建材秒知道
登录
建材号 > 能源科技 > 正文

弃风和弃光单位成本

单纯的草莓
独特的砖头
2023-01-30 16:54:20

弃风和弃光单位成本

最佳答案
冷酷的钢笔
会撒娇的钢笔
2025-09-08 13:05:12

还利用弃风弃光电解制氢的成本分析如下:目前,制备氢气的几种主要方式包括氯碱工业副产氢、电解水制氢、化工原料制氢(甲醇裂解、乙醇裂解、液氨裂解等)、石化资源制氢(石油裂解、水煤气法等)和新型制氢方法(生物质、光化学等)。

通过比较分析各种制氢方式的成本、优劣势,我们认为:在现阶段,选择成本较低、氢气产物纯度较高的氯碱工业副产氢的路线,已经可以满足下游燃料电池车运营的氢气需求;在未来氢能产业链发展得比较完善的情况下,利用可再生能源电解水制氢。将成为终极能源解决方案。

最新回答
背后的豌豆
粗暴的缘分
2025-09-08 13:05:12

来源:经济日报

7月29日,由中国电力企业联合会指导、协鑫(集团)控股有限公司(下称协鑫集团)主办的氢能产业发展论坛暨协鑫氢能战略发布会在京举行。中国能源研究会副理事长吴吟表示,能源行业排放占到全球温室气体排放总量的2/3,实现双碳目标的关键在能源。能源低碳发展有两大路径:化石能源低碳利用和大力发展可再生能源。当前,G20集团中已经有9个国家和地区发布了氢能发展战略,还有7个国家和地区正在开展前期研究。氢能产业呈现出良好发展态势, 科技 进步日新月异、应用场景层出不穷,未来氢能将在钢铁、能源、交通和建筑等领域广泛应用。

根据中国氢能联盟预测,到2030年,我国氢气的年需求量将达到3715万吨左右,在终端能源消费中占比约5%;到2060年,我国氢气的年需求将增至1.3亿吨左右,在终端能源消费中占比约20%。

中国电力企业联合会专职副理事长安洪光表示,通过新能源与氢能的耦合,可助力高比例清洁能源电力系统的稳定运行,解决长时间清洁能源处理和负荷需求的平衡问题,帮助难以减排领域深度脱碳。在他看来,“十四五”时期,将是我国碳达峰“窗口期”、氢能产业发展的发力期,也是氢能市场的培育期和氢能技术的追赶期。

随着减碳行动的开展和各项政策的加持,氢能发展势不可挡。据不完全统计,迄今已有河南、山西、湖北、安徽等超过30个省市对氢能产业发展作出了明确部署,有的还制定了详细的时间表、路线图和任务书。可再生能源制氢、燃料电池 汽车 示范城市群、加氢站建设等项目成行业投资热点。

氢从何处来?在碳达峰、碳中和目标下,回答好这一问题尤为重要。

根据不同的制取方式和碳排放量,氢能被分为灰氢、蓝氢和绿氢。2020年我国氢气来源中,62%为煤制氢,19%天然气制氢,仅有1%的可再生能源制氢,氢来源亟待“绿化”。中国工程院原副院长杜祥琬强调,氢能产业要实现高质量、可持续发展,其核心准则是从源头做到可持续,将波动性、间歇性的风能、太阳能转换为氢能,有利于储能和传输,具有零排放、零污染和可持续优势。

高成本是当前可再生能源制氢大规模推广的主要难题。“降低氢能使用成本是产业发展的关键所在。”在中国石油和化学工业规划院新能源发展研究中心主任刘思明看来,我国氢能产业急需模式创新,依托海外优质天然气资源,转化为氢气具有成本竞争力,国内京津冀、长三角、珠三角氢能产业率先发展,用氢也应避免长距离陆运。他认为,未来国内氢能市场将以“工业副产氢+短距离运输”模式为主,海外将以“优质资源转化蓝氢+长距离化学品载体运输”模式为主。

会议现场,协鑫集团旗下协鑫新能源正式对外发布公司氢能战略。根据规划,协鑫新能源氢能战略由蓝氢和绿氢两部分构成。具体而言,蓝氢目标――首期建成年产230万吨合成氨,逐步扩能至每年400万吨生产规模,可供应国内70万吨蓝氢;绿氢目标――计划到2025年建设100座综合能源站,达到40万吨年产能。

协鑫集团董事长朱共山表示,从空间结构上讲,在东部、南部等负荷中心发展蓝氢,在中西部地区等新能源大基地发展绿氢,一蓝一绿,协同发展。“协鑫新能源将打造不依赖补贴,完全市场化的零碳 科技 先锋企业,做全球综合实力领先的绿氢与蓝氢综合运营服务商。”

落寞的白羊
苗条的鱼
2025-09-08 13:05:12

电解水制氢一公斤需要56度电。

电解水制氢1公斤耗电约56度左右。所以水解制氢成本取决于电价。2.1公斤氢气的热值约当于33KWh(度)电,氢燃料电池电堆发电效率一般在40%~60%区间工作。

“电解水制氢需要消耗大量电能,目前电解水制氢每制取1公斤氢气要消耗56千瓦时的电,经济性问题较大,需要继续降低成本。”在李毅中看来,“灰氢”变“蓝氢”的关键是二氧化碳的捕集、储存还有利用,应抓紧研发攻关和产业化。

电的信息:

“氢源是最需要高质量保证供应的环节,应着力寻求降低可再生能源制氢的制造、使用成本,形成低成本、长寿命、成规模的水电解制氢流程,同时也希望国家和产业本身在政策法规、标准上,积极创造良好环境”。

薛贺来认为,对氢气的管理也亟待“松绑”,专门用于加氢站加注的氢气是否可以摘掉“危化品”的帽子,获得政策支持。

工业尾气中的氢回收提纯利用。李毅中说,若干工业尾气中含有一定数量的氢可供回收,氢气是石油化工的宝贵资源,用氢气来加氢精制、加氢炼化可以提高产品的质量和效率。

健忘的月饼
忐忑的小丸子
2025-09-08 13:05:12
还没到最冷的时候,电动 汽车 的一些短板已经暴露无遗。

冬季续航严重衰减,标称的续航直接腰斩,导致很多电动 汽车 车主开车都不敢开空调,宁愿在车里受冻。充能时间大幅增加,一些没有私桩的车主,甚至凌晨4点就开始去抢车位。那么除了电动 汽车 以外,未来的新能源 汽车 还有别的答案吗?很显然,氢燃料 汽车 的发展潜力更大。

相比于传统 汽车 ,氢能源 汽车 使用氢气作为动力来源,能量转换效率高,完全没有污染,而且氢气可以从水中制取,说是取之不尽用之不竭,可以一举摆脱对国外的石油依赖。

相比于纯电车型,氢能源 汽车 充能时间短,3-5分钟就能完成充能,受温度和时速的影响较小,像电动 汽车 冬天就变成电动爹的情况,将不复存在。

但是氢燃料 汽车 的普及也存在很多问题,比如说加氢站的建设,再比如说氢气制取成本较高。但是最近,氢气的制取成本,已经有了一定程度的下降,低成本制氢的技术取得了突破。

之前我国的制氢方式,多为煤炭制氢和电解水制氢。国内煤炭资源丰富,因此煤炭制氢是之前比较主流的制氢方式,成本大约是9-14元/kg。而光伏制氢方面,电解1标准立方米的氢气大约需要4.5到5度电,成本较高。也正是因为此,氢气的制取成本一直高居不下。但是最近,光伏制氢的技术取得了突破,使用光伏等可再生能源直接制备氢气,其成本最低可以达到0.83元 /Nm3,对应下来单位质量成本最低大约是9.30元/kg。

以丰田的氢燃料 汽车 MIRAI为例,其氢气储量大约是5.6千克,续航是850公里,计算下来,如果按照最低的制氢成本计算,只需要成本大约是52元的氢气,就可以续航850公里,如果只算氢气的制取成本,每公里的行驶成本大约是6分钱。当然了,最终在消费端的氢气售价,不仅仅只有制氢成本,加氢站的建设、氢气的运输和储存等等,都要算进氢气的成本。但是至少氢气的制取成本方面,不再像以前那样高不可攀。

很多人疑问,为什么要用光伏发电,再用电去制氢,这不是多此一举吗?其中这就跟在用电低谷期,把水库下游的水抽到上游去一样,低谷期的电能有富余,而这部分的电能是难以储存的,而用来制取氢气,将能源以气态燃料的方式存储起来,使氢能 与电能可互相转化,优势互补。

12月3日,工信部发布《“十四五”工业绿色发展规划》明确,加快氢能技术创新和基础设施建设,在即将到来的2022北京冬奥会期间,张家口赛区共将投入625辆氢燃料 汽车 ,上海和广州,都已经出台了针对氢燃料 汽车 的补贴政策,氢能 社会 看似遥不可及,但是各国都不敢放松,因为谁走在前面,谁就有可能彻底摆脱对于石油资源的依赖,一个崭新的氢能时代,正在向我们缓缓走来。

结实的电话
感性的小白菜
2025-09-08 13:05:12

氢能更重要的是作为一种清洁能源和良好的能源载体,具有清洁高效、可储能、可运输、应用场景丰富等特点。

氢是二次能源,通过多种方式制取,资源制约小,利用燃料电池,氢能通过电化学反应直接转化成电能和水,不排放污染物,相比汽柴油、天然气等化石燃料,其转化效率不受卡诺循环限制,发电效率超过 50%,是零污染的高效能源。

氢能是实现电力、热力、液体燃料等各种能源品种之间转化的媒介,是在可预见的未来实现跨能源网络协同优化的唯一途径。当前能源体系主要由电网、热网、油气管网共同构成,凭借燃料电池技术,氢能可以在不同能源网络之间进行转化,可以同时将可再生能源与化石燃料转化成电力和热力,也可通过逆反应产生氢燃料替代化石燃料或进行能源存储,从而实现不同能源网络之间的协同优化。

随着可再生能源渗透率不断提高,季节性乃至年度调峰需求也将与日俱增,储能在未来能源系统中的作用不断显现,但是电化学储能及储热难以满足长周期、大容量储能需求。氢能可以更经济地实现电能或热能的长周期、大规模存储,可成为解决弃风、弃光、弃水问题的重要途径,保障未来高比例可再生能源体系的安全稳定运行。

氢能应用模式丰富,能够帮助工业、建筑、交通等主要终端应用领域实现低碳化,包括作为燃料电池 汽车 应用于交通运输领域,作为储能介质支持大规模可再生能源的整合和发电,应用于分布式发电或热电联产为建筑提供电和热,为工业领域直接提供清洁的能源或原料等。

日本、韩国、美国、德国和法国等国都从国家层面制定了氢能产业发展战略规划与线路,如日本的《氢能基本战略》、美国的《氢能经济路线图》、欧盟的《欧洲绿色协议》中的“绿氢战略”、韩国的《氢经济发展线路图》等,持续支持氢燃料电池的研发、推进氢燃料电池试点示范以及多领域应用,已在产业链构建、氢燃料电池 汽车 研发方面取得优势。根据国际氢能联合会发布的《氢能源未来发展趋势调研报告》预测,至2050年,氢燃料电池 汽车 将占全球机动车的20 25%,创造2.5万亿美元的市值,承担全球约18%的能源需求。

《中国制造2025》、《能源技术革命创新行动计划(2016-2030)》、《国家创新驱动发展战略纲要》、《“十三五”国家战略性新兴产业发展规划》、《“十三五”国家 科技 创新规划》等都将氢能与燃料电池列为重要任务,作为引领产业变革的颠覆性技术和战略性新兴产业,提出系统推进氢能 汽车 的研发、产业化和商业化。

今年以来,国家政策倾斜力度加大。6月22日,国家能源局发布了《2020年能源工作指导意见》,从改革创新和推动新技术产业化的角度推动氢能产业发展。文件指出,制定实施氢能产业发展规划,组织开展关键技术装备攻关,积极推动应用示范。

中国首部《能源法》再次征求意见。其中,氢能被列为能源范畴,是中国第一次从法律上确认了氢能属于能源。

目前,全国有20多个省份发布了氢能产业发展规划,在长三角、珠三角、京津冀等地区,氢能已形成一些小规模的示范应用。在一些地方形成了制备、储运、加注燃料电池和下游应用的完整产业链。

其中,山东省国内首个省级氢能中长期规划,山东3677战略打造氢经济带。省政府办公厅印发的《山东省氢能产业中长期发展规划(2020-2030年)》,以2019年为基准年,规划期限为2020-2030年,内容主要包括发展环境、总体要求、发展路径与空间布局、重点发展任务、保障措施和环境影响评价等6个部分。3月26日印发《济青烟国际招商产业园建设行动方案(2020-2025年)》,新能源 汽车 、氢能等字眼出现频率很高,也和山东省省级氢能规划相呼应。济南“中国氢谷”、青岛“东方氢岛”两大高地随着《方案》要拔地而起。潍坊市人民政府办公室印发了《潍坊市促进加氢站建设及运营扶持办法》。本办法适用于对在本市进行加氢站建设、加氢站加氢的企业给予补贴,即按日加氢能力和建成年限分别给予50~600万元补贴。

2019年,中国石油对外依存度首次突破70%的关口,而天然气对外依存度也高达45%。自2018年中美贸易战爆发以来,高度依赖海外油气进口所带来的能源安全隐患越来越让决策层与 社会 各界侧目。新冠疫情又进一步暴露了在紧急状态下产业链全球化的隐患和风险,致使原本已有抬头之势的逆全球化趋势进一步加深,将能源安全的地位上升到新的政治高度。

全球气候变化是21世纪人类面临的最复杂的挑战之一,减缓气候变化的措施之一是减少温室气体的人为排放。中国是仅次于美国的第二大碳排放国家,已承诺力争2030年前二氧化碳排放达到峰值2060年前实现碳中和。在碳中和的道路上,氢能是一个不可或缺的二次能源形式

尽管氢能发展前景广阔,但当前也面临着产业基础薄弱、装备和燃料成本偏高以及存在安全性争议等方面的问题。目前我国制氢技术相对成熟且具备一定产业化基础,全国化石能源制氢和工业副产氢已具相当规模,碱性电解水制氢技术成熟。但在氢气储运技术、燃料电池终端应用技术方面与国际先进水平相比仍有较大的差距。

譬如在储运方面,实现氢能规模化、低成本的储运仍然是我国乃至全球共同面临的难题。高压气氢作为目前国内外主流的氢能储运模式,还存在储氢密度仍然不够高、储运成本太高等问题。

氢气是二次能源,需要通过一定的方法利用其它能源制取,目前主要包括以下方法:

天然气中的烷烃在适当的压力和温度下,在转化炉中发生一系列化学反应生成包含一氧化碳和氢气的转化气,转化气再经过换热、冷凝等过程,使气体在自动化的控制下通过装有多种吸附剂的PSA装置后,一氧化碳、二氧化碳等杂质被吸附塔吸附,从而得到氢气。

以煤为原料制取含氢气体的方法主要有两种:一是煤的焦化,二是煤的气化。焦化是指煤在隔绝空气条件下,在90-1000 制取焦碳,副产品为焦炉煤气。焦炉煤气组成中含氢气55-60%左右。煤的气化是指煤在高温常压或加压下,与气化剂反应转化成气体产物,组成主要是氢及一氧化碳,经转化后可制得纯氢。

通常不直接用石油制氢,而用石油初步裂解后的产品,如石脑油、重油、石油焦以及炼厂干气制氢。石脑油制氢主要工艺过程有石脑油脱硫转化、CO变换、PSA,其工艺流程与天然气制氢极为相似;重油制氢是在一定压力下与水蒸气及氧气反应制得含氢气体产物;石油焦制氢与煤制氢非常相似,是在煤制氢的基础上发展起来的;炼厂干气制氢主要是轻烃水蒸气重整加上变压吸附分离法,与天然气制氢非常相似。

氯碱工业采用电解盐水的方式生产氯气和烧碱,在电解槽阳极生成氯气,阴极生成氢气,阴极附近生成烧碱,氢气进入脱氧塔脱除其中氧气,然后经过变压吸附脱除其中N2、H2、CO2、H2O等杂质,可获得高纯度氢气。

甲醇蒸汽重整制氢由于氢收率高,能量利用合理,过程控制简单,便于工业操作而更多地被采用。甲醇与水蒸气在一定的温度、压力条件下在催化剂的作用下,发生甲醇裂解反应和一氧化碳的变换反应,生成氢和二氧化碳,重整反应生成的H2和CO2,再经过变压吸附法(PSA)将H2和CO2分离,得到高纯氢气。

电解水制氢是一种较为方便的制取氢气的方法。在充满电解液的碱性电解槽(ALK)中通入直流电,水分子在电极上发生电化学反应,分解成氢气和氧气。也可使用PEM电解槽直接电解纯水产生氢气。此方式可利用光电、风电以及水电等清洁能源进行电解水制取氢气。

(1)风力发电机组的原理及特点:风力发电机组通过控制风轮转速,达成在低风速下最优能量捕捉;在高风速时,保持风轮转速和功率稳定。因此,在额定风速前(大部分工作状态),风力发电机组发岀的有功功率一直在随着风的改变而波动,表现在秒级上的发电功率波动性。另外,风力发电机组是一个电流源,也就是说风电机组每时每刻在跟随电网的50Hz交流电频率,把能量通过电流的方式输岀给电网。如果没有电网的电压维持,目前的风电机组很难独立发电。

(2)光伏发电:光伏电池将太阳能转化为电能,光伏逆变器一方面通过控制,追踪光伏电池的最佳功率点,一方面作为电流源,跟踪电网50Hz交流电频率,把能量通过电流方式输岀到电网。由于阳光在分钟级上变化不大,相对于风电,波动性较小。但是光伏发电表现出昼夜的间歇性。

光伏发电制氢主要利用光伏发电系统所发直流电直接供应制氢站制氢用电。主要有3种技术路线。

碱性电解槽制氢。 该种电解槽的结构简单,适合大规模制氢,价格较便宜,效率偏低约70%~80%,主要设备包括电源、阴阳极、横膈膜、电解液和电解槽箱体组成,电解液通常为氢氧化钠溶液,电解槽主要包括单极式和双极式。

质子交换膜电解槽(PEM Electrolyzer)制氢。 效率较碱性电解槽效率更高,主要使用了离子交换技术。电解槽主要由聚合物薄膜、阴阳两电极组成,由于较高的质子传导性,电解槽工作电流可大大提高,从而提升电解效率。

固体氧化物电解槽(Solid Oxide Electrolyzer)制氢。 可在高温下工作,部分电能可由热能替代,效率高、成本低,固体氧化物电解槽是三种电解槽中效率最高的设备,反应后的废热可与汽轮机、制冷系统进行联合循环利用,提升效率,可达到90%。

电解水制氢技术路线成熟,目前未大规模推广关键因素为电价问题,以目前工业用电用来制氢成本过高,市场竞争力较差。

甲醇制氢投资较低,适合2500Nm3以下制氢规模,按照1Nm3氢气消耗0.72千克甲醇,甲醇价格按2319元 / 吨计算,制氢成本如下表:甲醇制氢成本表

天然气制氢单位投资成本低,在1000Nm3以上经济性较好,按照1Nm3氢气消耗0.6Nm3天然气,天然气价格按1.82元/Nm3计算,制氢成本下表:

天然气制氢成本表

以1000Nm3/h 水电解制氢为例,总投资约1400万元,按照1Nm3氢气消耗5kWh 电能计算,不同电价测算制氢成本分析如下表:

光伏发电制氢成本表

由此分析,光伏发电制氢电价控制在0.3元 / 千瓦时以下时,制氢成本才具有竞争力。按照目前市场价格进行测算,以100MW光伏发电直流系统造价如下表:

光伏发电直流系统造价

以一类资源区域为例,首年光伏利用小时数为1700小 时 计 算,其他参数为 :装机容量100MW,建设期1年,资本金投资比例20%,流动资金10元 /kW,借款期限10年,还本付息方式为等额本息,长期贷款利率4.90%,折旧年限20年,残值率5%,维修费率0.5%,人员数量5,人工年平均工资7万元,福利费及其他70%,保险费率0.23%,材料费3元 /kW,其他费用10元 /kW。按照全部投资内部收益率满足8% 反算电价,并分别分析计算造价为2.3亿、2亿、1.8亿、1.6亿元时的电价。通过计算,在满足全部投资内部收益率为 8% 时,不同造价下的电价如下表:

不同造价反算电价

光伏发电制氢在资源一类区域已具备经济可行性,较天然气制氢、甲醇制氢成本较低,随着光伏发电成本的持续下降,光伏发电制氢竞争力将进一步增强。本文未考虑氢气运输成本,光伏发电直供电制氢应与需求方靠近,资源一类区域主要集中在西北区域,该区域氢气用户主要为炼化、化工企业,用气量较大,对制氢站规模要求较大。

光伏组件价格下降较快,随着价格进一步降低,部分二类资源区光伏发电制氢也将具有竞争力,该类区域相对靠近负荷中心,经济发达,氢气需求量较大。光伏发电制氢工艺简单、运维难度低,制氢规模可根据场地和需求进行模块化组合,随着燃料电池技术的进步,分布式可再生能源制氢供应燃料电池也将是未来重要发展趋势。

氢气的运输方式可根据氢气状态不同分为气态氢气(GH2)输送、液态氢气(LH2)输送和固态氢气(SH2)输送。选择何种运输方式,需基于以下四点综合考虑:运输过程的能量效率、氢的运输量、运输过程氢的损耗和运输里程。

在用量小、用户分散的情况下,气氢通常通过储氢容器装在车、船等运输工具上进行输送,用量大时一般采用管道输送。液氢运输多用车船等运输工具。

虽然氢气运输方式众多,但从发展趋势来看,我国主要以气氢拖车运输(tube trailer)、气氢管道运输(pipeline)和液氢罐车运输(liquid truck)三种运氢方式为主。

长管拖车是国内最普遍的运氢方式。这种方法在技术上已经相当成熟。但由于氢气密度很小,而储氢容器自重大,所运输氢气的重量只占总运输重量的1~2%。因此长管拖车运氢只适用于运输距离较近(运输半径200公里)和输送量较低的场景。

其工作流程如下:将净化后的产品氢气经过压缩机压缩至20MPa,通过装气柱装入长管拖车,运输至目的地后,装有氢气的管束与车头分离,经由卸气柱和调压站,将管束内的氢气卸入加氢站的高压、中压、低压储氢罐中分级储存。

该方法的运输效率较低。国内标准规定长管拖车气瓶公称工作压力为10-30MPa,运输氢气的气瓶多为20MPa。

以上海南亮公司生产的TT11-2140-H2-20-I型集装管束箱为例,其工作压力为20MPa,每次可充装体积为4164Nm3、质量为347kg的氢气,装载后总质量33168kg,运输效率1.05%。国内生产长管拖车的主要厂商有中集安瑞科、鲁西化工、上海南亮、浦江气体、山东滨华氢能源等。

长管拖车运氢成本测算

为测算长管拖车运氢的成本,我们的基本假设如下:

(1)加氢站规模为500kg/天,距离氢源点100km;

(2)长管拖车满载氢气质量350kg,管束中氢气残余率20%,每日工作时间15h;

(3)拖车平均时速50km/h,百公里耗油量25升,柴油价格7元/升;

(4)动力车头价格40万元/台,以10年进行折旧;管束价格120万元/台,以20年进行折旧,折旧方式均为直线法;

(5)拖车充卸氢气时长5h;

(6)氢气压缩过程耗电1kwh/kg,电价0.6元/kwh;

(7)每台拖车配备两名司机,灌装、卸气各配备一名操作人员,工资10万元/人·年;

(8)车辆保险费用1万元/年,保养费用0.3元/km,过路费0.6元/km;根据以上假设,可测算出规模为500kg/d、距离氢源点100km的加氢站,运氢成本为8.66元/kg。

测算过程如下表:

运输成本随距离增加大幅上升。当运输距离为50km时,氢气的运输成本5.43元/kg,随着运输距离的增加,长管拖车运输成本逐渐上升。

距离500km时运输成本达到20.18元/kg。

考虑到经济性问题,长管拖车运氢一般适用于200km内的短距离运输。

提高管束工作压力可降低运氢成本

由于国内标准约束,长管拖车的最高工作压力限制在20MPa,而国际上已经推出50MPa的氢气长管拖车。

若国内放宽对储运压力的标准,相同容积的管束可以容纳更多氢气,从而降低运输成本。

当运输距离为100km时,工作压力分别为20MPa、50MPa的长管拖车运输成本为8.66元/kg、5.60元/kg,后者约为前者的64.67%。

具有发展潜力的低成本运氢方式,但我国氢气管网发展不足,建设需提速。

低压管道运氢适合大规模、长距离的运氢方式。由于氢气需在低压状态(工作压力1~4MPa)下运输,因此相比高压运氢能耗更低,但管道建设的初始投资较大。

我国布局氢气管网布局有较大提升空间。美国和欧洲是世界上最早发展氢气管网的地区,已有70年 历史 。

根据PNNL在2016年的统计数据,全球共有4542公里的氢气管道,其中美国有2608公里的输氢管道,欧洲有1598公里的输氢管道,而中国仅有100公里。

随着氢能产业的快速发展,日益增加的氢气需求量将推动我国氢气管网建设。

氢气管道造价高、投资大,天然气管道运氢可降低成本

天然气管道是世界上规模最大的管道,占世界管道总长度的一半以上,相比之下氢气管道数量很少。据IEA报告,目前世界上有300万公里的天然气管道,氢气管道仅有5000公里,现有的氢气管道均由制氢企业运营,用于向化工和炼油设备运送成品氢气。

由于管材易发生氢脆现象(即金属与氢气反应而引起韧性下降),从而造成氢气逃逸,因此需选用含炭量低的材料作为运氢管道。美国氢气管道的造价为31~94万美元/km,而天然气管道的造价仅为12.5~50万美元/km,氢气管道的造价是天然气管道造价的两倍以上。

虽然氢气在管道中的流速是天然气的2.8倍,但由于氢气的体积能量密度小,同体积氢气的能量密度仅为天然气的三分之一,因此用同一管道输送相同能量的氢气和天然气,用于押送氢气的泵站压缩机功率高于压送天然气的压缩机功率,导致氢气的输送成本偏高。

氢气输运网络基础设施建设需要巨大的资本投入和较长的建设周期,管道的建设还涉及占地拆建问题,这些因素都阻碍了氢气管道的建设。

研究表明,含20%体积比氢气的天然气-氢气混合燃料可以直接使用目前的天然气输运管道,无需任何改造。

在天然气管网中掺混不超过20%的氢气,运输结束后对混合气体进行氢气提纯,这样既可以充分利用现有管道设施,出于经济性考虑,也能降低氢气的运送成本。

目前国外已有部分国家采用了这种方法。

为测算管道运氢的成本,我们参考济源-洛阳氢气管道的基本参数,做出如下假设:

(1)管道长度25km,总投资额1.46亿元,则单位长度投资额584万元/km;(10)年输氢能力为10.04万吨,运输过程中氢气损耗率8%;

(2)管线配气站的直接与间接维护费用以投资额的15%计算;

(3)氢气压缩过程耗电1kwh/kg,电价0.6元/kwh;

(4)管道寿命20年,以直线法进行折旧。

根据以上假设,可测算出长度25m、年输送能力10.04万吨的氢气管道,运氢价格为0.86元/kg。

当输送距离为100km时,运氢成本为1.20元/kg,仅为同等距离下气氢拖车成本的1/5,通过管道运输氢气是一种降低成本的可靠方法。

适合长距离运输,国内外应用差距明显,但液氢运输相比气氢效率更高,国内应用程度有限。

液氢罐车运输系统由动力车头、整车拖盘和液氢储罐3部分组成。

由于液氢的运输温度需保持在-253 以下,与外部环境温差较大,为保证液氢储存的密封和隔热性能,对液氢储罐的材料和工艺有很高的要求,使其初始投资成本较高。

液氢罐车运输是将将氢气深度冷冻至21K液化,再将液氢装在压力通常为0.6兆帕的圆筒形专用低温绝热槽罐内进行运输的方法。

由于液氢的体积能量密度达到8.5MJ/L,液氢槽罐车的容量大约为65m3,每次可净运输约4000kg氢气,是气氢拖车单车运量的10倍多,大大提高了运输效率,适合大批量、远距离运输。

但缺点是制取液氢的能耗较大(液化相同热值的氢气耗电量是压缩氢气的11倍以上),并且液氢储存、输送过程均有一定的蒸发损耗。

在国外尤其是欧、美、日等国家,液氢技术发展已经相对较为成熟,液氢在储运等环节已进入规模化应用阶段,某些地区液氢槽车运输超过了气氢运输规模。

而国内目前仅用于航天及军事领域,这是由于液氢生产、运输、储存装置等标准均为军用标准,无民用标准,极大地限制了液氢罐车在民用领域的应用。

国内相关企业已着手研发相应的液氢储罐、液氢槽车,如中集圣达因、富瑞氢能等公司已开发出国产液氢储运产品。

2019年6月26日,全国氢能标准化技术委员会发布关于对《氢能 汽车 用燃料液氢》、《液氢生产系统技术规范》和《液氢贮存和运输安全技术要求》三项国家标准征求意见的函。

液氢相关标准和政策规范形成后,储氢密度和传输效率都更高的低温液态储氢将是未来重要的发展方向。

为测算液氢槽车运输的成本,我们的基本假设如下:

(1)加氢站规模为500kg/天,距离氢源点100km;

(2)槽车装载量为15000加仑(约68m3,即4000kg),每日工作时间15h;

(3)槽车平均时速50km/h,百公里耗油量25升,柴油价格7元/升;

(4)液氢槽车价格约为50万美元/辆,以10年进行折旧,折旧方式为直线法;

(5)槽车充卸液氢时长6.5h;

(6)氢气压缩过程耗电11kwh/kg,电价0.6元/kwh;

(7)每台拖车配备两名司机,灌装、卸载各配备一名操作人员,工资10万元/人·年;

(8)车辆保险费用1万元/年,保养费用0.3元/km,过路费0.6元/km。根据以上假设,可测算出规模为500kg/d、距离氢源点100km的加氢站,运氢成本为13.57元/kg。

测算过程如下表:

液氢罐车成本变动对距离不敏感。当加氢站距离氢源点50~500km时,液氢槽车的运输价格在13.51~14.01元/kg范围内小幅提升。虽然运输成本随着距离增加而提高,但提高的幅度并不大。这是因为成本中占比最大的一项——液化过程中消耗的电费(约占60%左右)仅与载氢量有关,与距离无关。而与距离呈正相关的油费、路费等占比并不大,液氢罐车在长距离运输下更具成本优势。

第四章 加氢站建设

1.投资估算

加氢站投资主要包含设备投资、土建工程投资以及设计、监理、审批等费用。

项目投资估算表如下:

序号 名 称 费用(万元) 备注

1 工艺设备 222.00

1.1 增压系统 160.00

1.2 加注系统 56.00

1.3 卸车系统 6.00

2 现场管道、仪表电缆等 12.00

3 PLC柜、火焰探头、氢气泄漏探头、视频监控等 28.00

4 设备安装及调试 40.00 含辅材

5 土建工程 80.00

6 设计、监理、审批等费用 45.00

7 合计 424.00

2.运营成本估算

加氢站建成后,运营成本包括土地租金、设备折旧、运营维护成本、人员工资等。

项目总投资为424万元,固定资产采用直线法综合折旧,不计残值,按照10年折旧摊销,每年42.4万元。

每年运维成本包括设备维护费、管理费及人工成本费、电费和水费等,其中设备维护费用约55万元,管理费及人工(4名工人)成本费15万元,电费及水费30万元,每年运维成本费用为100万元。

本项目单站占地面积约2亩,参照目前服务区征地费用,土地租金暂按每年每亩10万元计取,单站每年土地租金为20万元。

3.效益测算

加氢站对外销售价格为35元/kg,进销价差一般为20元/kg。

本次加氢站项目设计日加氢能力:500kg/d,加注压力:35MPa;按照其70%加注负荷计算,日加注350kg,年可实现加注量120000kg。

按照价差收入,年毛利润额估算为252万元。

经济效益情况分析:

序号 名称 单位 金额(万元) 备注

1 价差收入(毛利润) 万元 240.00

2 土地租金 万元 20.00

3 年运行成本 万元 100.00

4 折旧及摊销 万元 42.4 按10年折旧

5 年税前利润 万元 97.6

5 税金及附加 万元 24.4

6 年利润 万元 73.2

静态投资回收期为:424万元/73.2万元 5.79年。

但是当前投运氢燃料车辆较少,但氢能源在政策利好下不断发展中,当前预测存在较大的困难和不可预见性,测算中取设计负荷的70%进行的估算。

山东省下发国内首个省级氢能中长期规划,山东3677战略打造鲁氢经济带,济南“中国氢谷”、青岛“东方氢岛”两大高地随着《方案》要拔地而起,具有广阔的发展前景和潜力,在当前国家碳达峰、碳中和战略背景下,氢能必将迎来大发展阶段。

娇气的画板
自信的毛豆
2025-09-08 13:05:12
制氢方式决定降成本可能性不高

制氢的常见方式包括:

这是五种常见的制氢方式,第一种的常规燃料指的是天然气,均为不可再生的化石燃料;很显然这种方式不能普及,投入巨大的人力物力和财力去研发电动 汽车 ,初衷正是为了减少对常规能源的依赖,同时去减少二氧化碳排放,可是通过这种方式会产生大量的二氧化碳,会加剧温室效应;且国内天然气的储能比较有限,满足CNG车辆使用都有压力,更别提去制氢了。

甲醇重整制氢也标记哦常见,上世纪应用的很广泛,理论上用甲醇制氢确实能做到无排放,但是甲醇可不像江河水一样随处可取;制备甲醇主要是以一氧化碳、二氧化碳加压催化氢化法合成,使用的原料主要是天然气、石脑油、重油、煤炭和焦炭等,燃料是否清洁不能只看燃料本身,还要看获取或制造燃料是否存在污染,那么用甲醇制氢就不是理想选项了,车辆燃烧甲醇也没有什么意义。

工业副产品制氢主要是从焦炉煤气变压吸附工艺制氢,作为副产物仍旧要去看主体,主体本身不够清洁也就不用讨论氢气的规模化生产与应用了。水铝制氢技术近几年热度较高,但这种制氢的方式同样存在污染的问题,以目前的技术似乎就没有“清洁制氢”的理想方式,至此似乎决定了氢燃料普及无望,唯一的希望就是“电解水制氢”,然而看起来还是不靠谱。

2021年出现过“拉闸限电”,初衷不论是为了去垃圾产能还是对虚拟币行业进行打击,实际上也确实有用电紧张的问题;那么电解水制氢也就行不通了,电解水可以获得氢气,这是个很成熟的制氢方式,但是损耗也特别大。

氢燃料 汽车 不是“用氢气替代天然气”,以燃烧氢气产生热能的“燃气车”,本质实际是电动 汽车 。

氢气加注到氢燃料 汽车 的储氢罐里,增程模式中为消耗氢气发电,电流输入到电池组和电机以实现充电和驱动车辆行驶;这是典型的“增程式电动 汽车 ”,一公斤的氢在车辆上通过燃料电池发电,能转化出大约20kwh左右的电能。普通代步车高速巡航驾驶的电耗都在20kwh/100km以上,中大型车可以达到30kwh左右,也就是说“百公里氢耗可以达到1.0-2.0kg”。

但是用电解水制备一公斤的氢所消耗的电大约为60kwh左右,那么跳过“电制氢、氢转电”的流程,是不是等于这种氢燃料增程电车的实际耗电量达到了60-120kwh/100km左右了呢?实际上就是这样,这是在浪费有限的电能。

有些说法认为光伏发电、电解水制氢、氢燃料增程的方式可行,这看起来也有些天方夜谭;光伏发电的效率不高,按照 计算的话,1 的发电功率能有200瓦左右就算不错。假设一台车要加注5kg的氢,制氢需要耗电300kwh左右,想要在一小时内获得300kwh的电能,需要的是大约1500 的光伏发电板,发电板的成本是相当高的哦。

所以用这种方式制氢的成本也会非常之高,其次储氢罐的成本也非常高,目前每公斤高压储氢的成本在6000元上下,实制造成本极高、储备和运输成本极高,这样车即便量产也用不起,所以氢燃料 汽车 目前看来没有什么前景可言。

天和MCN发布,保留版权保护权利

我们单位就有负责制造氢气的车间,很危险!特爱容易爆炸,有一次爆炸,两百多公斤的阀门飞出好几公里!给附近老百姓的房子都震裂了。我们的技术就是烧煤然后产生一氧化碳在通过反应得到氢气,成本很高。氢气不易储存和运输,还爱爆炸!如果装到 汽车 上,稍微泄露一点,遇到一点打火就容易爆炸!

2022年,即将到来的北京冬奥会刮起了一阵氢能源的旋风。冬奥会的火炬传递,全部采用氢能源。在核心赛区,延庆和张家口投入了700余辆氢燃料大巴车,用于日常的交通运输。

这股“氢旋风”还刮到了A股市场上,氢能源概念红到发紫,刺激个股频频涨停——主营气体运输装备的京城股份,在去年12月份实现了14个涨停板,股价单月飙涨300%;主营高压容器的石重装实现了六连板;开发氢能电源产品的动力源,也在上月下旬连续三个涨停板。

这是氢能源在当下火热的缩影。与其他新能源相比,氢能源不仅储量大、无污染,还兼具零碳排的特性。每单位质量所蕴含的能量更是石油的3倍、煤炭的4-5倍。除此之外,氢能源应用场景广泛,氢燃料电池可以供给重载卡车、有轨电车、船舶、无人机、分布式发电等行业;绿色制氢还可消纳太阳能和风能发电间歇式、状态高低起伏不定的问题。

根据中国氢能联盟的预测,到2025和2035年,我国氢产业产值将分别达到1万亿和5万亿规模。

氢能前景固然广阔,但落地的困境却不容忽视。

在国外,日美的氢能源能占到各自能源总量的10%以上。日本拥有世界上数量最多加氢站,美国则拥有最低廉的氢能源价格,两国燃料电池应用均已经投入商业销售。

反观国内,当前氢能源的占比只有4%。据未来智库测算,2020年我国氢能总成本约为60-80元/kg,距离30元/kg的可商用价格相距甚远。

氢能源价格居高不下,还要追溯到制氢、储氢和运氢三大环节,它们使我国氢能发展面临着开局不利、技术瓶颈与规模化约束等重重难题,令“降成本”困难重重。

那么,氢能降成本难题究竟如何拆解?又如何破解?

01 点歪“ 科技 树”的制氢

中国的能源结构可以归纳为“富煤、贫油、少气”。这种特殊的结构令中国成了名副其实的“煤炭大国”——大量的化工产业平均每天要消耗掉95万吨的煤炭资源,同时产生巨量的化工副产物。

这些副产物中,焦炉气和氯碱等是极其便利的制氢原料。我国氢能源产业发展的初期,就依托化工生产中的副产物作为主供氢源的原材料,以节省制氢投资,降低成本。

借助原生资源的优势,短短几年间,我国就成为世界第一大产氢国。2020年中国氢气产量突破2500万吨,已连续多年位列世界第一。

但成也萧何,败也萧何。

依托化工副产物生产的氢能源,有个致命的问题——不能算作真正的“绿色能源”。

事实上按照制氢工艺的不同,氢能源大体分为 “灰氢”、“蓝氢”和“绿氢”三类。其中,借由对工业副产物进行提纯获取氢气,俗称“灰氢”。通过裂解煤炭或者天然气所得的氢气,便是“蓝氢”。“绿氢”则是通过可再生能源、电解水等方法,实现全程百分之百零碳排、零污染。

“灰氢”和“蓝氢”本质上仍然是用化石燃料提供能量,会产生大量的碳排放。相关研究表明,制造“蓝氢”所产生的碳足迹,比直接使用天然气或煤炭取暖高出20%,比使用柴油取暖高出约60%。而“灰氢”的污染还要高出18%-25%。纵使有碳捕捉与封存技术(CCS)降低碳排放,依旧是杯水车薪。

也就是说,要符合氢能源产业零碳排的核心理念,产业界只能期望于绿氢。

但中国的绿氢产能着实少得可怜。由于我国氢能源产业相较欧美日发展较晚,为了在短期内快速发展,我国优先选择了依托于优势资源煤炭发展氢产业,其代价便是,“绿氢”制备所需的基础建设的投资和相关技术迟迟未有发展。2020年,我国灰氢的占比超过60%,绿氢尚且不足1%。

一笔经济账可以看出绿氢与灰氢的成本差距:

在我国,电解水制氢的平均成本是38元/kg,其中电力成本要占到总成本的50%以上,而使用工业副产物制氢,平均成本仅仅只8-14元/kg。这意味着,工业电价要从当前的0.6kW·h对半折到0.3kW·h以下,绿氢才能在市场上具有竞争性。

但对标欧美日等国家,欧盟的绿氢的成本价低于14元/kg;美国的绿氢在12元/kg左右,而日本的绿氢成本固定在13.2元/kg。

如何让绿氢从奢侈品行列变成经济适用型,成为困扰中国氢能产业的一大难题。

而进一步拆分成本,造成绿氢高成本的两大因素分别是电力消耗量和架设电解槽费用。欧美给出的解答是政府引导+技术革新。

在欧盟,从2020起由政府牵头投资相继安装了6千兆瓦的可再生氢能电解槽,降低企业制造绿氢时电解槽的费用。

在技术上,欧盟摒弃采取工业用电电解水的模式,而使用PEM技术电解制氢。PEM技术的电解池结构紧凑、体积小,这使得其电解槽运行电流密度通常是碱性水电解槽的4倍以上,效率极高,平均每生产1立方米氢气可节省1千瓦时的电力。

想要让这个棵歪掉的“ 科技 树”回到正轨,就需要投入很高的时间成本和资金成本。

去年11月,中石化建成首座PEM氢气提纯设施,其阴极和阳极催化剂、双极板以及集电器等关键核心材料部件均实现国产化,制氢效率达85%以上。而这笔投资的门槛是数十亿,研发周期在两年以上。

宝丰能源也在斥巨资投入绿氢项目。其在互动平台上表示,2021年4月,耗时两年后,公司首批电解水制氢项目全部投产,预计年产2.4亿标方“绿氢”和1.2亿标方“绿氧”。据其公开披露数据,近两年来,宝丰能源在绿氢项目上已投入超过20亿元。

除了两家代表性头部企业以外,绝大多数中下游的企业,仍在生产灰氢。如何将点歪的灰氢 科技 树扭转回绿氢产业,必将需要长时间的产业引导。

02 被“氢脆”卡脖子的储氢

作为一种化学性质活泼的气体,氢气生产之后,需要用一种既安全又经济的方式储存起来。储氢不仅是令我国头疼的难题,而且在全世界,都没有很好的解决办法。

国内的主流方法是采取高压气态储氢。目前,我国储氢瓶的成本造价在27000元左右,同时配套设施的价格在15万元,对标美国,储氢瓶的价格也在22000元左右,略低于中国,但同样高昂。

高成本源于氢顽皮的特性,学术上称作“氢脆现象”。

所谓“氢脆”是指,氢气会在金属晶粒附近聚集起来,破坏金属的结构,让金属胀气变脆。氢气会在金属内累积成18.7兆帕的高压,这是地表气压187倍。更糟糕的是,氢脆一经产生,就消除不了。

氢脆在 历史 上引发过严重的事故。

1943年1月16日的晚上,俄勒冈州造船厂发出巨响,尚未交付的自由轮一下子断成了两半,这在当时引起了巨大的恐慌,众人都以为是纳粹的黑 科技 。

无独有偶,2013年,世界上最宽的桥,旧金山-奥克兰海湾大桥为即将到来的通车进行测试。然而仅仅2周,负责把桥面固定在水泥柱上的保险螺栓就出现了裂痕,96个保险螺栓里有30个坏掉了,使得这座大桥几乎成了废品。

为了缓解“氢脆”的困扰,全球想出了一种特殊的解决方法——低温液态储氢。将氢气压缩成液体,能大幅避开气态氢造成的安全隐患。

学界普遍认为,液氢储运技术是储氢技术发展的重要方向。

但目前,我国液氢储运技术相对落后,缺少大容量、低蒸发率的液氢存储设备的开发。仅有的一些研究,多聚焦在高压气态储氢方面。

例如,2020年,中科院宁波材料所使用高强高模碳纤维作为储氢瓶的内胆,大幅提升了储氢瓶性能。企业方面,京城股份投建了全亚洲最大的高压储氢瓶设计测试中心及生产线。

储氢成本的大山,路漫漫其修远兮。

03 “爹不疼妈不爱”的运氢

作为氢气“出厂”前的最后一步,运氢在整个氢能产业链中地位举足轻重。

然而长期以来,我国的氢气运输产业处于“爹不疼妈不爱”的境地,没有系统性的规划——几乎所有中央和地方层面的战略规划中,都提到了制氢和终端应用环节。

理论上,氢气运输产业分为短途和中长途两种。短途的运输可依赖长管拖车,中长距离的运输对成本敏感许多。其中一种经济的方式,是先将氢气转为高密度的液氢状态再进行运输。

液氢能适应陆运和海运的模式。在陆运上,液氢储罐最大容积可达到200立方米,是长管拖车模式的2倍。海运的液氢储罐最大容积可达到1000立方米,在欧洲和加拿大氢气运输中,就均采用液氢海运的模式。

如此重要的液氢在中国却产能极低。目前,液氢工厂仅有陕西兴平、海南文昌、中国航天 科技 集团有限公司第六研究院第101研究所和西昌卫星发射中心等,主要服务于航天发射, 总产能仅有4t/d, 最大的海南文昌液氢工厂产能也仅2t/d。目前, 中国民用液氢市场基本空白。

而对标欧美,美国是全球最大、最成熟的液氢生产和应用地域,拥有15座以上的液氢工厂, 全部是5t/d以上的中大规模,总产能达到375t/d。此外,亚洲有16座液氢工厂, 日本占了2/3。

另外一种是借由管道运输,但现实是,我国氢气管网严重不足,全国累计仅有100km输氢管道,且主要分布在环渤海湾、长江三角洲等地。在2016年的统计数据,全球共有4542km的氢气管道,其中美国有2608km的输氢管道, 欧洲有1598km的输氢管道。

目前,我国仅仅在《中国氢能产业基础设施发展蓝皮书》提到,期望在2030年建成1000m长的氢气运输管道。而对比国外,管道运输已经开始全面与上下游形成联动。

例如,德国在北莱茵至威斯特法伦州铺设的240km的氢气管道,在给用户供氢的同时这些氢气管道也为工业所用。德国Frankfurt的氢气管道直连加氢站与氯碱电解工厂,可以免去压缩机直接供氢。

总结来说,由于上层规划的缺失,我国氢能运输仍处于“地方割据”的局面,还未形成规模经济。

04 破题关键词:液氢

氢能源产业的相关的难题是多方面的,但抽丝剥茧,氢能源产业迫切需要解决的问题集中在存储和运输之上。

原理很简单,“绿氢”的生产技术可以逐步迭代,但氢气如果不能长期低成本地存储,生产再多的“绿氢”都是徒增消耗。

此外,氢气如果不能便捷运输,氢能的广泛应用就是无从谈起。对照电力行业,正是高压输电技术的成熟,电力才能在全国范围内大规模应用。

而储氢与运氢问题的源头,在于液氢。

无论是存储端的低温业态储氢技术,还是中长距离的液氢运输,都少不了大规模液氢的身影。因此,如何提升液氢产量、开发相关储运设备,是氢能应用降成本的关键。

欧美日氢能产业的发展也能佐证这一点。欧盟早《未来氢能和燃料电池展望总结报告》就提到液氢重要性,同时在液氢方面的投资也从不吝啬。2021年在法国,一个液氢厂的投资就超过1.5亿美元。

美国垄断了全球85%的液氢生产和应用,根据美国氢能分析中心的统计,在液氢的帮助下,美国的氢能源被大量用于石油化工行业和电子、冶金等行业,两大行业平均每年要消耗掉82000吨的液氢。

日本则在液氢加氢站方面走在了前列。液氢加氢站具有占地小,储量大的优势,甚至能完成制氢就发生在加氢站里。

目前,日本有建成142座,占全球加氢站总数的25%,依托于加氢站,日本燃料 汽车 投放使用全球领先,燃料 汽车 的商业化也是全球最好的。

所以,中国的液氢亟需从当前军用、航天领域,走向大规模民用环节。

思考欧美日液氢的发展历程,我们有许多借鉴之处,概括而言,包括三点:

一、政策引导,为相关工作提前铺好路。2021年5月,国家相关部门陆续出台了《氢能 汽车 用燃料液氢》、《液氢生产系统技术规范》和《液氢贮存和运输技术要求》三个文件,制定了三项国家标准,这将对液氢发展起到关键性引领作用。

二、龙头企业牵头,建成大规模氢液化系统。液氢生产工厂的建设成本高,必须由龙头企业率先投产,提高生产规模,才能有效降低单位成本。

三、系统整合相关资源,发挥产学研机制作用。例如,建立政府、研究机构和企业的氢能源产学研合作平台,将科研产品第一时间应用到实际生产当中。

05 结语

世界已进入双碳时代。国际氢能委员会预计,2050 年氢能源将占全球能源消耗总量的18%,催生年产值2.5万亿美元的产业。

世界各国对氢能源越发重视,欧美日各国氢能源产业的规划已经做到了2050年后,并且还在迭代更新;而在我国,自2021年氢能被列为“十四五”规划重点发展产业后,国家和各地政府迅速出台了400多项政策,规划了2025年之前的产业发展目标。

一场事关产业政策、技术竞技的产业争霸赛已经打响。

高兴的篮球
哭泣的心情
2025-09-08 13:05:12

文/于广欣 纪钦洪 刘强 肖钢 熊亮,中海油研究总院,现代化工

氢是宇宙中最丰富的元素。氢能作为二次能源是最佳碳中和能源载体,可用于发电、发热、交通燃料,具有零污染、热值高、可存储、储量足、应用广等优点。氢的储能属性使其具备跨时间和空间灵活应用的潜力,能与可再生能源有效衔接,助力可再生能源消纳与更大规模发展。正是基于氢的优点与潜能,在应对气候变化、全球能源转型的大背景下,国际上普遍认为氢能将成为未来能源系统的关键节点,在全球能源转型及提高能源系统灵活性方面发挥关键作用。而近些年全球资本、技术、舆论等因素正共同催生本轮氢能热潮。

1 氢能产业发展现状

本轮氢能热潮起于欧美日发达国家,并逐步扩展至全球。欧盟、美国、日本已将氢能纳入国家能源发展战略,并出台产业发展规划和支持政策。美国重视氢能产业链关键技术培育,应用方面固定式燃料电池发电、氢燃料电池叉车和 汽车 有绝对优势。欧盟实现净零排放,氢能是其重要抓手,德国制定《国家氢能战略》支持可再生能源制氢、氢基合成燃料、燃料电池产业与技术发展。日本、韩国发布详细的发展路线图,政策导向明确,在燃料电池车、家用燃料电池、加氢站网络和氢技术开发处于领先。国际氢能理事会发布的《Hydrogen Scaling Up》报告预测,2050年氢能约占全球能源需求的18%,工业、交通、建筑供暖供电是氢能应用重点领域。

国内将氢能定位战略能源技术,政策利好逐步释放。2019年氢能首次被写入政府工作报告,2020年《中华人民共和国能源法(征求意见稿)》第一次将氢能列为能源范畴,同年氢能纳入年度国民经济和 社会 发展计划,并启动燃料电池 汽车 示范推广及国家氢能产业发展战略规划编制。国家层面从立法、顶层设计、示范应用等层面给予氢能产业持续的政策支持,统筹规划、引导、规范氢能产业 健康 持续发展。在持续稳定的政策环境下, 社会 资本、产业链上下游相关企业、地方政府等多因素叠加催化下,近几年国内以加氢站为代表的氢能基础设施(表1),制-储-运-用产业链关键技术与装备得到发展,初步形成珠三角、长三角、京津冀等氢能产业热点区域,目前产业整体处于技术研究与示范应用阶段。根据公开资料整理,目前国内氢燃料 汽车 超过6000辆,在运营加氢站46座。《中国氢能源及燃料电池产业白皮书(2019)》预测,2035年氢能占国内终端能源总量5.9%,加氢站数量1500座,燃料电池车保有量130万辆。

面对全球应对气候变化政策倒逼,Shell、Total、BP等欧洲石油公司相继提出2050年“净零碳排放”目标,押注绿色低碳能源成为普遍选择,其中布局绿色氢工厂、加氢站等氢能业务是重点方向。至今,壳牌氢能业务已在美国、日本、德国投资超过24座加氢站,并与道达尔等企业合作在德国加速推进H2 Mobility项目(预期加氢站建设规模超过400座)。国内石化企业在发展氢能方面,具有氢源和销售网络的优势,中国石化等已开展制氢、加氢站及储运设施网络的规划和建设,2018年中国石化加入国际氢能委员会,2019年与法液空开展氢能合作,采用“油氢电一体化”新模式,在现有加油站基础上配建加氢站,目前已在广东、上海、浙江建成油氢合建站4座。

2 产业链技术与成本瓶颈分析

全球氢能及氢燃料电池车示范应用进展显著,但氢能产业涉及制、储、运、用多个环节,产业链长,技术复杂,现实中氢能大规模推广应用仍面临氢燃料电池制造成本高、加氢站设施薄弱、终端用氢成本高等瓶颈。

2.1 技术因素导致制造氢燃料电池成本较高

氢燃料电池系统由电堆、供气系统、控制系统等部件共同构成。电堆是将化学能转化为电能的核心部件,电堆成本占氢燃料电池系统总成本60%左右(见图1)。造成电堆成本居高的主要因素包括:膜电极、电堆加工制造过程及使用环境要求。而电堆技术的瓶颈也导致氢燃料电池系统成本较高。

膜电极是电堆的核心部件,由催化剂、质子交换膜、碳纸组成,其成本约占氢燃料电池系统的36%。目前商用催化剂为铂/碳,其成本约占氢燃料电池系统成本的23%,是成本的主要来源。质子交换膜、碳纸材料成本也较高,国内主要依靠进口,在性能和批量化上与国外还存在差距。膜电极已经发展到第三代有序化膜电极技术,趋势是降低大电流密度下的传质阻力,进一步提高燃料电池性能,降低催化剂用量,使膜电极的材料成本大幅降低。

均一性是制约电堆性能的重要因素,也是影响制造成本的关键。电堆通常由数百节单电池串联而成,均一性与材料的均一性、部件制造过程的均一性有关;特别是流体分配的均一性,不仅与材料、部件、结构有关,还与电堆组装过程、操作过程密切相关。由于操作过程生成水累积引起的不均一、电堆边缘效应引起的不均一等,电堆中一节或少数几节单电池的不均一会导致局部单节电压过低,限制了电流的加载幅度。设计、制造、组装、操作控制等环节产生的不均一性直接影响电堆的比功率,进而影响电堆成本。

2.2 氢燃料电池车成本较高限制了商业化销售规模

车用燃料电池系统成本高是造成氢燃料电池车售价高的主要根源。由电堆、氢瓶和空压机等主要部件组成的燃料电池系统是氢燃料电池车的核心,约占氢燃料电池车成本的50%。其中除电堆成本高外,供氢系统、空气供给系统成本也较高,技术上与国外还存在较大差距。

氢燃料电池车尚未规模化生产,市场销量有限。目前,全球最大的氢燃料电池车企业——丰田公司现有生产能力仅3000辆/年,2020年也只能达到3万辆/年,本田、现代、日产、上汽等车企虽相继推出商业化车型,但市场销量依然有限(见表2)。氢燃料电池发动机企业亿华通与宇通客车、福田 汽车 、中通客车等车企合作,建设了国内首条自动化氢燃料电池发动机生产线,年产能也仅1万台。生产规模小导致整车成本较高,如丰田公司官网上2020款Mirai售价为58 550美元,是混合动力2020款PRIUS售价(24325美元)的2.5倍,远高于消费者预期。

2.3 加注车辆少及设备国产化仍是早期加氢站发展的主要限制因素

加氢站的建设与运营仍面临发展初期的困难。新建加氢站及将现有加油站改造为加油加氢站难度较大。新建加氢站建设标准主要采用《GB 50516—2010加氢站技术规范》,其对氢气储运安全和建站选址条件的要求较高,特别是加氢站的氢气工艺设施与站外建筑物、构筑物的防火距离。加油加氢合建站设计要符合《GB 50156 汽车 加油加气站设计与施工规范》,依托现有加油站设施进行改造困难较大,特别是大城市、人口密集地区问题更加突出。

加氢站的网络布局与氢燃料电池车的市场规模依然是产业初期互相掣肘的因素。纯电动车推广和充电桩建设也曾经面临过同样问题,加注车辆较少,限制了加氢站的良性滚动发展。目前国内建设和在运营加氢站分别是66座和46座,分布在19个省市,其中广东、上海、江苏、山东是加氢站主要集中地区(见表3)。目前国内加氢站数量与规划2020年建设100座、2030年建成1000座还有较大差距。国内最早示范运营的上海安亭、北京永丰加氢站始终处于加氢车辆少的尴尬局面。德国H2 Mobility项目已建成的加氢站也存在车少的状况,但仍在推进2023年建设400座加氢站网络的目标,试图解决产业初期的问题。

加氢站设备国产化还面临瓶颈,氢气压缩机、加注机等关键设备目前仍以进口为主。根据公开资料整理,加注量1000kg/d的35MPa加氢站建设成本高达1500万元,高出加油站数倍。其中储氢装置、压缩机、加注机、站控系统等占加氢站总投资约60%,其中氢压缩机占比最高,约为30%。

2.4 终端用氢成本高,制储运关键技术亟待突破

目前,氢作为燃料的价格仍远高于化石燃料。氢燃料电池车的用氢成本包括从制、储、运到加注的全过程成本。与传统燃油车相比,氢燃料电池车百公里消耗的燃料费用要高于燃油车。根据国内示范项目的运行经验初步估算,氢燃料电池车的燃料费用约为燃油车的1.8倍左右。氢燃料终端售价虽高于化石燃料,但国内外仍通过车企、政府补贴方式来弥补氢燃料价格的劣势,推动氢燃料电池车产业发展。

化石能源制氢技术成熟、规模大、成本低(见表4)。国内现有工业制氢产能为2500万t/a,氢气来源构成主要是煤制氢、天然气制氢、石油制氢、工业副产氢以及电解水制氢,占比分别是40%、12%、12%、32%和4%。在氢能及氢燃料电池车产业发展初期,化石能源制氢以及工业副产氢是低成本氢燃料的主要来源,有利于推动产业发展。但化石能源制氢CO2排放量大,利用可再生能源制取低成本氢气是业界一直瞄准的方向和攻关重点,最终目标是氢气价格与化石燃料价格持平。

绿色、低成本制氢技术是氢能产业发展的关键。质子交换膜(PEM)水电解制氢技术在总体效率、工作电流密度、氢气纯度、产气压力以及动态响应速度等方面优于碱性水电解制氢技术(详见表5),能适应可再生能源发电的波动性,是氢能产业链发展的重点技术之一,但目前面临采用铂催化剂、电耗高而导致的制氢成本较高问题。突破铂催化剂、电堆等关键技术,进一步提高电流密度、系统能效、降低投资是PEM制氢技术的重点开发方向。

目前国内氢储运标准、规范不完善,导致氢燃料只能以气态方式运输,限制了加氢站的技术选择。液氢储运在国内仅用于航天军工领域,商用加氢站未有液氢供应的标准和规范。国家层面正通过立法将氢能作为能源进行管理,并制定商用液氢制、储、运、用相关标准,2019年已完成三项液氢国家标准征求意见稿,将填补国内民用领域液氢标准空白,由此可能带来氢能全产业链技术突破,从而降低终端用氢成本。

液态氢密度高达70.6g/L(-253 ),相同有效装载容积下液氢储运能力远高于高压储氢。尽管氢液化的能耗比氢压缩的能耗高1倍以上,但在运输环节液氢的运输成本只有高压氢的1/5~1/8。国外仍采用高压氢气管束车作为主要运氢方式,气态氢限制了储运能力,详见表6。

3 思考与建议

氢能及燃料电池产业已进入早期示范应用阶段,大规模商业化推广仍需解决产业链关键环节的技术与成本瓶颈。具体来讲,加快氢能及燃料电池产业商业化步伐需要政策、规划、标准规范、技术等因素协同发力。

持续稳定的产业支持环境,配套相应的产业补贴,对早期氢能产业发展至关重要哦。国家应尽快启动氢能及燃料电池产业顶层设计,编写国家产业发展战略规划,制定产业发展实施方案,统筹规划氢能产业重点发展区域,明确产业链制、储、运、用环节的发展路径。技术方面,加强绿色低碳制氢、高效低成本燃料电池、氢压缩机、加氢机等产业链关键技术、核心零部件重点攻关,加快设备国产化,完善产业链标准规范。具体实施建议国家主导设立氢能 科技 重大项目,联合企业、高校科研院所,集中力量突破核心技术、材料、装备及关键零部件,打造自主技术、材料、设备生态链,进一步降低成本,推动产业 健康 快速发展。

展望未来绿色氢气制取、储运、加注与燃料电池技术突破以及氢能基础设施完善与普及,将激发氢能及燃料电池产业应用场景多元化与规模化应用,推动氢能在全球能源转型中担当更加重要的角色。

全国能源信息平台联系电话:010-65367702,邮箱:hz@people-energy.com.cn,地址:北京市朝阳区金台西路2号人民日报社

飘逸的季节
笑点低的音响
2025-09-08 13:05:12
化石燃料有限的储量使人类正面临着前所未有的能源危机。同时其燃烧产物被排放到大气中加速了温室效应。氢气具有含量丰富、燃烧热值高、能量密度大、热效率高、清洁无污染以及输送成本低以及用途广泛等优点川,被认为最有可能成为化石燃料的替代能源。 氢气是一种理想的能源,具有转化率高、可再生和无污染等优点。与传统制氢方法相比,生物制氢技术的能耗低,对环境无害,其中的厌氧发酵生物制氢已经越来越受到人们的重视。主要介绍了厌氧发酵生物制氢技术的方法和机理,分析了生物制氢的可行性,结合国内外研究现状提出了未来的发展方向。 全球石油储量不断减少。最新研究表明:按目前全球消费趋势,球上可采集石油资源最多能使用到21世纪末。石化、燃煤能源使用,还带来严重大气环境污染,人们日益感觉到开发绿色可再生能源急迫性,研究和开发新能源被提到紧迫议事日程。2000年7—8月美国《未来学家》杂志刊登了美国乔治·华盛顿大学专家对21世纪前10年内十大科技发展趋势预测,其中第二条是燃料电池汽车问世,福特和丰田公司实验性燃料电池汽车将2004年上市。第九条是替代能源挑战石油能源,风能、太阳能、热、生物能和水力发电将占到全部能源需求30%。这两条实际上都是新型能源开发利用。我国“十五”国家重点开发技术项目中也将新型能源开发利用放极为重要位置。目前,人们对风能、太阳能开发已经有了相当研究,并已到了进行加以直接使用阶段,生物能研究也取了重要进展,如何将所获能量储存起来,如何将能量转化为交通工具可利用清洁高效能源,是一亟待解决重要课题。 内容摘要

2生物制氮技术研究进展

2.1传统制氢工艺方法

传统制氢工艺方法有:电解水;烃类水蒸汽重整制氢方法及重油(或渣油)部分氧化重整制氢方法。电解水方法制氢是目前应用较广且比较成熟方法之一。水为原料制氢工程是氢与氧燃烧生成水逆过程,提供一定形式一定能量,则可使水分解成氢气和氧气。提供电能使水分解制氢气效率一般75%-85%。其中工艺过程简单,无污染,但消耗电量大,其应用受到一定限制。目前电解水工艺、设备均不断改进,但电解水制氢能耗仍然很高。烃类水蒸汽重整制氢反应是强吸热反应,反应时需外部供热。热效率较低,反应温度较高,反应过程中水大量过量,能耗较高,造成资源浪费。重油氧化制氢重整方法,反应温度较高,制氢纯度低,利于能源综合利用。

2.2新型生物制氢工艺发展

氢气用途日益广泛,其需求量也迅速增加。传统制氢方法均需消耗大量不可再生能源,不适应社会发展需求。生物制氢技术作为一种符合可持续发展战略课题,已世界上引起了广泛重视。如德国、以色列、日本、葡萄牙、俄罗斯、瑞典、英国、美国都投入了大量人力物力对该项技术进行研究开发。近几年,美国每年生物制氢技术研究费用平均为几百万美元,而日本这研究领域每年投资则是美国5倍左右,,日本和美国等一些国家为此还成立了专门机构,并建立了生物制氢发展规划,以期对生物制氢技术基础和应用研究,使21世纪中叶使该技术实现商业化生产。日本,由能源部主持氢行动计划,确立最终目标是建立一个世界范围能源网络,以实现对可再生能源--氢有效生产,运输和利用。该计划从1993年到2020年横跨了28年。

生物制氢课题最先由Lewis于1966年提出,20世纪70年代能源危机引起了人们对生物制氢广泛关注,并开始进行研究。生物质资源丰富,是重要可再生能源。生物质可气化和微生物催化脱氢方法制氢。生理代谢过程中产生分子氢,可分为两个主要类群:

l、包括藻类和光合细菌内光合生物;Rhodbacter8604,R.monas2613,R.capsulatusZ1,R.sphaeroides等光合生物研究已经开展并取了一定成果。

2、诸如兼性厌氧和专性厌氧发酵产氢细菌。目前以葡萄糖,污水,纤维素为底物并不断改进操作条件和工艺流程研究较多。中国此方面研究也取了一些进展,任南形琪等1990年就开始开展生物制氢技术研究,并于1994年提出了以厌氧活性污泥为氢气原料有机废水发酵法制氢技术,利用碳水化合物为原料发酵法生物制氢技术。该技术突破了生物制氢技术必须采用纯菌种和固定技术局限,开创了利用非固定化菌种生产氢气新途径,并首次实现了中试规模连续流长期生产持续产氢。此基础上,他们又先后发现了产氢能力很高乙醇发酵类型发明了连续流生物制氢技术反应器,初步建立了生物产氢发酵理论,提出了最佳工程控制对策。该项技术和理论成果中试研究中到了充分验证:中试产氢能力达5.7m3H2/m3.d,制氢规模可达500-1000m3/m3,且生产成本明显低于目前广泛采用水电解法制氢成本。

生物制氢过程可以分为5类:

(1)利用藻类青蓝菌生物光解水法;

(2)有机化合物光合细菌(PSB)光分解法;

(3)有机化合物发酵制氢;

(4)光合细菌和发酵细菌耦合法制氢;

(5)酶催化法制氢。

目前发酵细菌产氢速率较高,对条件要求较低,具有直接应用前景。但PSB光合产氢速率比藻类快,能量利用率比发酵细菌高,且能将产氢与光能利用、有机物去除有机耦合一起,相关研究也最多,也是最具有潜应用前景方法之一。生物制氢全过程中,氢气纯化与储存也是一个很关键问题。生物法制氢气含量通常为60%-90%(体积分数),气体中可能混有CO2、O2和水蒸气等。可以采用传统化工方法来,如50%(质量分数)KOH溶液、苯三酚碱溶液和干燥器或冷却器。氢气几种储存方法(压缩、液化、金属氢化物和吸附)中,纳米材料吸附储氢是目前被认为最有前景。

2.3目前研究中存问题纵观生物技术研究各阶段,比较而言,对藻类及光合细菌研究要远多于对发酵产氢细菌研究。传统观点认为,微生物体内产氢系统(主氢化酶)很不稳定,进行细胞固定化才可能实现持续产氢。,迄今为止,生物制氢研究中大多采用纯菌种固定化技术。

,该技术中也有不可忽视不足。首先,细菌包埋技术是一种很复杂工艺,且要求有与之相适应菌种生产及菌体固定化材料加工工艺,这使制氢成本大幅度增加;第二,细胞固定化形成颗粒内部传质阻力较大,使细胞代谢产物颗粒内部积累而对生物产生反馈抑制和阻遏作用,使生物产氢能力降低;第三,包埋剂或其它基质使用,势必会占据大量有效空间,使生物反应器生物持有量受到限制,限制了产氢率和总产量提高。现有研究大多为实验室内进行小型试验,采用批式培养方法居多,利用连续流培养产氢报道较少。试验数据亦为短期试验结果,连续稳定运行期超过40天研究实例少见报道。即便是瞬时产氢率较高,长期连续运行能否获较高产氢量尚待探讨。,生物技术欲达到工业化生产水平尚需多年努力。

3、展望氢是高效、洁净、可再生二次能源,其用途越来越广泛,氢能应用将势不可当进人社会生活各个领域。氢能应用日益广泛,氢需求量日益增加,开发新制氢工艺势必行,从氢能应用长远规划来看开发生物制氢技术是历史发展必然趋势。

开发中国生物制氢技术需要做到以下政策和软件支持:

(1)励大宣传。人是生物能源生产主体和消费主体,有必要舆论宣传加强人们对生物能源认识;

(2)加大政府投资和扶持。新生物能源初始商业化阶段要进行减免税等优惠政策;

(3)借鉴国外经验。充分调动方和工业界积极性八

(4)加强高校对生物能源教育及研究。人们对生物能源认识不断加深,政府扶持力度加大和研究深人,生物制氢绿色能源生产技术将会展现出它更大开发潜力和应用价值。

本文出自:广州灵龙电子技术有限公司,制氢、氢燃料电池(www.liongon.com)