会泽火红煤矿有限公司怎么样?
会泽火红煤矿有限公司是2010-11-11在云南省曲靖市会泽县注册成立的有限责任公司(自然人投资或控股),注册地址位于云南省曲靖市会泽县火红乡勺冲角村。
会泽火红煤矿有限公司的统一社会信用代码/注册号是91530326563182696B,企业法人刘荣飞,目前企业处于开业状态。
会泽火红煤矿有限公司的经营范围是:煤炭开采、销售(依法须经批准的项目,经相关部门批准后方可开展经营活动)。在云南省,相近经营范围的公司总注册资本为1128235万元,主要资本集中在 5000万以上 规模的企业中,共50家。本省范围内,当前企业的注册资本属于一般。
通过百度企业信用查看会泽火红煤矿有限公司更多信息和资讯。
会泽庚昌商贸有限公司是2018-12-11在云南省曲靖市会泽县注册成立的有限责任公司(自然人独资),注册地址位于云南省曲靖市会泽县金钟街道抚军街德城逸景3幢2单元202室。
会泽庚昌商贸有限公司的统一社会信用代码/注册号是91530326MA6NHLYA76,企业法人董先芬,目前企业处于开业状态。
会泽庚昌商贸有限公司的经营范围是:常用有色金属矿及矿产品、煤炭购销,化工产品(不含危险化学品),五金、建材、机电产品、水泥、化肥、农膜、农机具销售普通货物运输(不含危化品及违禁品),蔬菜、坚果、水果种植销售家禽、家畜养殖销售。(依法须经批准的项目,经相关部门批准后方可开展经营活动)。本省范围内,当前企业的注册资本属于一般。
通过百度企业信用查看会泽庚昌商贸有限公司更多信息和资讯。
会泽芦坪煤矿有限公司是2010-06-07在云南省曲靖市会泽县注册成立的有限责任公司(自然人投资或控股),注册地址位于会泽县大井镇芦坪村委会。
会泽芦坪煤矿有限公司的统一社会信用代码/注册号是91530326763850732H,企业法人赵健中,目前企业处于开业状态。
会泽芦坪煤矿有限公司的经营范围是:煤炭开采、销售。在云南省,相近经营范围的公司总注册资本为1128235万元,主要资本集中在 5000万以上 规模的企业中,共50家。本省范围内,当前企业的注册资本属于一般。
通过百度企业信用查看会泽芦坪煤矿有限公司更多信息和资讯。
云南省位于我国西南边疆,与越南、老挝、缅甸等国接壤。全省面积38.3平方公里,地处云贵高原,一般海拔为1000-2000米左右.地势西北高,南部低,地形错综复杂,切割强烈,形成高山狭谷.滇西北为高山区,海拔一般为2000-3800米,梅里雪山高达 6740米.滇西南和滇南地区,海拔一般在1000-1500米,最低河谷低地仅500米.为亚热带气候. 交通以公路为主.铁路有贵(阳)昆(明),成(都)昆(明),昆(明)河(口),广(通)大(理),南(宁)昆(明)等线.主要矿区均有铁路专用线相通. 成煤期有早石炭世,早二叠世,晚二叠世,晚三叠世,上第三纪等.其中晚二叠世,一第三纪等为主要成煤期.前者主要分布于滇东,后者分布于大小不等的盆地内.滇东北,滇西地区交通不便,地质工作程度较低.煤炭生产基地集中分布于滇东地区,滇西及滇南除一平浪煤矿,小龙潭煤矿外,均为地方小煤矿零星开采. 云南省煤类齐全.1992年底已探明的煤矿及煤产地共251处,探明储量240.8亿吨,其中炼焦用煤40.2亿吨,无烟煤41.4亿吨,褐煤155.5亿吨,其它煤类3.7亿吨,全省保有储量为236.9亿吨,预测总储量为442.6亿吨,其中早石炭世5.7亿吨,早二叠世8.5亿吨,晚二叠世388.8亿吨,晚三叠世20.1亿吨,上第三纪19.3亿吨.预测总储量中可靠级191.7亿吨.焦煤资源主要集中于滇东地区,滇中,滇西地区则较差.
二、含煤地层特征.
(一) 含煤地层特征 下石炭统大塘阶万寿山段主要分布于滇东,滇东北地区,为海陆交互相碎屑岩系含煤建造,厚几米-140米,一般厚20-50米,含煤0-7层,其中1-2层局部可采. 二叠系:下统以灰岩,白云岩为主,底部有一套陆相-海陆交互相含煤岩系。称“矿山组”成“梁山组”,主要分布在滇东,滇西也有少量出露。厚约数米-200米,一般厚30米左右。含煤0-5层,其中一层局部可采,上统可分为两部分:下部为峨眉山玄武岩,属海底喷发岩系,厚数十-数百米粉;上部为海陆交互或陆相含煤岩系,在滇东称“宣威组”,在滇东北,滇东南和滇西的部分地区则分上下两部分,上部为浅海相碳酸盐岩。下部则为海陆交互相或陆相含煤碎屑岩系,称“龙潭组”。含煤最多达70余层,其中可采1-18层,可采总厚0。9-22.4米,是省内主要含煤地层之一. 上三叠统:主要为浅海相至海陆交互相-陆相碎屑沉积.滇中元谋,一平浪,塔甸等地为陆相沉积,厚1800-2000米,底部普家村组含煤3-11层,可采2-5层.单层厚0.8-5.45米,极不稳定:中部干海资组含煤9-13层,可采1-5层,可采总厚0.8-5.5米.滇西祥云,宾川一带为海陆交互相,厚2000余米,含煤5层(组),可采1-5层,总厚0.8-6.7米.各地含煤性差异较大. 第三系:主要含煤地层之一.为内陆湖泊相,沼泽相及河流相含煤建造.厚数十-千余米,一般厚200-300米.含煤一-数十层.可分三个亚期:渐新世成煤范围小,含煤性差,如沧源芒回中新世含煤性好,形成巨厚煤层,如开远小龙潭,寻甸先锋,上新世成煤范围广泛,含煤性最好,如昭通,跨竹,大猪街。上第三纪系具有储量大,煤层厚,埋浅,不少盆地宜于露采的特点。
(二)煤质特征 早石炭世煤质为中灰-富灰,高硫、低磷、高发热量煤。牌号为瘦煤、瘦焦煤、无烟煤。早二叠世煤为富灰(滇南为高灰)、高硫(滇 南低硫)、低磷、高发热量煤。牌号为瘦煤、贫煤、无烟煤。晚二叠世为中灰-富灰,或低灰、低硫-富硫煤。滇东宣威、恩洪、圭山等矿区为焦煤和少量瘦煤;富源庆去、后所为气煤;其它地区为无烟煤及少量贫煤。晚三叠世为低-中灰、低——中硫、低磷、高发热量煤。除一平浪煤矿为焦肥煤,华坪一带为气煤外,其它地区均为无烟煤。上第三纪煤类为褐煤,个别点为长焰煤,焦油、腐植酸一般含量较高。一些盆地褐煤中含具有工业价值的褐煤蜡及稀散、放射性元素。
三、构造特征 经向构造系:
为一强大的南北向拗褶带,分布于东经103°以西,即小江断裂带以西广大地区。纵贯全省。向北经川西插入甘肃北部,向南伸展到缅甸和马来西亚。主要为滇本褶带、滇中地块、滇东褶带三个部分。 纬向构造系:受经向构造系干扰,地表只见零散出露,但越向深部,愈加明显。东川-鹤庆、昆明——弥渡、个旧——新平三个带较为清楚。 歹字型构造系:即青藏、滇、缅、印尼歹字型构造系。从藏东、川西插入云南后分两支。在滇西北、滇西地区,它与经向系滇西褶带重接,向南沿点苍山、哀牢山为一支,呈北西——北西西向展布,称东支褶带;沿南北向高黎贡山至腾冲后转为西南方向,伸入缅甸,称西支褶带。 新华夏系:在滇东表现强烈,呈北东向展布,为一系列箱状褶皱组成,伴随密集的迭瓦式断裂,新生代盆地也受控制。 山字型构造系:展布范围广,发展历史长,在昆明以南出现四道向南突出的弧褶带,向东西两侧均可找相应的翼部反射弧形迹。脊柱在滇池以北,与经向系重接复合。 滇东南弧形构造系:云南只有一部分,向南东伸入桂西。在上述几种构造系交织复合及褶皱轴部,出露有各种性质的火成岩体。而在各主要断裂带之间,则呈狭长状分布有大小不等的变质岩带。
四、储量
云南省储量表
井田名称 保有储量(万吨)
合计 生产井与
在建井 尚未利用的 供进一步勘探
合计 详查 普查 找煤
合计 23368957.9 793304.1 195683.1 1379970.7 763569.7 572737.7 43663.3
镇雄煤田 15990.9 782.3 15208.6 15208.6
盐津,昭通,会泽 821993.2 1483.7 171930.0 648597.5 646252.0 2327.5
其中:昭通盆地 818182.0 171930.0 646252.0 646252.0
宣威煤田 128280.6 106774.3 6918.3 14588.0 593.0 13995.0
其中:羊场矿区 33122.3 30665.3 2457.0
来宾矿区 15640.8 11179.5 4461.3
恩洪煤田 242233.5 186992.6 55240.9 55240.9
其中:恩洪矿区 140440.1 119749.2 20690.9 20690.9
庆云矿区 12350.5 12350.5
后所矿区 10158.1 10158.1
圭山煤田 521219.8 218293.9 3387.0 299538.9 21559.7 266323.2 11656.0
其中:圭山矿区 53821.1 38778.1 3387.0 11656.0 11656.0
老厂矿区 388528.4 100645.5 287882.9 21559.7 266323.2
跨竹矿区 78870.3 78870.3
华坪,平浪煤田
其中:平浪矿区 10550.0 6176.4 3664.4 709.2 513.8 195.4
祥云煤田 5961.3 1887.4 4073.9 1144.0 486.9 2443.0
昆明,楚雄区 225003.3 120117.1 3250.8 101635.4 78800.1 22835.3
其中:先锋矿区 29353.2 22228.2 7125.0 7125.0
凤鸣村矿区 34956.9 34956.9
开远,文山区 337216.3 114546.2 268.0 222402.1 209376.0 13026.1
其中:小龙潭区 101715.2 101715.2
兰坪,大理,普洱 25212.7 9806.5 6264.6 9141.6 12.3 9192.3
昌宁,保山,潞西 35296.3 26443.7 8852.6 8832
预测储量
预测区名称 预测储量(万吨)
合计 300以浅 300-600 600-1000 1000-1500 1500-2000 其中可靠级
合计 4425238 1694771 958596 825888 618889 327094 1916767
镇雄煤田 989172 574674 164848 97035 94575 58040 316778
盐津,昭通,会泽 176153 61940 58418 23285 18136 14374
宣威煤田 403893 158169 101317 68522 42975 32910 283670
其中:羊场矿区 136963 25083 35915 28635 23720 23610 89633
恩洪煤田 525018 188136 161858 115425 59599 454365
其中:恩洪矿区 504437 179313 153781 111744 59599 437465
后所矿区 18718 6960 8077 3681 15037
圭山煤田 1938318 539995 369137 453220 354196 221770 686493
其中:圭山矿区 1305047 387604 251177 282006 211880 172380 289907
老厂矿区 523646 118829 95219 159386 122736 27476 373434
华坪-平浪煤田 74502 27183 11740 15357 20222 16007
祥云煤田 86004 29565 13992 18096 24351 34593
昆明,楚雄区 93792 34788 30708 24929 3367 72892
开远,文山区 69375 37215 26618 4926 616 9343
兰坪,大理,普洱区 23508 19634 1789 1233 852 10021
昌宁,保山,潞西区 45503 23472 18171 3860
贵州省煤炭资源简介
一、 概况
贵州省地处云贵高原东部。地理座标:东经104°-109°北纬25°-29°,面积约17万平方公里。由乌蒙山、大娄山、苗岭、武陵山构成全省地势骨架,西高东低。主要有乌江、北盘江两流域,分属长江、珠江水系。以贵阳为中心有滇黔、川黔、黔桂等四条铁路及公路与邻省相连,各县及公社多通公路。含煤地层在全省分布广泛,面积约7万平方公里,占全省面积的40%左右,划分为20个煤田。黔西、黔中及铁路沿线地质工作程度较高。至一九九三年底止全省保有储量:4983017万吨;预测储量(可靠级)864亿吨。
二、含煤地层特征
1、 下古生界含石煤地层:有震旦系、寒武系、奥陶系、志留系;最主要的是寒武系牛蹄塘组。分布于黔北、黔东北、黔东南等地,总厚26―313米,平均170米左右。含石煤总厚10―20余米,发热量400―800卡/克,个别高达3000卡/克。常伴生磷块岩及钒、钛、钼、镍、铀等稀散放射性元素。
2、下石炭统大塘组:总厚19―992米,一般200―500米。主要分布于黔西北威宁、毕节、纳雍和黔东南贵定、龙里、都匀、荔波等地。由页岩、砂质页岩、石英砂岩地煤组成。威宁、荔波、都匀等地煤层发育较好,含煤1―10层,可采1―2层,厚1.2―1.5米。煤种:厚煤―无烟煤。
3、下二叠统梁山组:除黔东北思南等地缺失外,其余地区普遍沉积。总厚0―300余米。为泥岩、粉砂岩、石英砂岩、灰岩和煤层组成的滨海相沉积。黔西北水城、毕节以西,黔东南凯里、从江、黎平等地煤层发育较好,地层一般厚10―50米,含煤0―7层,一般可采1层,厚0.63―1.0米,煤层呈透境状、串珠状。为气煤―无烟煤。
4、上二叠统龙潭、长兴组:总厚53―852米,一般213米(修文)―439米(格目底)。除黔东南―隅外均有分布,为一套碎屑岩、灰岩、煤层组成地含煤地层。由北向南厚度为:桐梓113米,息峰229米,贵阳320米,紫云852米,册享332米;大致有薄―厚―薄的变化。自西向东分为三个相区,厚度变化无明显规律。含煤0―60余层,一般可采1层(天柱)―41层(格目底),煤厚0.5―34.1米。
过渡相区:分布于毕节、水城、盘县一线以西,以碎屑岩沉积为主,偶夹泥灰岩和透镜状菱铁岩。一般含煤40―50余层,可采十余层,多分布于煤组中上部,厚5.16―32米。煤质:中灰、低硫―中硫。煤种:气煤―无烟煤。
海陆交互相区:位于过渡相区以东,桐梓、贵阳、兴仁一线以西。由碎屑岩、灰岩、煤层组成,灰岩层数、厚度自西向东递增。煤组厚度、煤层层数变化较大,六枝矿区煤组一般厚360米,含煤8―32层,可采一般6层,厚12米左右。多为中灰、中―高硫煤。以无烟煤为多,也有部分烟煤。
海相区:桐梓、贵阳、兴仁一线以东地区,自西向东龙潭组逐渐过渡为吴家坪组,以灰岩为主,夹碎屑岩、煤层。含煤1―数层,可采1层,厚约1米。为中灰、富―高硫煤。煤种:肥―贫煤。
5、上三叠统二桥组:总厚70―1460米,分布于黔北、黔西北及贵阳地区。分贞丰型和郎岱型。
贞丰型:以碎屑岩为主夹少量灰岩、泥灰岩,含煤2―80层,可采0―4层,厚0―5米。中灰、富―高硫;气―肥煤。龙头山向斜本组厚1389米,含煤22层,可采4层,厚约5米。
郎岱型:碎屑岩夹煤线、薄煤、炭质页岩,一般无可采煤层。六枝郎岱本组厚334米。
6、新第三系翁哨组:保存不全,可见厚度60-212米。分布于旋秉翁哨、盘县平关、威宁水中等地,陆相含煤沉积,含褐煤1-11层,可采1-8层,最厚达30余米。灰分39.91,硫分3.21%
三、构造特征
贵州省地处新华夏系第三褶皱带与沉降带的南部和南岭纬向构造带的复合部位,褶曲、断裂均较发育。上二叠统含煤地层为省内重要含煤地层,其沉积发育受下述几组构造带的影响较为明显:(一)展布于纳雍至黄平一带的东西向构造带,其南北地层发育不同。(二)南北向构造体系,尤其是展布于遵义、贵阳、罗甸的黔中构造带。(三)华夏、新华夏系全省均较发育,多展布于黔东地区。对各煤田影响较大。(四)北西向构造带主要展布于黔西水城~~望谟地区。北西向复式褶皱、断裂对黔西煤田的发育、改造影响较大,受其影响水城煤田南、北含煤地层的厚度、含煤性等差异较大。由于几组构造带(体系)相互切割、联合、改造的影响,使各煤田小断层比较发育,构造更加复杂化。
四、全省煤炭储量汇总表
贵州储量表
矿区名称
一九九三年底保有储量(万吨)
可靠级预测储量(亿吨)
合计
生产或在建井
尚未利用精查
供进一步勘探
合计
垂深300米以浅
300-
600
600-
1000
计
详查
普勘
普找
合计
4983017
420631
659402
3902984
633972
319171
2949841
864
78
317
469
六盘水
1468247
331278
408296
728673
360589
76444
291640
399
32
152
215
兴义
170744
/
/
170744
/
477
170267
49
/
10
39
织纳
1719051
15160
222232
1481659
243393
133900
1104366
252
18
102
132
贵阳
49587
28129
301
21157
10830
9651
676
28
8
10
100
黔西北
/
/
/
/
/
/
/
1
1
/
/
黔北
1516534
35124
15469
1465941
3414
86514
1376014
122
14
38
70
黔东北
6912
2367
/
4545
155
3119
1271
/
/
/
/
黔东南
51942
8573
13104
30265
15592
9066
5607
13
5
5
3
黔南
/
/
会泽蓝江石化有限公司是2002-05-08注册成立的有限责任公司(自然人投资或控股),注册地址位于云南省曲靖市会泽县大井镇马鞍村坡脚牛栏江东边。
会泽蓝江石化有限公司的统一社会信用代码/注册号是915303266227607330,企业法人梅玉顺,目前企业处于开业状态。
会泽蓝江石化有限公司的经营范围是:柴油、汽油、润滑油零售;农副产品、常用有色金属矿产品购销;百货、日用杂品、五金交电、建材、煤炭批发零售;房屋修缮;水泥制品生产销售。(依法须经批准的项目,经相关部门批准后方可开展经营活动)。
会泽蓝江石化有限公司对外投资0家公司,具有2处分支机构。
通过爱企查查看会泽蓝江石化有限公司更多信息和资讯。
科学家们认为,天然气的形成多数与生物有关,例如礁型的天然气资源。在地质历史中,海洋里生存着大量的生物,它们在生长过程中具有分泌钙质骨骼的能力,在水深、温度、光照和海水含盐度适宜的条件下,这些生物一代又一代地繁殖,便形成了坚固的生物礁。研究得知,钙藻类、海绵、水螅、苔藓虫、层孔虫、珊瑚等等都曾是地质历史中的造礁生物,现代海洋中的生物礁就是由珊瑚和藻类共同形成的。在漫长的地质史中形成的礁体厚度巨大,它们死亡后,被沉积物覆盖并埋藏在地层深部,在长期的地质作用下,逐渐成为石油和天然气形成的物质基础。科学家们通过对地史时期和生物礁的研究发现,在礁体的生物骨骼遗骸中具有成千上万的孔洞和空隙,含有较理想的孔隙度和渗透率,它们为石油和天然气的形成和储集提供了便利条件。早在上世纪80年代,我国就已在湖北、四川等地找到了一批产量丰富的礁型天然气田。
石油是怎样形成的?
石油的原料是生物的尸体,生物的细胞含有脂肪和油脂,脂肪和油脂则是由碳、氢、氧等3种元素组成的。生物遗体沉降于海底或湖底并被淤泥覆盖之后,氧元素分离,碳和氢则组成碳氢化合物。
我们已经在地球上发现3000种以上的碳氢化合物,石油是由其中350种左右的碳氢化合物形成的,比石油更轻的碳氢化合物则成为天然气。煤矿与石油的成因很类似,但煤是植物的化石,又是固态。
大量产生碳氢化合物的岩石即称为“石油源岩”。埋没于地中的石油源岩受到地热和压力的影响,再加上其他多种化学反应之后就产生石油,而石油积存于岩石间隙之间便形成油田。
地壳变动而石油生成
我们最近逐渐了解地球内部的变化与石油的生成有十分密切的关系,在描述此种关系之前,让我们先来了解一下地球内部的状况。
地球的半径大约是6400公里,覆盖地球表面的地壳下方是由岩石形成厚达2900公里的“地慢”,其下方则是由金属形成的“地核”,并以大约5100公里深处分界,分为“外核”与“内核”。外核主要是由液态金属铁组成,内核则主要是固态铁。 地球表面铺满坚硬的“板 块”,厚度约有100公里,是由向上喷出的“洋脊”产生的,’在 缓缓移动到“海沟”后就沉降于 另一板块下方。 80年代后期,人们学会捕捉地震波传递到地球内部时的立体图,于是发现令人惊讶的地慢活动状况。高温又巨型的上升流“超级卷流”由地底涌上后,以蘑菇形态分别存在于夏威夷和非洲大陆正下方。此外,低温的巨型下降流“冷卷流”则以水滴形态占据亚洲大陆及南美洲大陆正下方的冷卷流似乎是沉降到地函底部。
我们现在的知道的是,地幔内部落热对流是以冷卷流向超级卷注移动的形态而形成的。此种运动不仅影响板块运动,似乎也对整个地球的地质和环境的变化产生很大的影响。
超级卷流是石油制造者?
现在全球生产的石没之中,有60%是产生了恐龙称霸地球时期所形成的石油源岩,所形成的“黑色页岩”则遍布世界各地。黑色页岩主要是由未经氧化的藻类等浮游植物遗骸堆积而成。由此可知当时必须有可让浮游植物繁殖又不会产生氧化的缺氧环境条件,大量的黑色页岩才会形成。
最近发现,石油源岩在此时代的形成似乎与超级卷流运动的活化可以促使由地下涌出的地幔物质所形成的洋脊体积增大,海面因而上升,使得较低的陆地变成浅海,而浅海则具有可当石油原料的藻类等浮游植物极易繁殖的环境。
浅海地区的藻类等浮游植物因而出现大幅增加和大量死亡的现象,周围的细菌为分解其残骸而消耗氧气,于是出现了缺氧环境。
地球温暖化也会改变深层海水的流动状况,由于高纬度地区与低纬度地区海水的温度高低不同,较低温但含有丰富氧气的高纬度地区深层海水会流向低纬度地区海洋。但地球温暖化的现象减少。氧气较少的海域因而扩大,无法氧化的浮游植物便逐渐堆积,所留下的大量有机物则形成石油源岩。
生物的演化改变了石油的性质
由于石油的原料是生物的遗骸,因此调查石油的性质便可以得知古老时期的生物演化过程和地球环境历史。
生命的演化大概有下述的过程。生命是于38亿年前诞生,并逐渐地进行演化,到了距今5亿5000万年前的古生代寒武纪时期,爆发性的演化才开始,大约4亿4500万年前,生命也登上了陆地。
4亿4000万年至4亿年前时期,石油源岩的主要成分是当时繁茂的浮游植物所形成的耐碳氢化合物。另一方面,羊齿类植物在此时期繁琐盛于海岸近处,因此以陆上植物为原料的石油源岩也出现了。
2亿9000万年前,广大的陆地普遍出现由裸子植物组成的森林,并到处形成被沼泽地包围的湖沼,藻类便在湖沼中开始繁殖。由此也产生了以藻类为原料的新种石油源岩,这也是陆上植物的繁盛促使新性质石油源岩诞生的一例。
9000万年前时期,被子植物和针叶树林开始逐渐扩张到高纬度地区和高地,因而出现以陆地木材为原料的石油源岩。另一方面,树木的树脂成为轻质原油的原料,形成新的石油源岩。针叶树林的增加竟使得木材取代了藻类,成为石油源岩的主要原料。
最近石油性质的分析技术有长足的进步,我们已逐渐可以取得有关石驮�闲灾剩�约坝扇饶芤�鸬谋浠��痰鹊南晗缸柿稀S纱酥肿柿霞茨芙�徊搅私庠�仙�镆藕≈鸾ザ鸦�钡幕肪匙纯觥?
大约1亿7000万年到200万年前所发生的全球性规模“阿尔卑斯造山运动期”也造出了巨油田,在此时期,分布于广大范围的1亿年前前后形成的石油源岩都没入地中。现有的石油和天然气有大约3分之2就是此时期形成的。
石油是怎样形成的 2
石油是当今世界极其重要的工业能源,被称作“工业的血液”,素有黑色金子之称。石油这种黑棕色的,粘稠的液体,以前面渗透到人类生活的许多领域。那么,石油是如何形成的呢?
经过长期的研究,以证明石油是由古代有机物变来的/在古老的地质年代里,古代海洋或大型湖泊里的大量生物、动植物死亡后,遗体被埋在泥沙下,在缺氧的条件下逐渐分解变化。随着地壳的升降运动,它们又被送到海底,被埋在沉积岩层里,承受高压和地热的烘烤,经过漫长的转化,最后形成了石油这种液态的碳氢化合物。
据估计,全世界海底石油的总储量在3250亿吨,占整个地球石油储量的三分之一。而且这些石油多分布在中国近海、中东、波斯湾、墨西哥湾、西非几内亚湾和北海等浅海海底。
石油和天然气的化学成分,暴露了它们的来源,它们都是有机物,应
当与古代生物有关系。一部分科学家认为,油气(石油和天然气)是伴随着沉积
岩的形成而产生的。远古时期繁盛的生物制造了大量的有机物,在流水的搬运下,
大量的有机物被带到了地势低洼的湖盆或海盆里。在自然界这些巨大的水盆中,
有机物与无机的碎屑混合,并沉积在盆底。宁静的深层水体是缺乏氧气的还原环
境,有机物中的氧逐渐散失了,而碳和氢保留下来,形成了新的碳氢化合物,并
与无机碎屑共同形成了石油源岩。
在石油源岩中,油气是零散地分布的,还没有形成可以开采的油田。此时,
水盆底部的沉积物,在重力的作用下,开始下沉。在地下的压力和高温的影响下,
沉积物逐渐被压实,最终变成沉积岩。而液体的石油油滴们拒绝变成岩石,在沉
积物体积缩小的过程中,它们被挤了出来,并聚集在一处,由于密度比水还轻,
所以石油开始向上迁移。幸运的话,在岩石裂隙中穿行的石油,最终会遭遇一层
致密的岩石,比如页岩、泥岩、盐岩等,这些岩石缺少让石油通过的裂隙,拒绝
给石油发通行证,石油于是停留在致密岩层的下面,逐渐富集,形成了油田。含
有石油的岩层,叫做储集层,拒绝让石油通过的岩石,叫做盖层。如果没有盖层,
石油会上升回到地表,最终消失在地球历史的尘烟中,保留不到人类出现的时候。 内容:石油和天然气的化学成分,暴露了它们的来源,它们都是有机物,应
当与古代生物有关系。一部分科学家认为,油气(石油和天然气)是伴随着沉积
岩的形成而产生的。远古时期繁盛的生物制造了大量的有机物,在流水的搬运下,
大量的有机物被带到了地势低洼的湖盆或海盆里。在自然界这些巨大的水盆中,
有机物与无机的碎屑混合,并沉积在盆底。宁静的深层水体是缺乏氧气的还原环
境,有机物中的氧逐渐散失了,而碳和氢保留下来,形成了新的碳氢化合物,并
与无机碎屑共同形成了石油源岩。
在石油源岩中,油气是零散地分布的,还没有形成可以开采的油田。此时,
水盆底部的沉积物,在重力的作用下,开始下沉。在地下的压力和高温的影响下,
沉积物逐渐被压实,最终变成沉积岩。而液体的石油油滴们拒绝变成岩石,在沉
积物体积缩小的过程中,它们被挤了出来,并聚集在一处,由于密度比水还轻,
所以石油开始向上迁移。幸运的话,在岩石裂隙中穿行的石油,最终会遭遇一层
致密的岩石,比如页岩、泥岩、盐岩等,这些岩石缺少让石油通过的裂隙,拒绝
给石油发通行证,石油于是停留在致密岩层的下面,逐渐富集,形成了油田。含
有石油的岩层,叫做储集层,拒绝让石油通过的岩石,叫做盖层。如果没有盖层,
石油会上升回到地表,最终消失在地球历史的尘烟中,保留不到人类出现的时候。
煤炭是怎样形成的
煤炭被人们誉为黑色的金子,工业的食粮,它是十八世纪以来人类世界使用的主要能源之一。虽然它的重要位置已被石油所代替,但在今后相当长的一段时间内,由于石油的日渐枯竭,必然走向衰败,而煤炭因为储量巨大,加之科学技术的飞速发展,煤炭汽化等新技术日趋成熟,并得到广泛应用,煤炭必将成为人类生产生活中的无法替代的能源之一。
煤炭是千百万年来植物的枝叶和根茎,在地面上堆积而成的一层极厚的黑色的腐植质,由于地壳的变动不断地埋入地下,长期与空气隔绝,并在高温高压下,经过一系列复杂的物理化学变化等因素,形成的黑色可然化石,这就是煤炭的形成过程。
一座煤矿的煤层厚薄与这地区的地壳下降速度及植物遗骸堆积的多少有关。地壳下降的速度快,植物遗骸堆积得厚,这座煤矿的煤层就厚,反之,地壳下降的速度缓慢,植物遗骸堆积的薄,这座煤矿的煤层就薄。又由于地壳的构造运动使原来水平的煤层发生褶皱和断裂,有一些煤层埋到地下更深的地方,有的又被排挤到地表,甚至露出地面,比较容易被人们发现。还有一些煤层相对比较薄,而且面积也不大,所以没有开采价值,有关煤炭的形成至今尚未找到更新的说法。
煤炭是这样形成的吗?有些论述是否应当进一步加以研究和探讨。一座大的煤矿,煤层很厚,煤质很优,但总的来说它的面积并不算很大。如果是千百万年植物的枝叶和根茎自然椎积而成的,它的面积应当是很大的。因为在远古时期地球上到处都是森林和草原,因此,地下也应当到处有储存煤炭的痕迹;煤层也不一定很厚,因为植物的枝叶、根茎腐烂变成腐植质,又会被植物吸收,如此反复,最终被埋入地下时也不会那么集中,土层与煤层的界限也不会划分得那么清楚。
但是,无可否认的事实和依据,煤炭千真万确是植物的残骸经过一系统的演变形成的,这是颠簸不破的真理,只要仔细观察一下煤块,就可以看到有植物的叶和根茎的痕迹;如果把煤切成薄片放到显微镜下观察,就能发现非常清楚的植物组织和构造,而且有时在煤层里还保存着像树干一类的东西,有的煤层里还包裹着完整的昆虫化石。值得探讨的是它为何形成得如此集中,而且又是那么如此的优质呢?
记得上小学的时候,我家住在离城不远的乡村,每当盛夏雨季来临时,一场暴雨过后,村子中央就会出现一条湍急的“小溪流”,我们许多小朋友就会跑到那里面去嬉戏,那小溪流也会因暴雨停止时间的延长,而变得越来越小,最后干涸。但在没有断流之前你会发现,很多水流处却被冲下来的木棍儿、杂草等漂浮物堵塞,形成一个个小的水坎儿。为了能让水流通畅,我们不时地把那些小水坎扒开,有的时候也会借此筑起一道小溪上的“堤坝”。既便是现在居住在城里,一场暴雨过后,街道上很多地方也会出现各种各样的漂浮物截住了水流,堵塞了下水道口,而且很多漂浮物又被集中地滞留在一个地方的现象。
小巫见大巫,由此我们便可以推断出煤炭的形成可能与洪水有直接关系。如果没有洪水那样强大的力量和搬运的功能,煤炭的形成绝对不会那么集中,也不会那么优质。
我们可以设想一下,在千百万年前的地质历史期间,由于气候条件非常适宜,地面上生长着繁茂高大的植物,在海滨和内陆沼泽地带,也生长着大量的植物,那时的雨量又是相当的充沛,当百年一遇的洪水或海啸等自然灾害降临时,就会淹没了草原、淹没了大片森林,那里的大小植物就会被连根拨起,漂浮在水面上,植物根须上的泥土也会随之被冲刷得干干净净,这些带着须根和枝杈的大小树木及草类植物也会相互攀缠在一起,顺流漂浮而下,一旦被冲到浅滩、湾叉就会搁浅,它们就会在那里安家落户,并且象筛子一样把所有的漂浮物筛选在那里,很快这里就会形成一道屏障,并且这个地方还会是下次洪水堆积植物残骸(也会有许多动物的残骸)的地方。当洪水消退后,这里就会形成一道逶迤的堆积植物残骸的丘岭,再经过长期的地质变化,这座植物残骸的丘岭就会逐渐地埋入地下,最后演变成今天的煤矿。
那么也许有人会问,1998年中国遭受的一场罕见的水灾,为何没有出现这样的情况呢?我认为,那是因为中国目前的森林覆盖率很低,而且有森林的地方多在高海拔地区,在平原到处是粮田,几乎到了没有什么森林可淹的境地,只不过是淹没了一些农田的防护林,并且农田防护林的树木很稀少,而且树木的根须又十分的发达,抓地抓得十分牢固,短时间的浸泡、冲击不会造成多大危害。而森林中的树木就不同了,很多树木都挤在一起生活,它们为了吸食太阳的能量,拼命地往上长,根须并不发达,一旦一处树木被洪水连根拨起,就会连带成片的树木被洪水毁掉,就如同放木排一样,顺流漂浮而下,势不可挡,最后全部堆积在一个地方。
另外,由于人类对大自然认识的增强,抵御突发性自然灾害的能力不断提高,兴修水利,筑起坚固的堤坝,加固江堤、河堤,大大地减缓了凶猛洪水的冲击力,泛滥的现象少了,甚至乖乖地听从人类的召唤,并把凶猛的洪水变成了电能、动能、热能,造福于人类,服务于人类社会。
不仅洪水有搬运动植物这样的能力,而且潮汐、台风、海啸也具备这样的能力。由于地震、火山喷发等因素引起的海啸,可以使海浪掀起三、四十米还高,并且在顷刻之间把一个岛屿上的动植物扫荡一空;把海岸线附近的一切生物全部洗劫。
再者,地球表面上的物质不可能永久的一成不变地等待着地球进行沉降运动的,而且地球表面上的物质是在不断地循环流动着的。因此,“水灾说”是使煤炭形成得如此集中、优质,还是有一定的道理的,是有说服力的,也是能够令人信服的。
地球表面上的物质不可能永久的一成不变地等待着地球进行沉降运动的,而且地球表面上的物质是在不断地循环流动着的。因此,“水灾说”是使煤炭形成得如此集中、优质,还是有一定的道理的,是有说服力的,也是能够令人信服的。
煤炭千真万确是植物的残骸经过一系统的演变形成的,这是颠簸不破的真理,只要仔细观察一下煤块,就可以看到有植物的叶和根茎的痕迹;如果把煤切成薄片放到显微镜下观察,就能发现非常清楚的植物组织和构造,而且有时在煤层里还保存着像树干一类的东西,有的煤层里还包裹着完整的昆虫化石。值得探讨的是它为何形成得如此集中,而且又是那么如此的优质呢?
由于古代的在植物大量沉积,被深深的埋在地层下,受到高压和高温,经过几亿年的时间,变成煤炭
煤矿和其它矿一样,是层状的,且不是到处都有,如果是地表植物积聚而成,则不会那么集中,应该到处都有,所以我认为,书上所说的不对。碳元素是地球故有的,地表的碳大部分以化合物形式存在,地心的碳以单质形式存在,地心的碳向地表喷出时,一部分为钻石,一部分为石墨,大部分为煤(不同条件下形成不同的物质),和其它大部分矿的成因一样。
植物当被压在地下,在长时间的缺氧高压的条件下便会形成煤。
石炭纪地球植物大繁盛,为煤的形成形成的强大的物质基础,后来的造山运动为煤的形成提供了外部条件。经过常年累月,便有了煤。
是千百万年来植物的枝叶和根茎,在地面上堆积而成的一层极厚的黑色的腐植质,由于地壳的变动不断地埋入地下,长期与空气隔绝,并在高温高压下,经过一系列复杂的物理化学变化等因素,形成的黑色可燃沉积岩,这就是煤炭的形成过程
煤是植物遗体经过生物化学作用和物理化学作用而转变成的沉积有机矿产,是多种高分子化合物和矿物质组成的混合物。煤是亿万年前大量植物埋在地下慢慢形成的。
无论是中国还是世界其他国家,通常把煤分为成因分类和工业分类(或称实用分类)两大体系。成因分类是根据成煤原始植物的不同而进行分类的。
扩展资料:
煤化阶段:
第一个过程,在地热和压力的作用下,泥炭层发生压实、失水、肢体老化、硬结等各种变化而成为褐煤。褐煤的密度比泥炭大,在组成上也发生了显著的变化,碳含量相对增加,腐植酸含量减少,氧含量也减少。因为煤是一种有机岩,所以这个过程又叫做成岩作用
第二个过程,是褐煤转变为烟煤和无烟煤的过程。在这个过程中煤的性质发生变化,所以这个过程又叫做变质作用。
地壳继续下沉,褐煤的覆盖层也随之加厚。在地热和静压力的作用下,褐煤继续经受着物理化学变化而被压实、失水。其内部组成、结构和性质都进一步发生变化。这个过程就是褐煤变成烟煤的变质作用。
聚煤盆地从形成到结束是一个动态过程,由于古植物、古气候、古地理和古构造等多种因素的影响,盆地不断地发生时—空演化。
本节着重从聚煤期地壳运动的角度论述盆地的形成和演化,主要包括盆地的层次结构、盆地的构造分期和基本类型的转化,盆地的超覆扩张和退缩分化,以及盆地沉积中心的侧向迁移等。
一、盆地的层次结构
随着区域构造和盆地基底构造的演变,盆地充填盖层也卷入了地壳的形变过程,形成具有一定特征的沉积构造层次。不同的沉积构造层次组成整个盆地的层次结构。
断陷聚煤盆地往往具有明显的层次结构。盆地发育早期表现出显著的裂陷性质,下落断块组成一系列半地堑或地堑盆地系,各个亚盆地相互分隔,各自具有盆缘断裂和冲积扇带,构成底部沉积构造层次。随着裂陷作用的持续,各个亚盆地被上覆沉积广泛覆盖,形成统一的沉积盆地,下伏基底断块的显著差异性沉降,引起盖层岩性岩相和厚度的变化,某些基底断裂可能延伸至上覆盖层,也可能产生重力滑脱断层系,构成沉积构造类型比较复杂的过渡层次。盆地发育的后期,发生了构造型式的转化,由早期的裂陷作用为主,转化为晚期的荷载调整性沉降或热沉降。沉积范围扩大,各种沉积单元规律配置,演变为比较均衡的沉积盆地。如我国东北松辽盆地,晚侏罗早白垩世火山岩系和含煤碎屑岩系填积在北东向基底断裂构成的半地堑盆地内,组成底部亚盆地系。早白垩世沉积范围扩大,超覆不整合于石炭二叠系变质岩系或海西期花岗岩基底之上,岩相和厚度明显地受到基底断块不均衡沉降的影响和同沉积断裂的切割。早白垩世晚期盆地则主要表现为拗陷性质,沉积层由盆地中部向两翼逐渐变薄,在盆缘地带仍受到基底断裂影响。古近新近系沉积范围明显缩小,退缩于盆地西缘(图9-12)。
图9-12 松辽盆地沉积构造剖面图(据韩德馨等,1980)
发育在缓倾角基底断裂之上的沉积盆地,随着主滑脱断层的不断伸展,沉积盖层中的同沉积断裂也逐步生长发育,形成一个沉积构造序列(图9-13)。较早形成的沉积岩楔沿断层面旋转滑落,逐步远离后期形成的沉积岩楔,盆地内沉积层的沉积中心呈相互偏离叠置的排列样式,构成不同的沉积构造层次。图9-13中的星号和菱形符号表示两个早期沉积阶段的轴向沉积中心,一些盆地复杂的砂体分布样式很可能受到这种“壳层”发育过程的控制(Gibbs,1987)。
图9-13 阶梯状滑脱断层控制的生长正断层系和沉积岩楔(据Gibbs,1987)
盆地古构造应力场和动力活动方式的转化是盆地沉积构造演化的重要制约因素,相应地出现不同的沉积构造层次。拉伸盆地受到与伸张作用方向相反的挤压作用,沿近于直立的基底断裂便产生走向滑动,可以在上覆沉积盖层中形成花状构造或重力滑脱构造,在一定层段表现为同沉积褶皱和断裂系。由于动力作用方式的改变,在不同层位也可以出现不同方向和不同排列方式的断层系。如我国华北裂谷系中的一个半地堑盆地,以边缘断裂为主干发育一系列掀斜断块,不同层次和不同尺度的铲式断层,分别属于两个裂陷幕,具有相反的方向,表明随时间发展而改变了掀斜方向(图9-14)。
图9-14 华北裂谷系中的一个半地堑盆地剖面图(据马杏垣,1983)(垂直比例尺,每秒大致相当3~4nm)
二、盆地的超覆扩张和退缩分化
盆地的超覆扩张和退缩分化是盆地演化的空间表现。地表侵蚀、沉积充填、海面升降和盆地基底升降等,都可引起盆地范围的扩张或退缩。由于盆地基底沉降而出现聚煤盆地的超覆扩张是极为常见的现象。伴随盆地的超覆扩张岩相带和聚煤带亦相应迁移。
聚煤盆地形成初期往往是一些相互分隔的地形洼地、小型断陷或拗陷盆地,随着盆地基底的不断沉降而发生盆地范围的超覆,形成一个统一的沉积盆地,岩性岩相和厚度显示规律性变化,可以进行盆地范围的对比。我国云南小龙潭古近新近纪褐煤盆地的基底为可溶性碳酸盐岩,填积作用首先发生在溶蚀洼地内。含煤岩系剖面三分明显(图9-15),即:下段以坡积—洪积相砂砾岩填积为主,填积在孤立的小型洼地内中段为湖沼相沉积,伴随盆地基底沉降,沉积范围逐步扩大,盆地连成一体,并演变为泥炭沼泽环境,形成巨厚煤层,煤体呈透镜状,以盆地中部最厚,约达220m,向周边变薄尖灭上段以湖泊相泥灰岩为主,含淡水动物化石,盆地沉积范围最大,岩性岩相和厚度变化小,由盆缘向中心逐渐增厚。由于后期剥蚀作用,本段保存不完整。小龙潭煤盆地充填序列,在纵向和横向上都呈现出明显的超覆扩张,岩性地层单位大致相当时间地层单位。
图9-15 云南小龙潭煤盆地年沉积剖面图
大型拗陷聚煤盆地的基底界面往往是经受长期风化剥蚀作用的夷平面,界面坡降很小。随着基底的缓慢沉降,由初始沉降中心向外侧超覆扩张,并表现出“大跨度”超覆特征,只有在大范围内进行地层划分和对比才能识别。伴随盆地的超覆扩张,岩相带发生迁移,形成水进型充填序列。如果海域或湖盆的扩张与岩相带的迁移同步,则岩性地层单位是一个穿时地层单位,不能清楚地反映盆地充填层序的超覆关系。如果海域或湖盆地的扩张与岩相带的迁移不一致,即发生了岩相带的更替,则岩性地层单位能够反映超覆现象。因此,在研究盆地超覆扩张时,应当进行详细的地层划分,尽可能建立时间地层单位和超覆序列。我国四川晚三叠世聚煤盆地是一个大型断裂拗陷型盆地,盆地的基底是印支期构造侵蚀界面,盆地的演化是一个由西侧山前断陷带向东、向南逐步超覆扩张的过程。晚三叠世早期(卡尼期)以滨海浅海相为主的跨洪洞组假整合于中三叠统雷口坡组的剥蚀面上,沉积范围向东仅达龙泉山断裂附近。晚三叠世中期、中晚期,随着盆地基底的不断沉降,沉积范围向东、南超覆扩张,直抵达州、重庆一线,即华蓥山断裂附近。以半封闭的海湾、淡化潟湖相为主的小圹子和须家河组超覆沉积于中三叠统不同层位之上,与下伏地层呈微角度不整合。晚三叠世晚期,盆地继续扩张,形成以淡化潟湖、湖泊相为主的雾中山组,为主要含煤层段,向东扩展至四川东部地区,向南越过黔中隆起而与黔南坳陷相连,构成一个沿北东向展布的大型沉积盆地。四川晚三叠世聚煤盆地的横剖面呈显著的不对称几何形态(图9-16),沉降中心位于龙门山前缘断裂带,层序全,厚度大,上三叠统总厚可达3000m。随着盆地向东超覆,岩系厚度递次变薄,缺失下部层序,至盆地东缘厚仅百余米。侏罗纪沉积盆地进一步扩展,转化为大型内陆湖盆,并在盆地范围内沉积了稳定的淡水灰岩。
沉积盆地的超覆扩张和退缩分化往往反映了一个完整的构造旋回。盆地的退缩分化主要是由于盆地基底沉降减缓、分异或停止,沉积物大量充填所造成的,一般表现为退覆沉积序列。盆地演化的后期,由于构造分异作用增强,一个大型聚煤坳陷可能分化为一系列小型聚煤盆地。断陷聚煤盆地的沉降和沉积中心往往退缩于盆缘断裂内侧,而另一侧则处于剥蚀状态,因此盆地的退覆沉积序列保存不完整。美国西部中、新生代聚煤盆地蕴藏着丰富的煤炭资源,晚白垩世含煤岩系形成于北美大陆西部近南北向的大型前陆盆地中,呈现陆表海古地理景观。泥炭沼泽发育于盆地西侧的滨海平原,煤层赋存于一系列海进海退沉积旋回中。晚白垩世开始的造山运动(拉腊米造山运动)使白垩纪大型沉积盆地分化为一系列隆起的山间盆地,聚煤环境转变为以河流、湖泊为主,古近新近纪聚煤盆地轮廓与现代的构造盆地大体相近(图9-17)。
三、盆地的侧向迁移
图9-16 四川盆地大邑—石柱晚二叠世含煤地层对比图(据韩德馨等,1980,修改)
图9-17 美国西部落基山区中、新生代煤盆地的分布(据Weimer,1960)
聚煤盆地的侧向迁移是指不同聚煤期聚煤盆地在空间上的转移和盆地内部沉降中心的侧向迁移。现着重论述聚煤盆地内部的这种变化。
不同聚煤期聚煤盆地在空间上的转移主要是由于地壳运动、气候带变化和海水进退等因素引起的。沉积盆地是地壳形变的产物,随着地壳运动体制的演变,不同期的聚煤盆地便呈现出规律性的空间转移。以我国东部中、新生代聚煤盆地为例,不同期聚煤盆地的分布具有明显的分带性,盆地的形成和分布与NNE向巨型构造体系的成生过程相联系。晚三叠世这一构造体系的雏形开始展现,在太行山—雪峰山连线的西侧形成四川、鄂尔多斯大型沉积盆地,分别堆积了晚三叠世和晚三叠早、中侏罗世含煤岩系,东侧总体为一NNE向的巨型隆起带,可能为中、新生代地幔物质汇入区,自中三叠世晚期开始,经历了多次构造运动、岩浆侵入和火山活动。东部巨型隆起自南而北逐步解体,不同期的聚煤盆地相应地依次分布:晚三叠早侏罗世聚煤盆地与华南地区沿北东向坳陷带的瑞替克—里阿斯海水内侵有关,主要分布于湖南、江西、广东等地早—中侏罗世聚煤盆地零星分布于华北地区,含煤岩系直接覆于较老地层或火山岩之上晚中生代聚煤盆地则主要分布于东北、内蒙古东部地区,为区域伸展作用形成的断陷盆地系,盆地基底为火山岩系,盆地群沿NNE向斜列。随着巨型隆起带的进一步分化,大体沿隆起轴部形成以下辽河和华北裂谷系为主体的断陷带,古近纪始新统—渐新统含煤沉积发育于裂谷系和两侧隆起带上的小型断陷盆地内。位于东海大陆架的东海盆地是一个NNE向伸延的弧后拉伸盆地,以巨厚的过渡型碎屑含煤沉积为主,成煤期自始新世延续至上新世,以渐新统为主要富煤层段。台湾省西侧发育新近系碎屑含煤岩系,厚约7000m,夹有海相层和火山岩,为比较典型的前陆盆地。由此可知,我国东部中、新生代聚煤盆地发生了自西而东的侧向迁移,形成聚煤盆地时空迁移序列,这可能是东亚大陆与太平洋板块斜向碰撞并不断增生的结果。
聚煤盆地内部沉降中心的迁移与次级隆起和拗陷的相互转化﹑盆缘和基底断裂的成生过程或盆地的热沉降过程有关,通常表现为横跨盆地轴向或沿轴向的侧向迁移。我国广西百色煤盆地是一个NW向延伸的不对称断陷盆地,盆地的形成主要受NW向走滑断裂的控制。百色盆地由百色和田东两个次级盆地构成,大致沿NW向斜列,向两端抬起,在田阳一带交接,构成田阳次级隆起(图9-18)。晚白垩世古近纪红色粗碎屑岩组不整合于中三叠世印支期褶皱系之上,含煤地层时代为始新世至渐新世。以田东次级盆地为例,底部红色粗碎屑岩组主要堆积在北部盆缘断裂带内侧,厚达500m,向南西方向显著变薄。始新世渐新世含煤岩系沉积于红色岩组之上,自下而上可划分为3个岩段:下部含煤段(那都段)、中部湖相泥岩段(田东段)、上部主含煤段(下百岗段)。随着盆地的演化,NW向延伸的沉积中心由盆地东北缘迁移至盆地中部,继而又移至盆地西南侧,主要富煤地段沿盆地西南缘分布。由于含煤岩系以泥岩为主,缺乏代表剥蚀作用的河流堆积,所以盆地很可能是在间歇性沉陷的构造背景下形成的。沉积中心和沉降中心基本吻合,各层段等厚线图基本上反映了盆地沉降中心的侧向迁移。盆地沉积中心和沉降中心也可以沿轴向方向迁移,如我国内蒙古霍林河煤盆地,盆地的轴向为北东向,主干断裂位于盆地的西北缘,横断裂沿轴向将盆地分划为相对断隆和断陷。底部扇积粗碎屑岩段、下部湖相泥岩段和下部含煤段的沉积中心位于煤盆地的东北部(一露天区)上部湖相泥岩段的沉积中心已迁移至盆地的中部(二露天区)上部含煤段的沉积中心则移至盆地的西南区,显示了沉积中心由北东向南西沿盆地轴向迁移的趋势(图9-19)。
四、盆地的沉积构造分期
有的含煤沉积盆地具有长期而复杂的演化历史。根据盆地的沉积构造演化特征,可以划分为不同的发展阶段或沉积构造期。沉积构造分期主要依据盆地的沉积构造事件和层次结构,现以澳大利亚东南沿海的吉普斯兰盆地为例加以简要论述。
吉普斯兰盆地是世界上著名的含煤、含油气的大西洋边缘型沉积盆地,沉积构造演化与白垩纪和古近新近纪的大陆开裂和漂移过程密切相关。白垩新近纪含煤岩系与下伏地层为角度不整合,根据盆地的演化史可划分为6个沉积构造期(Smith,1984),即奥特威裂谷期、白垩纪中期隆起、晚白垩世裂谷期、塔斯曼海漂移期、吉普斯兰稳定期和吉普斯兰陆架期(图9-20)。
图9-18 广西百色盆地各层段等厚线图(据广西150地质队资料编绘)
图9-19 内蒙古霍林河盆地走向构造剖面(据李思田,1988)
图9-20 澳大利亚吉普斯兰盆地构造史与岩性地层单位时间关系(据Smith,1984)
吉普斯兰盆地早期为裂谷陆相碎屑充填,主要由成熟度低的粗碎屑岩、火山碎屑岩、泥岩和不稳定薄煤层组成,沉积中心的沉积速率超过150m/Ma。煤层主要由亮煤和暗煤条带组成,堆积于冲积—湖泊沉积环境。早白垩世末期,盆地沉降速率开始减退,至白垩纪中期出现盆地范围的角度不整合,早期沉积物遭受强烈剥蚀。晚白垩世初东南缘的塔斯曼海裂谷作用波及吉普斯兰盆地,出现第二个快速沉降期,其沉积特征与奥特威裂谷期沉积物相似。
吉普斯兰盆地后期为构造漂移、沉降期,主要由滨海—边缘海充填序列组成,亦为主要聚煤期。大约在80Ma年前,塔斯曼海裂谷系开始了漂移期,海水自南侵入近南北向的裂谷,吉普斯兰盆地东南缘成为滨线,沿北东南西方向伸延,堆积了包括滨外、滨滩、障壁、海湾和潟湖相的边缘海沉积序列。由滨线向陆地方向(北西方向)堆积了由砾岩、砂岩、泥岩和薄煤层组成的河流三角洲沉积序列,煤层厚度一般小于10m,向剖面上部煤层厚度和频度增加。从早始新世至早渐新世末是一个缓慢沉降的特殊稳定期,沉积速率一般小于20m/Ma,近海盆地充填包括中、晚始新世河流三角洲—边缘海沉积序列,三角洲层序具有高度侧向稳定性,由石英砂岩、泥岩和一些厚煤层组成,煤层一般厚2~5m,最厚可达30m。沿岸盆地充填包括3个主要的河流湖泊沉积旋回,含若干厚煤层,厚度大于20m,最厚的泥炭层形成于缓慢沉降的正向构造单元。中新世至现代,吉普斯兰盆地为快速埋藏的陆架陆坡发展期,沉降和沉积速率大于150m/Ma。沉积速率的增加和基准面的降低导致河流湖泊沉积向海推进,沿岸吉普斯兰盆地的含煤岩系遭到剥蚀。
盆地演化的沉积构造分期可以依据盆地的充填序列、盆地的层次结构、构造剥蚀界面、沉降速率的变化和沉降中心的迁移、动力作用方向和方式的转换等因素进行划分,其目的在于追索盆地发展演化的全过程和不同演化期的沉积构造特点,以进一步分析泥炭聚积的条件和煤层、煤质特征。
地学理论被一些权威搞的稀烂,所有地学专业学者发现,故意编造的种种地学谎言,是无法再继续了。
知网收录、
盆地、冲积平原对地震起了决定作用
郭德胜 佳木斯大学数学系 3051145739@qq.com
在地球上,任何生命都与“碳元素”紧密相关,进行 着周而复始的碳元素循环,生命需要进食含碳的有机物质,排放出二氧化碳,地球也遵循着这样的规律,地球也是要吞纳含碳有机物质,在地球内部形成煤炭、石油、天然气等等,再经过火山、地震、人类开采与使用,形成二氧化碳排放空中,被排放空中的二氧化碳又被树木,植物利用光合作用被吸收,再次将二氧化碳转化 成有机物质,以植物的形式体现出来,一部分植物被动物消化,一部分通过河流被运移地球内部,形成一个反复“碳”循环的体系。
多年来,我一直思考这样的问题,煤到底是如何形成的?原有的煤炭形成理论,“煤是树木、植被、动物尸体堆积,以及沼泽地,经过多年的演变形成煤炭”,根据这个理论分析思考,陆地上为什么看不到树木、动物尸体的堆积呢?另一方面,煤矿很大,哪来的那么多树木和动植物尸体呢?
一,天然气如何的形成的?
经过多年的思考和研究,终于发现,将含碳有机物质堆积起来,只有一种可能,就是通过河水的运移,将树木、植被、动物尸体等含碳有机物质运送到湖泊、低洼地带,经过多年的沉积,叠加,将湖泊,低洼地带变成盆地和冲积平原。
湖泊,低洼地带,他们形成了聚集各种地表物质的自然条件,地表的含碳物体在水流、河水的冲击、运移,被湖泊、低洼地带沉积下来,经历几百年,上千年的沉积过程后,湖泊的演变成干涸的陆地,也就是,湖泊---沼泽地带—干涸的盆地结构陆地。而低洼地带在多次冲击中形成沉淀,天长日久成为冲积平原。而在这个上万年过程中。湖泊、冲积平原要积累无法估量的树木、植被、泥沙,以及鱼类尸体,在多年的积累沉积过程中,湖泊、冲积平原沉积了巨厚的沉积物质,有几十米,上百米、甚至上千米的厚度,继而形成了盆地式结构的陆地、冲积平原。通过这样沉积的方式,地下储存了大量的含碳物质,从而完成了碳元素物质的积累。而这个过程,与生活中的“沼气池原理”完全相似。
任何物质,在高温、高压、通电作用下,会发生了化学反应和化学变化,地下沉积大量含碳物质,在一定条件下,就会发生同等元素的物质的转化,形成含碳固体、液体、气体等物质。根据沼气池形成甲烷气体的原理,沉积巨厚含碳物质的盆地、冲积平原,就必然会出现含碳气体,固体和液体,气体很可能就是天然气。
二,煤炭是否也在盆地、冲积平原内部以及与山体接壤处产生呢?
地球上一个重要的现象,就是水流运移,雨水、河流将地球表面冲洗,把地面的含碳有机物运移汇聚,最后停留在湖盆、低洼地带,盆地、冲积平原就具备了储存含碳有机物的条件。盆地、冲积平原在多年的河水运移,形成一个天然的碳物质储存库,这是一个显著的量变过程,当物质的量变达到一定程度,就会发生质变。盆地、冲积平原条件成熟,就无法避免的发生一系列化学变化。
我们清楚,在化学变化中,物质发生化学变化,会产生热能、气体、甚至出现爆炸现象。从这个角度分析,那么,地球上经常出现地震,是不是在这样的条件下,这样的地理位置上,而产生了一种巨大的能量释放,导致地球的震动?
同时,地下在释放巨大能量的同时,地下含碳物质在热能作用下将进一步发生化学变化,将含有碳元素气体物质演变成固体,进而形成煤炭?根据推理分析,天然气和煤应该存在同一位置,存在于盆地、冲积平原与接壤的山系带,而地震也应发生在这样的地理位置上。这个演变过程应该是,沉积盆地与冲积平原--天然气--地震—煤炭。附下图:
如果上面的推理正确,那么,我们可以得出如下的结论:
1,地球内部出现碳元素物质的堆积,一定是通过河水的运移,经过多年的沉积、叠加,将含碳物质埋入地下,进而形成了盆地和冲积平原。
2,沉积式盆地、冲积平原,一定会产生天然气体,在化学反应的作用下形成含碳的固体、液体、气体。
3,地震所发生的地域,它的周边一定存在着一个冲击平原或盆地。冲积平原、盆地的面积大小决定了天然气、煤矿、地震的大小。
4,在其内及周边,没有盆地、冲积平原的地域,决不会发生地震。
5,如果说,盆地、冲积平原形成天然气,分析天然气移动走向,根据地质疏密程度,盆地、冲积平原的表面密度相对于山体的密度就大一些,气体移动会顺山体移动,山体结构是岩石,岩石存在缝隙,盆地、冲积平原所形成的天然气就会存储在山体内,根据天然气可燃可爆特性,就存在膨胀、爆炸可能,产生地质灾害,而震源中心多出于这样的地理位置。
6,对于大的冲积平原、沉积盆地,在它的内部和周边 ,一定存在巨量的天然气以及大的煤矿,反之,没有这样的地理位置,不会出现巨量天然气与煤矿,冲积平原大,天然气储量也大,地震也大,煤矿也大。
根据上述的结论,用事实加以验证。 根据百度搜索,复制了相关的信息资料。
三、大地震与冲积平原和盆地地域的关系
1、“汶川大地震”是否发生在冲积平原或盆地周边地域里?
汶川地震,它所包括的震区是十个最严重震点。汶川县、北川县、绵竹市、什邡市、青川县、茂县、安县、都江堰市、平武县、彭州市;
从上面这些地震位置发现,参见下图,这些震区围绕着盆西平原,也就是成都平原的北部。
网上资料显示,成都平原发育在东北—西南向的向斜构造基础上,由发源于川西北高原的岷江、沱江(绵远河、石亭江、湔江)及其支流等 8个冲积扇重叠联缀而成复合的冲积扇平原。整个平原地表松散沉积物巨厚,第四纪沉积物之上覆有粉砂和粘土,结构良好,宜于耕作,为四川省境最肥沃土壤,海拔450~750米,地势平坦。
盆西平原介于龙泉山和龙门山、邛崃山之间,北起江油,南到乐山五通桥。包括北部的绵阳、江油、安县间的涪江冲积平原,中部的岷江、沱江冲积平原,南部的青衣江、大渡河冲积平原等。
根据这些发生重灾区的位置发现,汶川县、北川县、绵竹市、什邡市、青川县、茂县、安县、都江堰市、平武县、彭州市,将这些城市依次连接,将成都平原包围了一圈,根据这些城市受到同等严重受灾情况,再根据地图,成都平原的边缘是地震中心地带。
2、鲁甸大地震是否发生在冲积平原或盆地地域里?
2014年8月3日16时30分,在云南省昭通市鲁甸县(北纬27.1度,东经103.3度)发生6.5级地震,震源深度12千米,余震1335次。
鲁甸此次地震灾区最高烈度为Ⅸ度,涉及范围面积只有90平方千米,等震线长轴总体呈北北西走向,Ⅵ度区及以上总面积为10350平方千米,共造成云南省、四川省、贵州省10个县(区)受灾,包括云南省昭通市鲁甸县、巧家县、永善县、昭阳区,曲靖市会泽县;四川省凉山彝族自治州会东县、宁南县、布拖县、金阳县;贵州省毕节市威宁彝族回族苗族自治县。
资料显示, 昭鲁坝子东起昭阳区凉风台大山脚,西至相邻的鲁甸县城稍外。总体地势西南高,东北低,面积约525平方公里,属云南四大坝子之一。坝子内丘坝相间,地势平坦, 昭鲁坝子位于云南省东北部的昭通市,昭通市西北面与四川省隔江(金沙江)相望,东南面与贵州省毕节市接壤,南面与云南省曲靖市会泽县相邻,是云南、贵州、四川三省的结合部。
昭通市境内最高海拔(巧家县药山)4040米,最低海拔(水富县滚坎坝)267米。昭鲁坝子处于昭通市的腹心地带,南北纵贯昭阳区与相邻的鲁甸县,故称昭鲁坝子。
昭鲁坝子北接壤金阳县,南接壤会泽县,南北穿越鲁甸,昭阳区,西侧对应巧家县。
结合上面的陈述和地图,就不难得出,昭鲁坝子处在8.3鲁甸大地震的中心地带。
3、秘鲁大地震是否发生在冲积平原或盆地地域里?
资料显示,亚马逊平原位于南美洲北部,亚马孙河中下游,介于圭亚那高原和巴西高原之间,西接安第斯山,东滨大西洋,跨居巴西、秘鲁、哥伦比亚和玻利维亚四国领土,面积达560万平方千米(其中巴西境内220多万平方千米,约占该国领土1/3),是世界上面积最大的冲积平原。
秘鲁当地媒体报道,当地时间24日下午18点左右(北京时间25日早6时左右),秘鲁中东部与巴西交界的马德雷德迪奥斯大区发生里氏7.5级地震。根据中国地震台网中心消息,此次地震的震级为7.7级,震源深度610公里。
秘鲁多个省份、巴西、阿根廷、智利、哥伦比亚、玻利维亚和厄瓜多尔等邻近国家的一些地区均有震感。
事实上,亚马逊平原周边地带的智利、哥伦比亚、玻利维亚和厄瓜多尔发生过多次大地震。
根据地图,这些发生大地震的国家,都处于亚马逊大平原的周边。这些国家的天然气开采量也很惊人。
4、台湾大地震是否发生在冲积平原或盆地地域里?
资料记载,台湾的台中、南投两县为921地震的重灾区。地震发生次日有统计数字表明:死亡人数逾2000人,上6534人,受困者2308人。台北县、台北市、苗栗县、台中市、彰化县、云林县等地灾情较为严重。
台南平原台湾省最大的平原,属冲积平原,其面积五千平方公里。 台北县、台北市、苗栗县、台中市、彰化县、云林县位于“台南平原”东侧,台南平原5000平方公里,921地震处在台南平原地带。
另注:
百度资料,1556年,中国陕西省南部秦岭以北的渭河流域发生的一次特大地震。华县地震之所以造成巨大损失,还与震中区位于河谷盆地和冲积平原,松散沉积物厚。
1739年1月3日晚8点左右,在平罗、银川一带发生该区有史以来最大的8级地震,地震位置处在银川平原。银川平原是黄河冲积平原,地下水埋深极浅,甚至溢积地表,地下水排泄不畅,土壤盐渍严重。
按照这样的思路分析判研,再结合卫星地图,找到世界所有的沉积盆地、冲积平原,与此地所发生的地震结合起来,就会发现:在这样的地理位置上存在各种地震,对于所有的大地震,在它的周边,或是在受灾严重地区所包围的地带,都存在各种盆地、“冲积平原”。
所有历史大地震,都存在一个共性,每一个大地震都对应着一个大的冲击平原或盆地。我们任意的拿出一个地震事件,都存在这样的现象。有地震的地区,就存在这么一个“冲积平原”,反之,没有“冲积平原”的地区及附近周边,就没有地震。 E,冲积平原,盆地会产生天然气么?
另据百度资料,2015年下半年,中国石油在四川盆地页岩气勘探获重大突破。经国土资源部审定,中国石油在四川盆地威202井区、宁201井区、YS108井区,新增含气面积207.87平方公里、页岩气探明地质储量1635.31亿立方米、技术可采储量408.83亿立方米。这是中国石油首次提交页岩气探明地质储量。
作为一种非常规天然气资源,页岩气如何实现有效勘探开发,国内没有现成经验。中国石油从2007年进行地质综合评价开始,解放思想,创新实践,创造了页岩气工业气井、页岩气“工厂化”作业平台等10多项国内第一,形成了页岩气资源评价、区块优选、快速钻进、长水平段固井、分段压裂、压裂液回收再利用技术系列,积累了以“井位部署平台化、钻井压裂工厂化、采输设备橇装化、工程服务市场化、组织管理一体化”为核心的降本增效经验,对我国规模效益开发页岩气资源将产生重要的推动作用。
截至2015年8月27日,在上述探明储量区内,已有47口气井投产,日产气362万立方米,能保障280万个三口之家用气。
对世界上每一个国家的冲积平原或盆地进行搜查,都会存在着这样现象,存在大平原或大盆地的国家地区,煤炭、天然气非常丰富,同时大地震也频发。把世界上著名的大平原拿出来,得出的结论都是一样的,不再一一例举。
经过上面的分析论证,煤矿、天然气、地质灾害的成因以及所处的地理位置已经非常清楚,所举的事例和事实完全符合文章所阐述的观点。从这个观点出发,各种矿藏的地理位置就明确了,地质灾害的成因也找到了。
上述观点对于地球的合理开发,保护地球家园,有极其深远意义。按照这个理论观点,地球多年来形成的自然灾害,可以找到相应的解决对策,避免灾害造成的生命与财产的重大伤亡和损失。从这个观点出发,还会发现地球的过去,预知地球的未来,一举突破以往很多无法解决的问题。