经济持续增长背景下,不可再生资源价格具有长期的上涨趋势,需求增长和生产成本提高是主要原因。价格上涨将刺激各种资源替代技术的快速发展,如塑料等新材料对钢铁的替代,也将对传统资源的消费强度产生直接影响。第三,随着人均收入的增长,无论是人均钢铁生产和消费量的增加,还是人均住房面积的扩大,都需要消耗大量的实物;即使进入信息化社会,如果没有实物投入,也无法建设高楼大厦和各种基础设施。

不同金属矿产“S”型曲线波长不同,与其性能和工业化中经济结构的演变有关;曲线的起点和形状也因各国的经济结构、资源禀赋、资源政策等不同而异。以美国为例,近百年来美国矿产品及相关产品生产消费呈明显的变化规律。从铁矿石和钢的生产、消费看,美国铁矿石产量1952年达到1.2亿吨的历史最高水平,1954年铁矿石消费量达到1.45亿吨,此后保持在7100万~5600万吨之间。1900~1949年期间多数年份铁矿石视消费量大于产量,铁矿石净进口量不超过500万吨(只有8年净出口,数量不超过200万吨)。1954~1990年铁矿石表观消费量大于产量,差值1200~7000万吨,1991~2007年缩小到1580万~400万吨。1900~2007年铁矿石累计产量70.45亿吨,累计表观消费量82.53亿吨。钢产量1973年达到历史最高水平1.37亿吨,表观消费量2006年达到历史最高水平1.2亿吨。据美国商务部数据、布鲁塞尔报纸对2008年世界粗钢产量及排名报道,2008年美国钢产量为9150万吨。1914~1958年钢为净出口,1959~2008年为净进口。

3.工业化与技术革命相互促进

工业革命以来,机器生产体系逐渐形成。工业化带动了一系列的技术发明(图12),每一项技术发明的出现需要一个过程,从技术发明到生产实践又需要一个过程。当生产发展到一定新的阶段,又对技术发明提出新的要求,如此不断循环,逐渐推进。换句话说,工业革命和技术进步相互促进,共同提高。

图12 英国城市化进程与重要技术发展的关系

在这一过程中,新技术研发和扩散遵循“新技术产业革新点——新技术产业链——新技术产业体系”的“从点到线再到面”式的扩散路径:技术发明首先是在产业体系的一、两个关键点取得突破,然后沿着产业的上下游方向扩散形成新技术产业链,再进一步,向关联产业扩散形成新技术产业体系(网),由此带动城市化逐渐、缓慢前行。

4.循环再生成为原料的重要来源

无论是矿产、能源还是其他生产资料,消费“零增长”至今并未出现。以美国最为典型。美国已进入后工业时代,但仍然是世界上矿产品的最大生产国,许多矿产品产量居世界首位;是世界最大的矿产品消费国,人均消费20多吨,是我国的5倍;也是最大的矿产品贸易国,许多矿产品进出口居世界第一;非燃料矿物的来料加工产值约占美国国内生产总值的5%。

后工业化国家依靠知识和技术创新来发展经济,矿产资源消费增长速率远低于GDP的增长,单位GDP的资源消耗强度大幅度下降;非金属矿产资源消费量,随着人均收入水平的提高明显增加;废旧物资的大量产生和积累,为其回收和再生利用创造了条件,并逐渐成为原料供应的重要补充。钢、铝、铜等大宗废旧金属的回收和再生利用占资源投入的比重不断提高,非金属和各类新型合金的消费量剧增,新型材料和替代品不断出现,应用领域不断拓展,并支撑着社会进步和经济的可持续发展。德国、日本等依赖再生资源发展“静脉产业”就是例证。

疯狂的蜻蜓
哭泣的雪碧
2025-08-29 15:02:43
氧气:1.物理性质:

①色,味,态:无色无味气体(标准状况)

②熔点:-218.4℃(变为淡蓝色雪花状的固体) 沸点:-182.9℃(变为淡蓝色液体)

③密度:1.429克/升(气),1.419克/厘米3(液),1.426克/厘米3(固)

④水溶性:不易溶于水,标准情况下,1L水中可以溶解约30mL的氧气

⑤贮存:天蓝色钢瓶

2.化学性质:

总体来说,氧气的化学性质比较活泼。

用途:1.冶金工业 在炼钢过程中吹以高纯度氧气,氧便和碳及磷、硫、硅等起氧化反应,这不但降低了钢的含碳量,还有利于清除磷、硫、硅等杂质。而且氧化过程中产生的热量足以维持炼钢过程所需的温度,因此,吹氧不但缩短了冶炼时间,同时提高了钢的质量。高炉炼铁时,提高鼓风中的氧浓度可以降焦比,提高产量。在有色金属冶炼中,采用富氧也可以缩短冶炼时间提高产量。

2.化学工业 在生产合成氨时,氧气主要用于原料气的氧化,例如,重油的高温裂化,以及煤粉的气化等,以强化工艺过程,提高化肥产量。

3.国防工业 液氧是现代火箭最好的助燃剂,在超音速飞机中也需要液氧作氧化剂,可燃物质浸渍液氧后具有强烈的爆炸性,可制作液氧炸药。

4,医疗保健方面:供给呼吸:用于缺氧、低氧或无

氧环境,例如:潜水作业、登山运动、高空飞行、宇宙航行、医疗抢救等时。

此外氧气在金属切割及焊接等方面也有着广泛的用途。

化学式:O2

稀有气体:稀有气体元素指氦、氖、氩、氪、氙、氡以及不久前发现的Uuo7种元素

物理性质:空气中约含1%(体积百分)稀有气体,其中绝大部分是氩。稀有气体都是无色、无臭、无味的,微溶于水,溶解度随分子量的增加而增大。稀有气体的分子都是由单原子组成的,它们的熔点和沸点都很低,随着原子量的增加,熔点和沸点增大。它们在低温时都可以液化。

化学性质:稀有气体原子的最外层电子结构为ns2np6(氦为 1s2),是最稳定的结构,因此,在通常条件下不与其他元素作用,长期以来被认为是化学性质极不活泼,不能形成化合物的惰性元素。除氦以外,稀有气体原子的最外电子层都是由充满的ns和np轨道组成的,它们都具有稳定的8电子构型。稀有气体的电子亲合势都接近于零,与其它元素相比较,它们都有很高的电离势。因此,稀有气体原子在一般条件下不容易得到或失去电子而形成化学键。表现出化学性质很不活泼,不仅很难与其它元素化合,而且自身也是以单原子分子的形式存在,原子之间仅存在着微弱的范德华力(主要是色散力)。直到1962年,英国化学家N.巴利特才利用强氧化剂PtF6与氙作用,制得了第一种惰性气体的化合物Xe[PtF6],以后又陆续合成了其他惰性气体化合物,并将它的名称改为稀有气体。空气是制取稀有气体的主要原料,通过液态空气分级蒸馏,可得稀有气体混合物,再用活性炭低温选择吸附法,就可以将稀有气体分离开来。

用途:稀有气体被电流击穿,会发出彩色荧光,因此可做彩灯。

利用稀有气体极不活动的化学性质,有的生产部门常用它们来作保护气。

俗名:无

化学式:He,Ne,Ar,Kr,Xe,Rn

氢气:物理性质:

氢气是无色并且密度比空气小的气体(在各种气体中,氢气的密度最小。标准状况下,1升氢气的质量是0.0899克,比空气轻得多)。因为氢气难溶于水,所以可以用排水集气法收集氢气。另外,在101千帕压强下,温度-252.87℃时,氢气可转变成无色的液体;-259.1℃时,变成雪状固体。常温下,氢气的性质很稳定,不容易跟其它物质发生化学反应。但当条件改变时(如点燃、加热、使用催化剂等),情况就不同了。

化学性质:在常温下,氢气的化学性质是稳定的。在点燃或加热的条件下,氢气很容易和多种物质发生化学反应。纯净的氢气在点燃时,可安静燃烧,发出淡蓝色火焰,放出热量,有水生成。若在火焰上罩一干冷的烧杯,可以烧杯壁上见到水珠。

用途:氢气的用途之一

氢气的用途是由氢气的性质决定的。例如,氢气密度是所有气体中最小的,可将氢气充入探空气球。氢气跟氧气反应时放出大量的热,氢氧焰可达3000℃的高温,用于焊接或切割金属;做高能燃料。利用氢气的还原性,可以冶炼重要的金属。

氢气的用途之二

氢气可充气球或气艇,用做双氢内冷发电机中导热材料,冶炼有色金属和高纯锗、硅,合成氨、盐酸,石油加氢,制硬化油,高效能燃料,氢氧焰。

氢气的用途之三

氢气是最轻的气体,最常见的用途是充填氢气球和氢气飞艇。其实氢气是重要的化工原料。如:氢气和氮气在高温、高压、催化剂存在下可直接合成氨气,目前,全世界生产的氢气约有2/3用于合成氨工业。在石油工业上许多工艺过程需用氢气,如加氢裂化,加氢精制、加氢脱硫、催化加氢等。氢气在氯气中燃烧生成氯化氢,用水吸收得到重要的化工原料枣盐酸。氢气在氧气中燃烧的火焰枣氢氧焰可达3000℃高温,可用于熔融和切割金属。氢气和一氧化碳的合成气,净化后经加压和催化可以合成甲醇。在食品工业上,氢气用于动植物油脂的硬化,制人造奶油和脆化奶油等。在冶金工业中,利用氢气的还原性提炼贵重金属。氢气还可以提供防止氧化的还原气氛。随着新技术的发展,氢气的应用将更为广泛和重要。氢气是最理想的无污染燃料,液氢还有希望成为动力火箭的推进剂。

俗称:轻气

化学式:H2

二氧化碳:物理性质:

【相对分子量或原子量】44.01

【密度】1.977g/L(相对密度1.53(以空气的平均密度(1.29g/L)为基准)

【熔点(℃)】-56.6(5270帕)

【沸点(℃)】-78.48(升华)

【性状】

无色无味气体。

【溶解情况】

溶于水(体积比1:1),部分生成碳酸。

化学性质:

【用途】二氧化碳是酸性氧化物,可跟碱或碱性氧化物反应生成碳酸盐。跟氨水反应生成碳酸氢铵。无毒、但空气中二氧化碳含量过高时,也会使人因缺氧而发生窒息。绿色植物能将二氧化碳跟水在光合作用下合成有机物。二氧化碳可用于制造碳酸氢铵、小苏打、纯碱、尿素、铅白颜料、饮料、灭火器以及铸钢件的淬火

气体二氧化碳用于制碱工业、制糖工业,并用于钢铸件的淬火和铅白的制造等。

固态二氧化碳俗称干冰

化学式:CO2

一氧化碳的物理性质

在通常状况下,一氧化碳是无色、无臭、无味、难溶于水的气体,熔点-199℃,沸点-191.5℃。标准状况下气体密度为l.25g/L,和空气密度(标准状况下1.293g/L相差很小,这也是容易发生煤气中毒的因素之一。它为中性气体。

分子结构:一氧化碳分子为极性分子,分子形状为直线形。

一氧化碳的化学性质

一氧化碳分子中碳元素的化合价是+2,能进一步被氧化成+4价,从而使一氧化碳具有可燃性和还原性,一氧化碳能够在空气中或氧气中燃烧,生成二氧化碳

用途:作燃料。

酒精

主要成分:乙醇

乙醇的化学式:C2H5OH

外观与性状: 无色液体,有酒香。

燃点(℃):75

熔点(℃): -114.1

沸点(℃): 78.3

相对密度(水=1): 0.79

相对蒸气密度(空气=1): 1.59

饱和蒸气压(kPa): 5.33(19℃)

燃烧热(kJ/mol): 1365.5

临界温度(℃): 243.1

临界压力(MPa): 6.38

辛醇/水分配系数的对数值: 0.32

闪点(℃): 12

引燃温度(℃): 363

爆炸上限%(V/V): 19.0

爆炸下限%(V/V): 3.3

酒精是一种无色透明、易挥发,易燃烧,不导电的液体。有酒的气味和刺激的辛辣滋味,微甘。学名是乙醇, 分子式C2H6O,(酒精燃烧C2H6O+3O2→2CO2+3H2O)因为它的化学分子式中含有羟基,所以叫做乙醇,比重0.7893(20/4°)。凝固点-117.3℃。沸点78.2℃。能与水、甲醇、乙醚和氯仿等以任何比例混溶。有吸湿性。与水能形成共沸混合物,共沸点78.15℃。乙醇蒸气与空气混合能引起爆炸,爆炸极限浓度3.5-18.0%(W)。酒精在70%(V)时,对于细菌具有强列的杀伤作用.也可以作防腐剂,溶剂等。处于临界状态(243℃、60kg/CM·CM)时的乙醇,有极强烈的溶解能力,可实现超临界淬取。由于它的溶液凝固点下降,因此,一定浓度的酒精溶液,可以作防冻剂和冷媒。酒精可以代替汽油作燃料,是一种可再生能源。

物理性质:黑体.化学性质:斜体.

俗称:酒精

双氧水:外观与性状: 水溶液为无色透明液体,有微弱的特殊气味。纯过氧化氢是淡蓝色的油状液体。

主要成分: 工业级 分为27.5%、35%两种。熔点(℃): -0.89℃(无水)

沸点(℃): 152.1℃(无水)

折射率:1.4067(25℃)

相对密度(水=1): 1.46(无水)

饱和蒸气压(kPa): 0.13(15.3℃)

溶解性:能与水、乙醇或乙醚以任何比例混合。不溶于苯、石油醚。

结构:H-O-O-H 没有手性,由于-O-O-中O不是最低氧化态,故不稳定,容易断开

溶液中含有氢离子,而过氧根在氢离子的作用下会生成氢氧根离子,其中氢离子浓度大于氢氧根离子浓度。

毒性LD50(mg/kg):大鼠皮下700

燃爆危险: 本品助燃,具强刺激性。

1.取5ML5%的过氧化氢溶液于试管中,将带火星的木条伸入试管中,木条没有复燃。

2.取5ML5%的过氧化氢溶液于试管中,加热,再将带火星的木条伸入试管中,木条复燃。

3.取5ML5%的过氧化氢溶液于试管中,加入少量二氧化锰,再将带火星的木条伸入试管中,木条复燃。二氧化锰做催化剂,和过氧化氢反应生成氧气和水。

主要用途

在不同的情况下可有氧化作用或还原作用。可用氧化剂、漂白剂、消毒剂、脱氯剂,并供火箭燃料、有机或无机过氧化物、泡沫塑料和其他多孔物质等。

医用双氧水(3%左右或更低)是很好的消毒剂 。

工业用是10%左右用于漂白,作强氧化剂,脱氯剂,燃料等。

实验用做制O2原料。

高锰酸钾KMnO4

性状与稳定性:深紫色细长斜方柱状结晶,带蓝色的金属光泽。味甜而涩。密度2.703克/立方厘米。高于240℃分解,易溶于水、甲醇、丙酮,但与甘油、蔗糖、樟脑、松节油、乙二醇、乙醚、羟胺等有机物或易的物质混合发生强烈的燃烧或爆炸。水溶液不稳定。遇光发生分解,生成灰黑色二氧化锰沉淀并附着于器皿上。属强氧化剂,在酸性条件下氧化性更强,可以用做消毒剂和漂白剂 ,和强还原性物质反应会褪色,如SO2 不饱和烃

中文俗称:灰锰氧

氯酸钾KCLO3

主要成分: 含量:工业级 一级≥99.5%二级≥99.2%。

外观与性状: 无色片状结晶或白色颗粒粉末,味咸而凉。

pH:

熔点(℃): 368.4

沸点(℃): 400

相对密度(水=1): 2.32

相对蒸气密度(空气=1): 无资料

饱和蒸气压(kPa): 无资料

燃烧热(kJ/mol): 无意义

临界温度(℃): 无意义

临界压力(MPa): 无意义

辛醇/水分配系数的对数值: 无资料

闪点(℃): 无意义

引燃温度(℃): 无意义

爆炸上限%(V/V): 无意义

爆炸下限%(V/V): 无意义

溶解性: 溶于水,不溶于醇、甘油。

主要用途: 用于火柴、烟花、炸药的制造,以及合成印染、医药,也用作分析试剂。

其它理化性质: 400(约)

稳定性:

禁配物: 强还原剂、易燃或可燃物、醇类、强酸、硫、磷、铝、镁。

后面的请查百度百科,谢谢!

————————mr.mysterious

现代的便当
直率的含羞草
2025-08-29 15:02:43
你好,赤铁矿是:Fe2O3,俗名铁红,下面是其介绍

【简介】

赤铁矿化学成分为Fe2O3、晶体属三方晶系的氧化物矿物。与等轴晶系的磁赤铁矿成同质多象。晶体常呈板状;集合体通常呈片状、鳞片状、肾状、鲕状、块状或土状等。呈红褐、钢灰至铁黑等色,条痕均为樱红色。金属至半金属光泽。摩斯硬度5.5~6.5,比重4.9~5.3。呈铁黑色、金属光泽、片状的赤铁矿称为境铁矿;呈钢灰色、金属光泽、鳞片状的称为云母赤铁矿,中国古称“云子铁”;呈红褐色土状而光泽暗淡的称为赭石,中国古称“代赭”,而以“赭石”泛指赤铁矿。

【物理性质】

钢灰色至铁黑色,常带淡蓝锖色;隐晶质或粉末状者呈暗红至鲜红色。具特征的樱桃红或红棕色条痕。金属光泽至半金属光泽,有时光泽暗淡。无解理。因双晶可具和裂开。硬度5~6。相对密度5.0~5.3。偏光镜下:血红、橙黄、灰黄色。一轴晶(-),No=2.988,Ne=2.759。

【工业应用】

重要的铁矿石矿物之一。Ti、Ga、Co等元素达一定量时可综合利用。氧化铁可作矿物颜料。

药用赤铁矿名赭石,别名代赭石、代赭、铁朱、钉头赭石、红石头、赤赭石。功效:平肝潜阳;重镇降逆;凉血止血。

呈铁黑色、金属光泽、片状的赤铁矿称为镜铁矿;呈钢灰色、金属光泽、鳞片状的称为云母赤铁矿,中国古称“云子铁”;呈红褐色土状而光泽暗淡的称为赭石,中国古称“代赭”,而以“赭石”泛指赤铁矿。赤铁矿分布极广。各种内生、外生或变质作用均可生成赤铁矿。中国河北宣化的龙烟铁矿和湖南的宁乡铁矿都是沉积作用形成的赤铁矿矿床。赤铁矿经常与磁铁矿一起,在沉积变质、接触变质铁矿中产出。

它是一种铁的氧化物,是铁的主要矿石矿物。虽然,其他的金属逐渐地代替铁的地位,但是铁仍旧是最重要的金属。 赤铁矿是经济上最重要的矿物之一。只有为数不多的地方,赤铁矿有完美的金属闪光菱面体晶体。可是更多的情况下,晶体常常是偏平的,更有甚者形成薄板状,有些样品板状成簇组成玫瑰花状,叫铁玫瑰。有时呈鳞片状集合体,称之为镜铁矿。所有这些结晶很好的赤铁矿变种都是黑色的,但条痕,即矿物粉末的颜色都是红色的,所谓肾状铁矿就是这种红色,肾状铁矿是一些放射状的集合体,有肾状的表面。红色是绝大多数没有结晶形态的土状赤铁矿的颜色。赭石就是这种红色的土状赤铁矿,它一度是作为颜料的.

希望对您有用,祝您学习进步

望采纳谢谢