汽车ota升级是什么意思?
汽车ota升级指空中下载技术固件升级和软件升级。
汽车ota升级指空中下载技术固件升级和软件升级。OTA不仅带来更便捷的车辆升级途径,也让消费者感受到更加智能便捷的用车体验。OTA英文全称是Over-the-Air Technology,即空间下载技术的意思。
OTA升级对于智联网汽车的意义还有更多:
1、快速修复系统缺陷。传统汽车在用户行驶验证中出现了系统方面的缺陷,而这些问题的解决办法只有一个,汽车厂家启动召回程序,在用户收到召回程序后返厂进行系统的统一升级。
而OTA技术则可以通过远程快速的通过数据包的形式完成缺陷的修复,大大避免了持续数月的进厂召回带来的风险。
2、节约双方的时间和金钱。传统的召回是需要走内部及外部审批的过程,时间和金钱的成本都非常高,通过OTA升级的形式,可以大大降低由于软件缺陷带来的召回成本。
OTA升级的注意事项:
1、OTA的出现,让4S店在汽车升级过程中不再是必要环节,而整个OTA的架构和流程也并不复杂,通过生成更新包、传输更新包和安装更新就可以实现。
2、无论是特斯拉,还是很多传统车企,甚至是新能源车企都将越来越看重OTA。有些是应用在地图、应用程序、信息娱乐系统等方面的更新,有些已经扩展到了电子控制单元。
作者:陈宇洋
随着 汽车 新四化进程的加速,智能 汽车 的概念开始走到台前。蔚来、小鹏、威马等一众新势力也均为自家产品打上了“智能 汽车 ”的标签。
虽然各家产品不同,智能化取向不同,但都会以同一个卖点进行营销宣传——整车OTA能力。大家都心照不宣的表示:“可以通过后期OTA升级增加或开放全新的智能化功能”。
所以,OTA究竟是何方神圣?
先跟大家聊聊OTA这个词汇代表着的含义。
有人会问:“OTA是个啥东西?”
“嗨,我知道!”
有网友解读到“OTA乃是Online Travel Agency的缩写,也就是在线旅行社的意思。“当然了,OTA这个缩写有很多不同的解释,在线旅行社自然也不会是今天的答案。
逐字解释一下 汽车 领域的OTA。OTA乃是Over the Air的简写,其含义空中下载技术。我们可以简单理解为通过信息传输的方式对产品进行软件优化。其最早是安卓系统在手机上推出的一个便捷技术,使手机软件升级不再依赖于连接电脑、下载然后再更新的复杂操作。更白话的形容就是你手边正在使用的智能手机版本升级、王者荣耀的更新都可以称之为OTA。
以现阶段来说, 汽车 OTA可以分为两大类:Firmware over the air,简称FOTA(硬件在线升级)和Software over the air,简称SOTA(软件在线升级)。
以特斯拉为例,这家公司可以通过FOTA对BMS、刹车等车辆基础硬件和 汽车 底层安全相关的功能进行OTA升级,而SOTA方面可以对车机 娱乐 系统进行OTA。
目前以造车新势力为主的智能 汽车 ,或是智能网联 汽车 都可以理解为是一种“软件” 汽车 。
和传统燃油车不同,新能源 汽车 并没有那么复杂的机械结构,原本成千上万的机械零部件正在逐步被更复杂的电子电气化架构所取代。 如果说传统燃油车就好比机械手表,智能网联 汽车 就好比Apple Watch。机械手表调整时间需要准确的时间,还需要手动去调。而Apple Watch则可以实时同步线上的标准时间。
其实, 汽车 电子化的趋势一直都保持着高速发展。举一个简单的例子,大概10年前, 汽车 的油门还是拉线式,通过纯机械连接的方式控制节气门的开度。5年前,传统燃油车的油门就已经全部更换为电子式,通过电子信号来控制节气门的开度。
而来到了新能源 汽车 上,其动力系统本身就是结构更简单的电动机,可以通过电子信号直接控制电机的转数进而控制车速。也可以说,新能源车的所有硬件都是通过软件程序进行控制的。所以,新能源 汽车 是可以通过OTA的形式,改变电机的输出模式,增加辅助驾驶功能的丰富性,甚至通过线上的模式解锁动力电池中藏电的比例。
之所以新能源车更容易实现整车OTA,其主要原因是 新能源车型在设计之处采用集中式的电子电气架构。而现阶段燃油车则大部分都采用了分布式电子电气架构。 当然,同样的整车OTA其实在燃油车上也可以实现。比如凯迪拉克CT5,通过重新设计整车电子架构也实现了同样的OTA能力。
「 Q3:OTA的弊端有哪些?」
汽车 OTA要比手机OTA复杂的多,首当其冲的就是安全问题。
根据360智能网联 汽车 安全实验报告提供的数据来看: 电子电气架构从分布式向集中式衍变,软硬件将会解耦,硬件不再被某一特定功能所独享,共享的硬件将面临非法调用、恶意占用等安全威胁。尤其是未来ECU的功能整合程度会进一步提升,代码量增多的同时也会导致漏洞的增长。
所以,OTA安全大体可分为三个部分。 第一是云端服务器的安全,第二是车端安全,第三是车与云之间的通讯安全。 在这三个环节中,软件内容不仅需要认真还需要进行加密,从而保证数据在传输过程中不会被黑客所窃取。一旦黑客在 汽车 OTA升级的过程中利用这些漏洞对升级包进行篡改或是植入后门软件等恶意程序,后果是不堪设想的。黑客还有可能会利用漏洞对升级包进行解析从而获取信息。
所以,OTA的最初目的不是为了改善出行体验,而是为了减少安全漏洞。
聊到整车OTA,就不得不提及其中的鼻祖:特斯拉。
与传统车企采用的分布式电子电气架构不同,特斯拉在设计之初就已经考虑周全。通过采用集中式的电子电气架构,特斯拉的产品可以实现整车OTA功能,让每一辆特斯拉都能不断的增加新功能。同时,通过对于底层动力系统相关控制器的升级,其产品的性能还可以获得升级,并持续改善用户体验。甚至,他们还能通过预留的硬件,在后期的OTA中开放一些新功能。
这也是特斯拉的高明之处。
可以说, 整车OTA代表了一种未来的趋势。 通过整车OTA,用户不仅可以升级车载 娱乐 系统,还可以对全车其他模块进行升级,例如辅助驾驶、动力表现、制动系统、悬架系统、甚至是延长续航里程等等。与传统燃油车不同,特斯拉可以说是一辆可以不断进化的 汽车 。
还记得曾有一位特斯拉车主说过:“特斯拉给我带来了从未有过的用车体验,每一次升级之后总会有些新功能出现,甚至有种时常在开新车的感受。”
这也是整车OTA带来的另一个优势,与传统 汽车 相比,在消费者购买完成之后,与 汽车 制造商的关系也就此终结。除了质保之外,消费者更多的是与一个相对独立的4S体系打交道。而整车OTA的存在, 不管是车辆软件出现故障还是更新,都可以通过OTA的方式解决。相较于传统的线下召回升级的模式来说,整车OTA不单单能减少维护成本,更是提升用户体验。
在安全性方面,特斯拉也走在了前列。
以Model 3为例,其中央集中式电子电气架构中,只有CCM(中央计算模块)、BCM RH(右车身控制模块)、BCM LH(左车身控制模块)三大主要控制模块,并且具有高度可扩展的特性。
特斯拉还将网络安全纳入架构设计的过程中,同时通过设立“安全研究员名人堂“漏洞悬赏计划,鼓励白帽黑客们对其架构进行测试和验证,不断的修复被爆出的安全问题,以此来达到有效减少网络安全威胁的目的。
OTA将会是未来 汽车 发展的必然趋势。
【太平洋汽车】OTA全称为Over-The-Airtechnology(空中下载技术),通过移动通信的接口实现对软件进行远程管理,传统的做法到4S店通过整车OBD对相应的ECU进行软件升级。
首发于汽车ECU开发写文章登录关注公众号:汽车ECU开发OTA全称为Over-The-Airtechnology(空中下载技术),通过移动通信的接口实现对软件进行远程管理,传统的做法到4S店通过整车OBD对相应的ECU进行软件升级。OTA技术最早2000年在出现日本,目前通过OTA方式升级软件广泛应用于智能手机。
对于汽车而言,OTA最早出现特斯拉2012年推出的ModesS车型上,其更新范围涉及自动驾驶、人机交互、动力、电池系统等领域,通过OTA的方式特斯拉完成钥匙卡漏洞、续航里程提升、提高最高速度、提升乘坐舒适度等功能或者漏洞的修复。
2016年11月,丰田宣布将采用OTA技术更新车辆ECU软件,并讨论了上市车辆通过OTA新增功能的可能性。
2017年5月福特首次通过OTA技术为搭载Sync3车载系统的车型新增功能。
国内以小鹏、蔚来为代表的新造车势力也将整车OTA作为自身产品智能化的体现,传统造车企业也逐步在新车型上提供OTA功能。
汽车为什么要OTA随着汽车“电动化,网联化,智能化,共享化”新四化的推进,其电子化程序也越来越高,如图1所示,汽车电子成本占整车成本逐步提升,新能源车比传统车明显提升很多。“软件定义汽车”已成为汽车的发展趋势,汽车软件的复杂度也随之大增,软件故障的修复以及个性化定制需求的更新,仅通过4S升级难以给予用户最佳的体验。那OTA又可以带来哪些好处呢?
1、OTA远程为用户修复软件故障,大幅度缩短中间步骤的时间,使软件快速到达用户,减少汽车制造产商和用户的成本,包括汽车制造产商的召回成本,用户的时间成本;
2、OTA可以为车辆增加新功能,增加用户的新鲜感;
3、OTA拓宽了“服务”和“运营”的范畴,增加车辆的附加价值。
与此同时,OTA也带来了新的挑战,由于车载ECU众多,网络复杂,一旦车辆与外界建立通信,带来了原本封闭的网络受到入侵的可能性,怎么保证车辆安全,建立安全防护措施是OTA的重要课题。
图1汽车电子成本占整车成本比例OTA设计要求OTA要求主要从安全、时间、版本管控、异常处理方面考虑,具体为:
1、软件升级时间最短,就是确保车辆无法行驶的时间最短,车载ECU通常是通过CAN或Ethernet刷写,在带宽允许的情况下,尽可能采取并行刷写模式,选取刷写时间最长的节点优先处理等设计原则。
2、版本管控版本管控对于OTA来说很重要,因为车辆上ECU众多,不同ECU有不同版本的软件,另外产商的车型众多,不同车型ECU的需求有不同,版本也存在差异。
(图/文/摄:太平洋汽车问答叫兽)
如今,买车的消费需求已经获得了极大的升级,就像曾经我们说配置,有CD机,有ESP就是高级车;但如今如果一台车没有互联大屏、没有基本的主动安全能力,估计可能月销量一两百台就是唯一的下场。
这里面的原因是两方面的,一是确实电子配置的产业升级速度非常快,一台车要通过中控大屏实现智能互联能力其实成本并不高,再加上如今电子消费已经深入到了我们生活的方方面面,如果一台车做不好互联,只能说确实在人机交互上有明显短板,毕竟没有考虑车主实际用车环境。
而另一方面原因, 汽车 大概是目前生活所能接触的所有商品里,为数不多完全没有参与通货膨胀的玩意儿了,一台当年10万的车,换代到今天差不多也还是10万元左右,但是问题在于当年的10万和今天的10万完全是两个概念,如果我们再考虑到如今消费者的月收入增长速度,可能在未来可见的两三年里,会有大把的居民月入破万,而那时,购车的资金支出,可能确实就会和今天买个电脑或者手机差不多了。
当然,面对 汽车 消费愈发电子化的大趋势, 汽车 厂商们也在身体力行,如今愈来愈多的车型在具备基础互联网络的能力之上,开始学习特斯拉宣传自己的“智能 汽车 ”具备OTA能力了。
只是作为车评人,笔者觉得还是有必要告诉你一件事:不要被厂商的宣传蒙蔽了双眼,OTA和OTA之间是有区别的,可能A车和B车都说自己能OTA,但A是真正意义上的OTA,而B只是一个没有卵用的噱头。
为何OTA和OTA有区别
在说区别之前,我们还是先复习一下,什么是OTA。
“空中下载(OTA)是通过移动通信的空中接口实现对移动终端设备及SIM卡数据进行远程管理的技术。”
换句话说,OTA就是通过网络数据的传输,让设备能够获得最新的数据,也就是一种更新。
至于为什么会有区别,其实就在于OTA是大类,其中又分为了FOTA和SOTA,两者统称为OTA,所以这里面就会存在营销宣传上的猫腻,比如两家车企都宣传自己车型OTA,但一家是FOTA,另外一家是SOTA,这里面很明显就不一样了。
至于具体的区别,我们先说前者FOTA:Firmware Over The Air/固件空中升级,指通过云端升级技术,为具有连网功能的设备:例如手机、平板电脑、便携式媒体播放器、移动互联网设备等提供固件升级服务;刷过手机的朋友们应该对“固件版本”印象深刻,手机中的固件升级即可称为 FOTA;像是 汽车 领域,名气最大的特斯拉OTA升级,其实就是FOTA,能够对包括 娱乐 系统和中控大屏之外的所有整车各项控制器、包括域控制器进行独立的OTA升级,甚至能够通过OTA升级改变续航能力,加速与刹车能力等等,功能非常强大。
而至于后者SOTA,这也是目前大部分传统车企造车时宣传的卖点,全称是Software Over The Air/软件空中升级,偏向于应用软件升级,更多的只是中控大屏机配套功能的升级,比如导航地图的升级, 娱乐 软件的升级等等,至于命名,只是他们为了能够蹭上特斯拉OTA的热度,也将这一功能称为OTA升级。
所以对“智能 汽车 ”真正有需求的消费者而言,FOTA才是真正的OTA,而SOTA只是李鬼而已。笔者这里也有一份清单,除了未上市小鹏 P7、福特 Mustang Mach—E 确定是FOTA的车型之外,目前市面上能够买到实现整车FOTA 功能的车型只有 7 款,分别是蔚来 ES6/ES8、特斯拉 MODEL S/X/3、理想 ONE以及小鹏 G3,您完全可以按照这个清单来选择。
当然,还有一些例外的车型,比如比亚迪的王朝系列新能源车,其OTA能力介于SOTA和FOTA之间,性质属于FOTA:虽不能像特斯拉一样进行完整的整车OTA,但是此前又成功的通过OTA实现原来没有的车道保持功能,涉及到控制层面大更新,整体能力还是在SOTA之上的。
至于原因,我们下段来说。
电动化与核心零部件自研才是整车OTA的根基
通过上一段,聪明的您应该已经发现问题了,好像能够实现FOTA的都是电动车型,包括纯电动、PHEV和增程式,但是没有纯燃油车以及HEV混动和48V轻混;同时,除比亚迪之外,实现FOTA的都是造车新势力,比亚迪虽是传统车企,也有FOTA能力,但是不完全,属于“不完整的FOTA”。
那么,为何传统车企目前为止还没有量产车型做到这一点呢?
两个方面,一是电动化的进程不足,二是核心零部件基于供应商,没有开放互信。
第一个方面的解读,是燃油车很难做到FOTA,因为相比电动车简单的“三电”架构,燃油车的整体机械数据更加固定,比如发动机的数据,变速箱的数据等等,在每一个环节上都有固定的物理指标,硬件匹配时就是基本按照最大值做的,虽然也能通过ECU和TCU的数据改写来获得全新驾控感受,但是被物理条件制约,难以做到电动车这般的OTA改变能力,毕竟电动车没有变速箱,核心就一驱动电机和电控单元。
而至于第二个方面,则是涉及到控制权限,在传统造车链条中,很多主机厂更像是一个组装厂,比如这个核心控制零部件源于某供应商,那个核心控制零部件又源于另一个供应商,虽然最终的整车制造也涉及到匹配和协同测试,但核心控制零部件不是自己制造就面临数据权限“互不信任”的问题。
没有数据信任的互通,没有域控制器更新协同的能力,自然无从谈起“整车OTA”,像比亚迪就是最好的例子,因为他们到底还是传统车企,虽然核心的三电系统已经能够自研,包括核心的IGBT芯片都是自主的,比起其他传统车企强太多,但是问题在于相比小鹏、特斯拉等等新势力车企,比亚迪依然有传统供应商,又不可能完全抛弃供应链条从头自研,所以就难以获得整车OTA的能力。
当然,随着时间的推移,相信比亚迪未来会做到像特斯拉一样的整车OTA的,他们有这个技术基础,只是看什么时候做到。
所以最后总结一下,OTA现在俨然已经是一个热词,但是不代表您买的车就能够像特斯拉一般OTA,如果您真的希望买车后能持续获得升级,一定记得买FOTA车型。
【太平洋汽车网】全称“Over-The-Airtechnology”,即空中下载技术,通过移动通信的接口实现对软件进行远程管理,传统的做法到4S店通过整车OBD对相应的ECU进行软件升级。OTA技术最早出现在日本,目前通过OTA方式升级软件广泛应用于智能手机。
汽车OTA升级就像电脑视窗系统的升级,也可以理解为手机系统的升级。每次升级都可以改进、修补漏洞或获得更多功能、性能提升或视觉效果提升,这种更新是通过联网后在线检测、版本匹配、将新代码下载到本地,然后执行安装、验证等程序。
而OTA的出现,让4S店在汽车升级过程中不再是必要环节,而整个OTA的架构和流程也并不复杂,通过生成更新包、传输更新包和安装更新就可以实现。
无论是特斯拉,还是很多传统车企,甚至是新能源车企都将越来越看重OTA。有些是应用在地图、应用程序、信息娱乐系统等方面的更新,有些已经扩展到了电子控制单元。相信未来也将迎来OTA的一个小高峰。
【太平洋汽车网】随着汽车越来越智能化,现在的新能源汽车都搭载了互联网车机系统,尤其是纯电动汽车,OTA的话,这个东西对于新能源汽车来说是非常重要的一个东西,OTA就是可以对车辆系统进行远程操控,或者是说对车辆远程进行升级的。OTA最大的意义是可以修复缺陷,增加功能推送。
其实简单的理解就是物联网,给车安装了一个智能的大脑,可以把车子想象成一个电脑,在没安装软件的时候,它就是一个普通的电脑然后当相应的软件开发,以后安装在电脑里面,它就变成了想要的,或者可以说想要实现的一些功能,然后汽车ota的话就像电脑系统一样,可以开启一些预留在车里面暂时无法实现的一些功能。
这个就好比去刷汽车的ecu一样,让其的动力更加的强劲,甚至还能刷出一些五花八门的功能出来,拿蔚来汽车和特斯拉来说,蔚来通过OTA升级后给车辆增360度全景影像,甚至还顺带修复了蓝屏黑屏的问题,特斯拉通过OTA在线升级优化车辆系统,降低了刹车的距离。
通过以上的这些可以得出OTA能够为车主节约去4s店返厂维修的时间,同时可以及时车辆系统修复问题,达到满足安全行驶的特点。也能后避免因为车辆系统故障导致的一系列问题。
汽车的OTA升级可以被简单分为两种,一种是FOTA固件在线升级(Firmware-Over-The-Air),通过给ECU闪存下载完整的固件镜像,或是修补更新现有的固件闪存完成,比如对车辆的动力系统、变速箱逻辑、电池系统、自动驾驶等部分的升级。
另一种则是SOTA软件在线升级(Software-Over-The-Air),比如对车机系统的地图、语音包等在内的升级。
就硬件部分来说,尤其是对于新能源车型,意味着整车研发可以不用所有的软件同步开发。
同时,车企销售也有了更多的玩法,就像特斯拉通过软件在线解锁功能的方式,车企完全可以用一款整车解锁出无限可能的车型组合,精简产品线节约成本的同时也制造了更多的可能性和个性化。
但是对于广大用户来说,虽然获得了更为新鲜的体验,但是也同时埋下了被“割韭菜”的隐患,除了需要浅显地考虑到OTA升级的流量费用之外,解锁不同功能不菲的价格同样会让不少人感到不爽,这一点在特斯拉上已经有所表现。
对于消费者,用车习惯更应被改变
对于大多数传统燃油车型来说,买车往往是一锤子买卖,付钱提车走人,即使是日常的保养和维修哪怕离开了4S店也不会走投无路。
但是一旦整车OTA升级越来越成为标配时,也意味着车主和厂家也将越来越被牢牢绑在一起,就像买了一部智能手机,总不能永远不进行系统升级吧,这样即使是最新款的产品,使用体验依然是过时的,而这种前卫、新潮、舒适、高度智能的使用体验,只有厂家才能给到你。
另外,部分常见的汽车召回,甚至也不需要再由车主专门开到4S店甚至返厂,对于涉及控制软件以及程序部分的问题,只需要通过在线更新修补OTA就完事,无论是对于车企还是车主都是皆大欢喜的好事。
为了防止有车企借此钻监管部门的空子,国家市场监管总局发布了一则将汽车OTA升级纳入召回监管范围的通知,加强了对OTA安全问题的防范、举报及评估等相关工作,明确了车企不能通过后台OTA升级隐瞒车辆缺陷,保证了车主的知情权。
国内互联网企业布局车机系统,正是盯上了这块蛋糕
伴随着新能源车企以及传统车企极力走向车联网道路,还有不少国内互联网巨头的跨界融入。
成立了车联网业务部的华为,如今更是掌握了5G基带芯片、以AI芯片为核的人工智能计算平台、支持车载场景的鸿蒙OS等核心技术,并获得了高精度地图的甲级测绘资质。
另一方面,在To C模式下,这些车联网所属的消费者群体,同样是一股可以转化为财富的巨大流量。
新能源 汽车 的动力系统包括电驱动系统与电源系统两大类
电驱动系统包含电机、电控制器、减速箱,是驱动电动 汽车 行驶的核心部件;电源系统包含车载充电机(OBC)、DC-DC 转换器和高压配电盒,是动力电池组进行充电、电能转换及分配的核心部件。
电驱动产业链涉及环节较多,可以概括为零件—总成—系统—整车厂四大层级。
上游零部件包括永磁体、硅钢体、功率模块、电容、传感器等,这一级的玩家对在整车产业链中属于“三级供应商”。在零部件基础上进一步设计组装得到电机总成、电控总成与传动总成,这一级的玩家可以称为车企的“二级供应商”;各个单独总成进一步集成为电驱动系统供货于车企,这一级玩家为行业“一级供应商”。
1.1. 大三电:电机、电控、减速器
1.1.1. 电机:扁线电机、高压电机带来新机遇
电驱动系统在新能源 汽车 成本中占比仅次于电池。电驱动系统(电机、电控、减速器)是新能源 汽车 动力总成的关键部件,相当于传统燃油车发动机的作用,直接决定整车的动力性能。其成本占比仅次电池,占比绝对值因新能源 汽车 品牌、车型而异。
驱动电机主要技术路径聚焦在永磁同步电机&交流异步电机上。永磁同步电机与交流异步电机的主要区别点在于转子结构,永磁同步电机会在转子上放置永磁体,由磁体产生磁场;而交流异步电机则是由定子绕组通电产生旋转磁场。功率密度、效率(高效率区间)是衡量电机性能的关键指标:
1)功率密度越大代表着相同功率下的电机体积更小,有利于节省空间&制造成本;
2)效率越高,说明电机端损耗越小,相同电池容量下,新能源车续航里程更长。
永磁同步电机为目前应用最多的电机类型,异步电机在高端车型双电机配置下会有部分使用。相比交流异步电机,永磁同步电机功率密度更高、高效区间更宽、质量更轻。
根据第一电动 汽车 网统计信息,2022 年 3 月,我国新能源 汽车 共配套驱动电机 50.97 万台,其中永磁同步电机为 48.60 万台,占比 95%,适用于大部分主流车型;交流异步电机配套 2.09 万台,占比为 4%,主要配套包括特斯拉 Model Y、岚图 FREE、蔚来 ES8、奥迪 e-tron、大众 ID.4 CROZZ 等车型。交流异步电机在高速中应用性能更优,同时具有成本优势(稀土永磁材料成本较高,同功率的永磁同步电机价格更高),目前配套多以高端车型、双电机方案为主 (蔚来 ES8 是前永磁同步+后交流异步,特斯拉 Model Y 2021款采用前感应异步+后永磁同步)。
多电机在高端车型中应用有所增加,故单车配套电机数也随高端市场占比而变化。
相比单电机,双电机可以显著提高 汽车 的加速性能与续航能力。同时,双电机多意味着四驱系统,可以提供更好的附着力,从而提高安全性能。近年来,在高端车型中双电机的应用不断增加,特斯拉、蔚来、奥迪、大众、奔驰都陆续推出搭载双电机的车型。而在法拉第 FF91 和荣威 MarvelX 中更是使用了三个电机。
扁线:可有效提高电机功率密度,减少铜损耗以提升效率。
1)功率密度高:相较于传统的圆线绕组电机,扁线电机将圆形导线换成矩形导线,因此相同面积的定子线槽可以塞进更多面积的导线,进而提高功率密度。
2)效率高、损耗小:铜损耗在电机损耗里占比达 65%,因此为提高电机效率,需采用更合理的定子绕组,从而降低铜耗。此外,扁线截面更粗使得电阻相对更小,铜导线发热损失的能量也越小。而且扁线电机的端部尺寸短 5-10mm,从而降低端部绕组铜损耗。
3)重量、NVH 等方面也存在优势。
发卡电机为应用最广泛的扁线技术,产线投资高,产业化仍处于前期阶段。根据线圈绕组方式差异,扁线电机可分为集中绕组扁线电机、波绕组扁线电机与 Hairpin(发卡)扁线电机,其中发卡电机应用最为广泛。相对圆线电机,扁线电机无法进行手工制造、自动化要求较高——绕组制造过程非常复杂,需要先将导线,制作成发卡的形状,然后通过自动化插入到定子铁芯槽内,然后进行端部扭头和焊接。高自动化及定制化使得扁线电机产线投入较高,根据方正电机,2021 年来公司已先后投资 17.42 亿元用于产线建设,对企业资金实力有较大挑战。
雪佛兰和丰田开启扁线电机应用先河,近年来渗透率不断提升。2007 年,雪佛兰VLOT 采用的电动 汽车 中就有发卡式扁线电机,其供应商为雷米。2015 年,丰田发行了装载扁线电机的第四代普锐斯,其电机供应商为 Denso。在扁线电机更高的效率加成下及内外资电机厂商批量化工艺的成熟,近年来其应用不断增加,2020 年来,保时捷、比亚迪、特斯拉等车企纷纷推出装载发卡式电机的新车型,渗透率不断增长。根据方正电机公司年报,2020 年全球新能源 汽车 行业扁线电机渗透率为 15%,我国扁线电机渗透率约为 10%。2021 年随着各主流车企大规模换装扁线电机,特斯拉换装国产扁线电机,我国扁线电机渗透率已与全球扁线电机渗透率同步增长至 25%。
此外,在高端车型中,搭载扁线电机数量也开始从原来的单电机增加到双电机。例如,保时捷首款纯电动跑车 Taycan 便采用了三电机。
高压:缩短充电时间、提高电机效率以延长里程的重要措施。纯电乘用车电压通常在 200-400V 之间,在同等功率下,当电压从 400V 提升到 800V 后,线路中通过的电流减少一半,产生的功率损耗更小,从而可以提高充电效率、缩短充电时长,进而改善新能源 汽车 使用体验。同时,工作电流的减少将降低功率损耗,继而可以进一步降低同样行驶里程中的电量消耗,从而延长 汽车 里程数。2021 年为我国 800V 高压快充元年,行业发展有望加速。
2021 年来,比亚迪(e 平台)、理想、小鹏、广汽(埃安)、吉利(极氪 001)、北汽(极狐)等车企纷纷布局 800V 快充技术,我国 800V 高压快充行业进入发展加速期。
高压化下对 汽车 电子各环节都将带来新挑战,目前应用仅停留在高端车型。新能源 汽车 要实现 800V 及以上高压平台兼容,除了需要提高电机、电池性能外,PTC、空调、OBC、高压线束等部件都需要重新适配,此外还面临更高电压带来的安全、热管理、成本等多方面挑战。受以上因素影响,目前 800V 高压平台应用还仅停留在部分高端车型。
油冷:采取合理的电机热管理设计可以进一步提升功率密度。电机的功率极限能力往往受限于电机温升极限,因此提高电机冷却散热能力可以快速提高功率密度,同时防止永磁体在高温时发生不可逆的“退磁”。目前常用的冷却方式为水冷,但其无法直接冷却热源,热量传递路径长、散热效率低;相较于水冷,油冷的优势在于油品具有不导电、不导磁、绝缘等性能,因此可以直接接触热源,形成更安全的热交换,提高散热效率。
故相同的绕组绝缘等级下,油冷电机可以承受更高的绕组电流,长期工作功率更高。
1.1.2. 电机控制器:IGBT 掣肘,单管并联纾困
电控系统通过电机控制算法发出信号驱动电机转动,进而控制整个车辆的动力输出。电控系统可分为主控制器和辅助控制器:
1)主控制器控制 汽车 的驱动电机;
2)辅助控制器控制 汽车 的转向电机、制动器、空调等。
我们本文重点讨论的电控系统主要指主控制器,主要由控制板(接受整车控制器的信号指令,运行电机控制算法,发出控制指令给功率板)、功率板(接受控制板指令,频繁通断 IGBT/MOSFET,控制电机转动)、壳体等组成,在控制器中,控制电路板、功率电路板成本主要在于 IGBT(绝缘栅双极型晶体管)、MOSFET(功率场效应晶体管)、MCU(微控制器)、电源芯片等半导体器件。
电控开发需要从硬件、软件两方面协同进步。类似电机,电机控制器的核心指标同样为功率密度、效率,软硬件的优化也是围绕这两大核心主题展开。
1)硬件角度,功率半导体单管并联方案将具备高性价比优势,或成 A 级以下车型主流硬件配置;而模组方案凭借更高可靠性,在中高端车型占据核心地位。器件方面,碳化硅有望逐步渗透。
2)软件角度,需要在可拓展性、易维护性、功能安全性等方面的不断提高。
功率半导体 IGBT 占电控成本比重较高,主要参与者为国外功率半导体巨头。根据盖世 汽车 数据,2017 年功率板的核心器件 IGBT 模块,占到电控总成本高达 37%。根据Yole,2020 年全球 IGBT 行业销售额 TOP15 公司中共 14 家为国外企业,而英飞凌(Infineon)更是凭借 14.33 亿美元的收入连续多年稳居全球第一。
功率半导体在新能源 汽车 中的应用可分为模组&单管并联这两种路线,两者有各自适用的场景。模组为高度集成的功率半导体产品,保证了电控成品的可靠性&良率高,同时降低了系统设计的复杂度。以 IGBT 为例,由于车规级功率半导体主要被英飞凌等外资占据,其往往提供特定参数规格的标准 IGBT 模组,然而模组参数往往不能很好适配具体需求,因此标准模组在不同功率的驱动电机控制系统中容易出现容量受限、结构安装等问题。若采用多个 IGBT 单管并联(通过复合母排、冷却装置等部件一同封装),则可以根据不同车型灵活设计冗余量,并且单管成本显著低于模块,在成本要求较高的A 级以下车型使用得更为普遍。但多个 IGBT 单管并联时,由于各单管参数的分散性、输出电流的不一致性,可能使系统可靠性较差,整个 IGBT 模组寿命也会缩短,对企业技术、制造能力考验大,故中高端 B 级以上车型通常使用可靠性更强的模组路线。
碳化硅功率器件可显著提高电控效率、功率密度等性能。碳化硅材料具有禁带宽度大、热导率高、电子饱和迁移速率高等性质,相比硅基 IGBT,碳化硅元器件体积更小、频率更高、开关损耗更小,可以使电驱动系统在高压、高温下保持高速稳定运行(硅基IGBT 只能在 200 以下的环境中工作)。根据意法半导体,在 400V 电压平台下,相较于硅基 IGBT,碳化硅功率件有 2-4%的效率提升;在 750V 电压平台下,碳化硅器件有3.5-8%的效率提升。
越来越多的高端车型已采用碳化硅电控。
1)车企角度,2021 年奥迪 e-tron GT 与福特 Mach E、特斯拉 Model S 等新车型也纷纷采用了碳化硅器件。2021 年 10 月,通用 汽车 与 Wolfspeed 签订了碳化硅供应协议,在原材料上抢先布局。国内车企也不断布局碳化硅,比亚迪发布了碳化硅车系平台 e-Platform 3.0,小鹏 G9、蔚来 ET7 等采用碳化硅电控的车型也有望在 2022 年交付。
2)供应商角度,根据精进电动招股说明书,公司采用全 SiC 模块,可以使控制器的功率提高 20kW 同时使其重量减少 6kg,逆变器尺寸缩小 43%。根据英搏尔,碳化硅电机控制器的损耗下降了 5%,电驱动系统整体 NEDC 平均效率提升 3.6%,整车 NEDC 续航提升 30km、增幅达 5.8%。
除了电机控制器外,碳化硅器件在 OBC、DC/DC、无线充电等“小三电”中也有应用。例如,欣锐 科技 早于 2013 年正式将 Wolfspeed 的碳化硅方案应用于 OBC 产品,2021 年为比亚迪 DMi 车型提供碳化硅电源类产品。目前制约碳化硅器件应用的主要因素为成本,伴随着未来碳化硅产业链的发展完善,相关器件应用渗透率将稳步提升。
软件:电控的进步体现在可拓展性、易维护性、功能安全性等方面的不断提高。
1)可拓展性:电控软件开发通常会使用 AUTOSAR 工具链(B 级及以上车把 AUTOSAR 作为“标配”)。AUTOSAR(AUTOmotive Open System Architecture, 汽车 开放系统架构)是由全球各大 汽车 整车厂、汽零供应商、 汽车 电子软件系统公司联合建立的一套标准协议,旨在有效地管理日趋复杂的 汽车 电子软件系统。AUTOSAR 规范的运用使得不同结构的电子控制单元的接口特征标准化、模块化,应用软件具备更好的可扩展性、可移植性,缩短开发周期。
2)易维护性:是指在软件后续使用过程中,及时实现远程更新升级与性能优化。OTA(Over-the-Air)技术可以降低维护成本,创造新的收入来源,目前已经在 汽车 行业包括其控制器总成上持续推广。3)安全性,电驱动系统的控制器总成对新能源 汽车 的动力输出进行直接的调节控制,是保证安全性的重要一环。在 汽车 行业逐步引入 ISO26262 标准之后,基于功能安全的车用软件开发对电控软件提出了新的要求。
1.1.3. 减速器:单档路线为主,两档减速可以期待
电机高速化趋势明显,带动减速器向两档减速方向发展。减速器是影响电驱动系统整体 NVH 性能的关键。按照传动等级分类,减速器可以分为单级减速器、两档减速器以及两档以上减速器。在电机高速化的趋势下,减速器正在经历从单级到多档的产品演变过程。目前,丰田普锐斯和特斯拉 Model 3 电机转速均已达到了 17900rpm,国内车企转速略低,但基本也都达到了 16000rpm,下一步规划便是 18000-20000rpm,电机高速化性能的提升需要相应的高性能减速器来配套。
单级减速器结构简单、成本较低、体积小,因此目前仍为主流应用。但在高转速区间,单档减速器由于传动比单一,在最高或最低车速以及低负荷条件下,电驱动效率会下降,浪费电能而减少行驶里程,此外减速器高转速时会带来 NVH 等问题。
两档减速器在混动车中率先应用,纯电动车应用可以期待。相较于单档减速器,两档减速器一方面使驱动电机在更高效的区域运行,从而提升驱动系统效率。另一方面,采用两档减速器后,传动比可以做到更高, 汽车 动力性随之增加、减少百公里加速时间。
此外,采用两个档位后,驱动电机可以更加小型化、低速化,从而降低电机及电控的成本。目前,采埃孚、GKN、麦格纳、Taycan 等企业均已推出两档减速器产品。
1.2. 小三电:OBC、DC/DC、PDU
“小三电”是 OBC、DC/DC、PDU 三大类电源产品,三者一同搭建了 汽车 内部的“能源网络”。OBC(充电机)负责将来自电网的交流电转换成直流电给电池充电; 汽车 电气电子系统中,不同部件需要的电压等级不尽相同,故需要 DC/DC(直流-直流变换器)转换电压;PDU(高压配电盒)负责内部“电气能源网架”的互联互通。
半导体器件成本占比较高,部分仍依赖进口。根据威迈斯招股说明书,在电源产品中,半导体器件、电容电阻为主要成本构成,占比分别为 23%和 16%。而由于半导体器件与部分电容产品国产化水平较低,多数公司仍采用外资供应商为主。例如,威迈斯主要供应商为 TI、英飞凌、意法半导体、贵弥功等,2016-2018 年公司进口原材料金额占比分别为 22.30%、19.96%、28.71%,其中 IGBT、MOSFET 海外主要供货商英飞凌占比最高,2016-2018 年采购金额占比分别为 3.18%、6.61%、7.28%。
技术持续演进,集成化趋势同样显著,软硬件能力都将迎来考验。早期车载电源产品主要采用模拟控制技术,产品功能较为单一,配套的软件只具备检测功能,不能实现精准控制。之后车载电源产品向数字化技术转变,能够实现复杂的控制算法,实现输出参数的灵活调整和精准控制,提高了软件系统的操控性,包括车载电源的诊断、升级和参数调整等应用需求。下一代车载电源产品将向集成化转变,在硬件、软件、体积、重量四个维度实现创新突破。硬件上有望将进一步采用更高性能的碳化硅器件;软件上将开发过程转换为模型化编程及满足 AUTOSAR 的接口方式,提升软件稳定性和灵活性;在体积和重量上实现小型化、轻量化。
1.3. 集成化:1+1+1 3,深度集成方兴未艾
1+1+1>3,电驱动由最初“结构集成”向“深度系统集成”演进,集成化“多合一”总成产品成为主流趋势。以往动力系统的电机、电控、电源多单独采购,根据其电气、机械结构进行集成组装;随着新能源 汽车 零部件要求不断提高,“多合一”总成产品通过巧妙设计将电机、电控、减速器、电源“深度集成”,减少彼此间的连接器、冷却组件、高压线束等部件。“多合一”集成式系统相比分体式产品的优势主要体现在以下方面:
1)性能更优:降低了各部件之间连接部位的效率损耗,提高整车的 NVH 性能,从而提高了集成系统的可靠性;
2)成本更低:集成式电驱动系统可以减少车内部的高压线束、连接器数量,节约线束与连接器成本,从而使集成式系统更具有经济性。
3)更省空间:集成式产品体积更小、重量更轻,有利于节省车内空间。
集成化电驱动系统渗透率不断提升。根据 NE 时代新能源,2020 年/2022 年 1-4 月我国新能源乘用车“三合一”电驱动系统搭载量为 50.27/79.26 万台,渗透率为44.91%/61.63%,目前基本涵盖大部分 A 级车、B 级以上车型。
现有集成产品以“三合一”为主,集成度更高的“多合一”新产品也在不断问世。
根据 NE 时代新能源,2022 年 1-4 月新能源乘用车搭载的电驱动系统中,分体式、电机/电控“二合一”合计占比为 44%,“三合一”占比为 52%,“多合一”占比为 4%。同时,OBC、DC-DC、PDU 等充配电系统集成产品应用也不断增加,结合电驱系统集成产品将形成集成度更高的多合一平台。
华为 DriveOne“七合一”电驱动系统打造多合一集成新标杆,比亚迪和上汽变速器也陆续推出多合一产品。
1)华为七合一系统集成了 MCU、电机。减速器、DC-DC、 OBC、PDU、BCU 七大部件,具有开发简单、适配简单、布置简单、演进简单等优势。
相较于“三合一”,该产品体积减少 20%、重量减轻 15%。此外,华为 DriveOne 系统可实现 7dB 的超静音,并具有 80%NEDC 效率,提升整车驾驶体验。根据 NE 时代新能源,华为“三合一”电驱动总成已在长安 CS-GXNEV 和赛力斯 SF5 两款车型中得到应用,但目前其七合一产品还没有在整车中的应用案例。
2)比亚迪“海豚”八合一系统即成立VCU、BCU、PDU、DC-DC、OBC、MCU、电机、减速器八大部件;
3)上汽变速器&威迈斯的七合一系统集成电机、电控、减速器、OBC、DC-DC、PDU、BCU 七大部件。
1.4. 总结:千亿空间市场广阔,技术变革推动天花板不断打开
据前文所述,新能源 汽车 电驱动、电源系统围绕“高效率区间、高功率密度”等核心性能,其技术迭代仍在演进,而且针对不同车企、不同车型大多需要“量身定制”。
截至 2022 年 4 月,国内电动车销量结构成“纺锤形”——B 级和 A00 级车型销量占比较高。分车型来看电驱动技术,1)A/B 级及以上中高端车型通常因价格较高、可降本空间大,性能要求高,故对“三合一”乃至“六合一/七合一”等更青睐,扁线、碳化硅有 望率先在中高端车型进行渗透。2)A00/A0 级的低端车型对成本要求更高,故倾向于采 购分体式产品,部分也会采用成本低的“三合一”。即使对同一级别车型,不同车企及电动化平台均有各自技术架构,需要电驱动企业去配合设计,故当前定制化水平仍较高。
1)技术变革带动需求结构变化:在电机技术方向上,扁线电机渗透率有望在未来5 年快速提升,我们假设 2025 年在电驱三合一市场的综合渗透率将达到 87%;在单车配套电机数量上,双电机目前仍主要应用于高端车型,我们假设 2025 年双电机在电驱三合一市场综合渗透率将达到 5%。在电控方向,由于碳化硅性能优势较强,近年应用增长较快,考虑其降本速度,我们假设碳化硅电控渗透率稳步提升、2025 年在电驱三合一市场综合渗透率达到 26%。
2)规模化带动价格下降:电机方面,扁线电机厂家近年产能扩展迅猛,我们预计规模化将带动价格快速下降,同时随着扁线电机渗透率提升,与圆线电机价格差异持续缩小,经济性更为突出;电控方面,碳化硅同样持续降本。
3)集成化占比提高:我们将电驱动&电源市场分为分布式、二合一、三合一(含少量“多合一”),我们假设“三合一”渗透率不断提升、2025 年达到 59%(基本覆盖 A 级及以上的车型)
行业参与者可分为“三大阵营”:整车厂自供体系、动力系统集成商、第三方电驱动供应商。
1)整车厂自供体系(in-house):出于供应链安全、成本控制等考虑,整车厂多设立子公司或合资公司自供电驱动、电源产品,代表公司有特斯拉、比亚迪旗下的弗迪动力、蔚来旗下的蔚然动力、长城旗下的蜂巢能源等。
2)动力系统集成商(Tier1):通常为海外 汽车 零部件巨头,如联合电子、日电产、博世、大陆、博格华纳等,凭借深厚的技术、工艺等积淀拓展至新能源 汽车 领域,本身产品力强、产能规模大,且具备全球主流车企客户资源。
3)第三方电驱动供应商:近年来快速崛起,独立第三方根据业务侧重点可以分为电控为主、电机为主的厂商,但是在集成化的趋势下,企业通常会同时布局电机、电控、电源与“多合一”系统。根据公司业务结构差异,又可分为以下几类:
1) 整车厂自制 VS 向第三方外采:
我们认为,未来 5-10 年仍将是自主品牌与新势力车企崛起的机遇期。一方面由于新能源 汽车 更新换代速度要高于传统燃油车,相比外资品牌,自主品牌的“包袱”更小,能够更加快速地进行变革。另一方面,新能源 汽车 扎根本土,对消费者需求有更深刻的认知,可以敏锐捕捉到消费者需求变化并快速响应。
上述核心车企采购逻辑(自制 or 开放供应链)影响了第三方可触及的市场空间。
对于前述的“中高端、中端、中低端”市场,车企通常有各自的采购偏好:
2021 年/2025 年第三方供应商总体销量份额为 40%/60%。整车厂前期因新能车出货量相对不大,部分车企选择自制电驱动/电源系统,但后期随新能源车年销量过百万辆、车型品类丰富等,对自制体系的成本控制能力、快速研发能力、产能等都提出较大挑战。届时,我们预计第三方凭借技术平台完备,以标准化促定制化开发,叠加定点车型销量较大,规模效应强劲,在成本、开发速度、产能方面均具备更强竞争优势。不同于燃油车,电池、电驱作为新能源 汽车 中最重要的板块,如果全部外包给第三方供应商,那么留给车企的参与环节将大幅减少,这将不断降低产业壁垒,缩小盈利空间,因此从整车厂的经营战略来考虑,部分车企未来仍会坚持“部分自供”。综上,我们预计多数整车厂在性能要求苛刻的中高端平台(B 级及以上)部分采用自供体系、部分外供,中端、中低端市场的车型开放供应链给第三方。结合上一节不同品牌车的销量占比数据,我们测算 2021 年第三方供应商总体销量份额约 39.96%,至 2025 年份额有望提升至 60.38%。
2) 第三方供应商竞争焦点(第三方 VS 第三方):
国内主流厂家在技术上和海外 Tier1 的差异在逐步缩小。海外 Tier1 在传统车零部件研发生产上走在世界前列,但是近年来我国电驱动供应商在技术上不断实现突破,与国外先进水平差距逐步缩小,核心性能基本与海外 Tier1 相差不大,在新技术路线的布局方面也处于同一起跑线甚至领先一步。
高压化(基于碳化硅的电驱动产品):在电机方面,方正电机基于 800V 碳化硅平台的驱动电机目前已完成客户项目定点,有望于 2022Q3 量产。在电控方面,日立为保时捷 Taycna 提供了基于 Si-IGBT 技术的 800V 的逆变器。在电驱动总成方面,汇川技术、臻驱 科技 、中车时代等都已推出了应用碳化硅的驱动集成产品,其中汇川的第四代动力总成已在小鹏 800V 高压平台车型中实现量产。
扁线电机:方正电机、大洋电机、华域电动等生产的扁线电机均已得到应用,例如方正电机产品已量产配套蔚来 ET7,大洋电机已量产配套北汽 48V BSG。