建材秒知道
登录
建材号 > 生物质能 > 正文

生物质能的现状和发展前景论文

凶狠的小馒头
威武的枕头
2022-12-22 03:27:29

生物质能的现状和发展前景论文

最佳答案
彩色的砖头
健忘的保温杯
2025-08-11 18:59:57

生物质资源以林业和农业废弃物为主

我国生物质资源丰富,主要包括农业废弃物、林业废弃物、畜禽粪便、城市生活垃圾、有机废水和废渣等,每年可作为能源利用的生物质资源总量约相等于4.6亿标准煤。其中农业废弃物资源量约4亿吨,折算成标煤量约2亿吨林业废弃物资源量约3.5亿吨,折算成标煤量约2亿吨其余相关有机废弃物约为6000万吨标准煤。

生物质发电保持稳步增长势头

随着国内大力鼓励和支持发展可再生能源,生物质能发电投资热情迅速高涨,各类农林废弃物发电项目纷纷启动建设。我国生物质能发电技术产业呈现出全面加速的发展态势。据国家能源局数据显示,2019年,我国生物质发电累计装机达到2254万千瓦,同比增长26.6%我国生物质发电新增装机473万千瓦我国生物质发电量1111亿千瓦时,同比增长20.4%,继续保持稳步增长势头。

生物质能占可再生能源比例逐步扩大

从我国能源结构以及生物质能地位变化情况来看,近年来,随着生物质能发电持续快速增长,生物质能装机和发电量占可再生能源的比重不断上升。具体表现为:2019年我国生物质能源装机容量和发电量占可再生能源的比重分别上升至2.84%和5.45%。生物质能发电的地位不断上升,反映生物质能发电正逐渐成为我国可再生能源利用中的新生力量。

垃圾燃烧发电占比不断提高

根据中国产业发展促进会生物质能产业分会于2019年6月30日发布的《2019中国生物质发电产业排名报告》数据,截至2018年,我国已投产生物质发电项目902个,并网装机容量为1784.3万千瓦,年发电量为906.8亿千瓦时。

其中:我国农林生物质发电项目为321个,并网装机容量为806.3万千瓦,较2017年增加了51个项目、105.5万千瓦装机容量。而垃圾发电项目已达到401个,并网装机容量为916.4万千瓦,较2017年增加了63个项目、191.3万千瓦装机容量。

垃圾焚烧发电项目401个,并网装机容量916.4万千瓦,年发电量为488.1亿千瓦时,年处理垃圾量1.3亿吨。

沼气发电项目180个,较2017年增加44个装机容量为61.6万千瓦,较2017年增加11.7万千瓦年发电量、上网电量分别达到24.1亿、21.4亿千瓦时,较2017年各增加2亿、2.1亿千瓦时。

2018年农林生物质发电全行业发电设备平均利用小时数为4895小时,同比2017年减少774小时。装机容量增加约105.5万千瓦,但是发电量和上网电量和2017年基本持平,主要原因一是部分企业转为热电联产,供热量增大二是行业原料成本固定,但是盈利能力减弱,发电补贴未能及时下发,部分企业资金链紧张,最终导致停产。自2017年开始,垃圾焚烧发电装机增速明显高于农林生物质发电,装机装量超过农林生物质发电。到2018年,垃圾焚烧发电装机容量高于农林生物质发电约110万千瓦,上网电量高于农林生物质发电约35.7亿千瓦时。

——以上数据来源于前瞻产业研究院《中国生物质能发电产业市场前瞻与投资战略规划分析报告》。

最新回答
潇洒的春天
饱满的刺猬
2025-08-11 18:59:57

进入21世纪以来,我国面临的能源安全和环境生态保护问题日趋严峻,可再生能源已经成为能源发展战略的重要组成部分以及能源转型的重要发展方向。根据可再生能源应用的不同领域,电力系统建设正在发生结构性转变,可再生能源发电已开始成为电源建设的主流。生物质发电技术是目前生物质能应用方式中最普遍、最有效的方法之一。

装机容量世界第一

生物质能是重要的可再生能源,开发利用生物质能,是能源生产和消费革命的重要内容,是改善环境质量、发展循环经济的重要任务。为推进生物质能分布式开发利用,扩大市场规模,完善产业体系,加快生物质能专业化多元化产业化发展步伐。截至2020年底,全国已经投产生物质发电项目有1353个。

在国家大力鼓励和支持发展可再生能源,以及生物质能发电投资热情高涨,各类生物质发电项目纷纷建设投产等推动下,我国生物质能发电技术产业呈现出全面加速的发展态势。2020年,生物质发电新增装机543万千瓦,累计装机达2952万千瓦。我国生物质发电装机容量已经是连续三年列世界第一。

生物质发电主要包括农林生物质发电、垃圾焚烧发电和沼气发电。2020在,在我国生物质发电结构中,垃圾焚烧发电累计装机容量占比最大,达到51.9%其次是农林生物质发电,累计装机容量占比为45.1%沼气发展累计装机容量占比仅为3.0%。

生物质能发电量稳定增长

近年来,我国生物质能发电量保持稳步增长态势。2020年,中国生物质年发电量达到1326亿千瓦时,同比增长19.35%。

从发电量结构来看,垃圾焚烧发电量最大,2020年中国垃圾焚烧发电量为778亿千瓦时,占比为58.6%农林生物质发电量为510亿千瓦时,占比为38.5%2020年沼气发电量为37.8亿千瓦时,占比为2.9%。

随着生物质发电快速发展,生物质发电在我国可再生能源发电中的比重呈逐年稳步上升态势。截至2020年底,我国生物质发电累计装机容量占可再生能源发电装机容量的3.2%总发电量占比上升至6.0%。生物质能发电的地位不断上升,反映生物质能发电正逐渐成为我国可再生能源利用中的新生力量。

垃圾焚烧发电量将持续增长

在我国生物质发电结构中,垃圾焚烧发电累计装机容量占比最大。国内生活垃圾清运量和无害化处理率保持持续增长,对于垃圾焚烧的需求也在日益增加。为满足垃圾焚烧消纳生活垃圾的需求,随着垃圾焚烧发电市场从东部地区向中西部地区和乡镇转移,垃圾焚烧发电量将持续增长。

农林生物质发电项目利用小时数从2018年开始逐年走低,主要原因是可再生能源补贴拖欠对农林生物质发电项目影响较大。根据统计,2019年农林生物质发电利用小时数超过5000h的项目未188个,总装机为526万千瓦。据此判断约50%的项目在承受电价补贴拖欠的压力下,仍坚持项目运营。2020年农林生物质发电新增装机容量也有所下降,为217万千瓦。

山东生物质发电全国领先

总体上来看,生物质发电整体呈现东强西弱的局面。东部和南部沿海地区发展较好。

2020年,全国生物质发电量排名前五位的省份是山东、广东、江苏、浙江和安徽,发电量分别为365.5万千瓦、282.4万千瓦、242.0万千瓦、240.1万千瓦和213.8万千瓦。

2020年,全国生物质发电新增装机容量排名前五位的省份是广东、山东、江苏、浙江和安徽,分别为67.7万千瓦、64.6万千瓦、41.7万千瓦、38.9万千瓦和36.0万千瓦。

—— 更多数据请参考前瞻产业研究院《中国生物质能发电产业市场前瞻与投资战略规划分析报告》

顺利的大炮
爱笑的奇迹
2025-08-11 18:59:57
城镇居民供暖;农村居民供暖;工业燃煤锅炉供热;工业燃油锅炉供热;工业燃气、生物质等供热。

生物质供热具有以下优势:

可再生性:每年都可再生,且产量大;

低污染性:生物质硫含量、氮含量低,燃烧过程中产生的硫氧化物、氮氧化物都较低;所产生的二氧化碳可被植物吸收利用,二氧化碳的净排放量为零,可有效地减少温室效应;

广泛的分布性:缺乏煤炭的地域可充分利用生物质能,但是生物质能源水分很高、灰分很小、挥发性很高、发热值偏低。

生物质燃料供热技术使用可再生能源:

如木屑、草类、垃圾处理残留物和农作物肥料处理残留物。如果木材废物是制造业的副产品,在工业木材处理厂使用木材废物作为燃料是当然选择。

我国是一个农业大国,农林生产中所产生的物质种类多,产量巨大,较常见的有:植物秸秆、玉米芯、稻壳、锯末等,利用生物质燃料供热具有很大的发展潜力。

单薄的柠檬
洁净的汽车
2025-08-11 18:59:57

生物质能利用的方式主要是直接燃烧、发电、气化和转变为成型燃料。所谓生物质气化是指利用工业手段将秸秆变成天然气,用秸秆转变而成的天然气虽然与煤相比缺乏竞争力,但是和煤气、天然气相比是具有竞争力的。秸秆气化也可解决小区域集中供气问题。此外生物质成型燃料是替代煤的好产品。成型燃料在我国已实践了几年,技术已比较成熟,如秸秆固化成型是成熟的技术。

近年来,随着对可再生能源的加大开发、利用,生物质能发电得到了快速发展。2016年我国生物质能发电项目装机容量达到1224.8万千瓦,较2015年再增加104.9万千瓦,发电量达到634.1亿千瓦时,相当于2/3个三峡水电。数据显示,目前我国生物质发电项目达到了665个,仅2016年一年内就再添66个项目,成为投资领域的新宠。

                   图表:2012-2017年生物质能发电项目累计装机容量(单位:GW)

生物质发电成为分布式能源发展新动力

生物质发电在国际上越来越受到重视,在国内也越来越受到政府的关注。根据“十三五”生物质能源发展规划,到2020年,生物质能利用量将达5700万吨标准煤,其中生物质能锅炉供热每小时将达2万蒸吨,生物质能固体燃料年利用量达1000万吨标准煤;生物天然气达100亿立方米;生物质液体燃料总量将达600万吨,其中燃料乙醇400万吨,生物柴油200万吨。

此外,按照可再生能源中长期发展规划要求,到2020年,我国生物质发电总装机容量要达到3000万千瓦。可以认为生物质发电,将是分布式能源发展的又一重大市场。

                            图表:生物质发电总装机容量预测(单位:GW)

——以上数据及分析均来自于前瞻产业研究院发布的《中国分布式能源行业商业模式创新与投资前景预测分析报告》。

负责的冬瓜
正直的柚子
2025-08-11 18:59:57

法律分析:未来我国生物质能源利用预计走规模化、产业化发展道路。国家将建立健全的生物质收存体系、开展生物质试点示范、完善激励政策,来推动生物质利用的产业化进程。由国家发改委修订发布的《产业结构调整指导目录(2019年本)》中有数项生物质相关产业列入鼓励类目录,涉及生物天然气、生物质能清洁供热、燃煤耦合生物质发电、非粮生物质燃料,以及相关技术开发与设备制造等多个领域。包括《产业结构调整知道目录》在内的各项国家相关政策进一步明确了生物质能的定位——生物质能不仅是能源,在“大气污染防治攻坚战”“蓝天保卫战”以及“乡村振兴”战略的实施中,生物质能利用是关键一环,也为生物质行业发展带来了前所未有的发展机遇。各企业也需大力推动生物质能利用新技术研究和产业化,以及关键设备的自主化,提高利用和转化效率,提高综合效益。积极推动生物质能规模化发展,建立健全专业化建设管理模式,充分发市场机制作用,抢占市场份额,尽快形成具有较大规模和较高技术水平的新型产业。

法律依据:《中华人民共和国循环经济促进法》第三十四条 国家鼓励和支持农业生产者和相关企业采用先进或者适用技术,对农作物秸秆、畜禽粪便、农产品加工业副产品、废农用薄膜等进行综合利用,开发利用沼气等生物质能源。

冷艳的学姐
健康的酸奶
2025-08-11 18:59:57
生物质发电普遍亏损为何能盈利

“发电机组一年运转10个半月,要吃掉秸秆22万吨。我们通过集中管理、免费收割、创新技术等措施解决了生物质发电的原料问题。同时也实现秸秆的零废弃、零污染和高效利用。”江苏生物发电有限公司董事长王介绍说。

生物质发电成本怎么降?

工业化管理秸秆的收、储、运,建筑废木料破碎掺烧,提高热值

“我们利用循环流化床技术,以小麦、水稻、棉花等农作物秸秆和其他生物质为原料发电供热。”走在厂区大道上,王说,目前,通过升压站,将电输送到长湾变电所并入国家电网,年可发电量1.8亿度,供电量1.6亿度,供热35万吨。

据介绍,可年处理秸秆22万吨,相当于节约原煤15万吨,减排二氧化碳12万吨,减排二氧化硫1.8万吨,减排烟尘5200吨。而秸秆燃烧后的灰烬富含钾、磷等成分,可还田作为有机肥。

在生物质发电行业中,原料成本约占总成本的60%~70%,也是盈亏关键所在。目前,收运大多依靠人工,随着劳动力、燃油等成本的提高,以及秸秆收购价格的不断攀升,支出成本不断增加,也导致了生物质发电企业普遍经营亏损。

数据显示,2013年,江苏省13家秸秆发电企业中,9家亏损,4家盈利,是盈利的4家之一。

2010年建厂之初,就购买了多台收割机,免费为农户收割农作物。农户既节省了200元/亩的收割费,又减少了秸秆处置的麻烦,而则解决了秸秆来源的难题。

由于秸秆热值较低,要达到发电能量,通常添加15%~20%的煤。通过技术创新,专门从德国进口了打碎机,对建筑废木料破碎后掺烧,来提高秸秆热值(热值在5000大卡左右)。

虽然采取了一系列措施,但每年秸秆收集的人力成本、燃油成本的上涨等,仍让倍感压力。

原料成本怎么降低?

探索秸秆收集利用新模式,签订近万亩土地集体流转协议

几十台收割机在稻田里作业,扒草机将产生的秸秆收集,打捆机将秸秆打成重约400公斤的包装,夹包机夹到路边卡车上,然后运回发电厂。这是探索的秸秆收集利用新模式在访仙镇农场秋收时展现出的景象。

镇农服中心副主任侯新华介绍说,作为市最大的农场,农场水稻种植面积有7000多亩,占了全镇水稻总面积的1/5。

2013年,投资2.5亿元,上马了30万吨大米加工项目,并与村签订全村近万亩土地的集体流转协议,打造当地最大的稻米种植基地。

为方便收集秸秆,投资4000多万元,统一派发种子、统一播种、统一收割、统一收粮,将流转农田交由31位受聘农户管理,农户管理工资为400元/亩,每亩要上交600斤麦子、1050斤稻子,超产部分由农户和农场分成。这31位种粮大户中最多的管理近千亩,最少的也有200多亩。

如何延伸产业链?

构建循环农业产业链,打造集发电、稻麦生产、加工、销售于一体的企业

“机械、种子、农药等农资都由公司承担,我们出人工、拿报酬,种得好还能拿超产分成,去年收入有10多万元。”一名受聘农户坦言,在家种田有这样的收入,真是做梦也没想到。

据悉,农场的主导产品是优质无公害稻米,生产过程中采用稻、鸭共养模式,使用无公害的有机肥料,收获的稻谷运往公司稻米加工厂加工,稻麦秸秆则作为生物发电厂的原料,发电后剩下的草木灰返还到基地作为有机肥料,循环利用,形成生态、环保、绿色、可持续发展的循环农业产业链。

据测算,每亩粮田稻麦两季可回收秸秆近一吨,每吨秸秆可发电800度,每年农场及周边农户回收的秸秆可达两万吨,可生产1600万度电。回收的秸秆经过能源化处理产生草木灰,再回归农田作为农场的生态肥料,形成颇具特色的清洁环保、生态循环的可持续发展农业产业链。

目前,该公司已是一家集生物质发电、优质稻麦生产、优质大米加工销售等涉农项目于一体的农业龙头企业。

精明的盼望
魔幻的画笔
2025-08-11 18:59:57
每到此时,全国各省就开始严阵以待,誓要在保证民生供暖的基础上,打赢蓝天保卫战!

给祖国母亲庆过生之后,我国北方各省将进入到一年一度的取暖季。

每到这时,人们除了和寒冷斗智斗勇之外,总会发现“看山不是山,看水不是水”的日子开始多了起来。这倒不是因为人生境界的提升,实在是“雾霾在眼前遮住了帘,不好掀开”。

众所周知,由于城市里的大楼越建越高,阻挡和摩擦作用使风流经城区时明显减弱。静风现象的增多,本就不利于大气中悬浮微粒的扩散稀释,再加上冬季燃煤取暖需求迅速上升,导致污染物排放和空气中悬浮物开始大量增加。每到此时,全国各省就开始严阵以待,誓要在保证民生供暖的基础上,打赢蓝天保卫战!

正是在这样的背景下,从2016年底开始,一场以“削减燃煤、清洁供暖”为目标的“煤改电、煤改气”行动开始轰轰烈烈的展开。初衷虽好,然而受限于我国“富煤贫油少气”的资源禀赋和农村当前经济能力、房屋结构、技术可行性、取暖效果等因素影响,我国的“煤改气、煤改电”推行之路出现严重问题。

据了解,要实行“煤改气”,每户居民完成煤改气采暖设备加燃气管道安装费至少需支出8000元左右,虽然前期政府会有补贴,但补贴期过后,天然气壁挂炉冬季采暖同样贵的吓人,每年数千甚至上万的成本对于城市居民尚且是一笔不小的支出,更何况是“煤改气”的主要推行地区——农村。

此时,“煤改气”推行出现了第一道坎:改得起却用不起,不愿用,甚至不敢用。随着“煤改气”的大面积落地,大家突然发现,用不起还不算最大的问题,最大的问题是——根本没气用。

据三大石油公司数据,在煤改气大力推行的2017年,全国天然气缺口超过110亿立方米,天然气供应堪忧。在这种情况下,部分地区不仅取暖受限,甚至日常生活都受到了影响:微弱的火苗使得烧火做饭成了问题,外卖火爆,菜市场却冷清,更滑稽的是,电磁炉厂家怎么也没想到,煤改气竟然将自家产品的销量推向了高峰……

那一年,天然气保供的严峻性甚至超过了污染治理本身。在此背景下,就地取材、利用生物质供热是清洁取暖方式逐渐进入了人们的视线。

实际上,我国生物质能具有极大的发展潜力,过去几年,我国农林生物质和垃圾发电都在稳步发展,并且,利用生物质供热的“煤改生”是农村替代散煤供暖的更好选择。

我国生物质资源丰富,包括农业废弃物、林业废弃物、城市生活垃圾、有机废水和废渣等,每年可作为能源利用的生物质资源总量约相等于4.6亿标准煤。“煤改生”的路径不仅能够实现清洁供暖,还能让同时解决垃圾污染,实现废物利用。

更重要的是,生物质热电联产或者生物质供热具有多方面的优势:

如今,“煤改生”作为县域及农村更有优势的燃煤供暖替代方案,开始越来越受到重视。自2017年起,国家陆续出台多项政策支持生物质能清洁供暖的发展,生物质清洁供暖正逐步驶入发展快车道:

2017年末,国家发改委、国家能源局联合发布了《关于促进生物质能供热发展的指导意见》,为生物质能供热、乃至清洁能源供热展开新的篇章;

2018年2月,国家能源局下发《关于开展“百个城镇”生物质热电联产县域清洁供热示范项目建设的通知》,强调要推进区域清洁能源供热,减少县域(县城及农村)散煤消费,有效防治大气污染和治理雾霾;

2018年11月,国家能源局发布了《国家能源局关于做好2018-2019年采暖季清洁供暖工作的通知》,提出了积极扩大可再生能源供暖规模,根据各地生物质资源条件,支持发展生物质热电联产或生物质锅炉供暖,以及分散式生物质成型燃料供暖。

今年7月3日,国家能源局再次发布《关于解决“煤改气”“煤改电”等清洁供暖推进过程中有关问题的通知》,明确提出要拓展多种清洁供暖方式,主推清洁煤、生物质供暖。《通知》强调,在农村地区,应重点发展生物质能供暖,同时解决大量农林废弃物直接燃烧引起的环境问题。

如今,生物质能清洁取暖已然等到了发展契机。面对一个如此广阔的市场,如何才能抓住机会?如何才能实现突破?

2019年11月6日-7日,中国产业发展促进会联合国际能源署(IEA)将在北京举办以“共筑生态文明之基、同走绿色发展之路”为主题的“2019全球生物质能创新发展高峰论坛”。在这里,你将找到这个问题的答案。

论坛由中国产业发展促进会生物质能产业分会(以下简称“生物质能产业促进会”)承办,将邀请国内外政府机构、科研院所、行业组织、领军企业和行业知名专家等出席会议并做主题演讲,同时,还将举办生物质能科技装备展和生物天然气工程建设运营技术培训活动。

作为中国生物质能源领域最值得期待的年度行业盛会,预计将有500家以上企业参展参会,上万人观展。目前,行业内排名靠前的众多知名企业已报名参展参会,多位企业高层将登台演讲。届时,让我们一同探讨生物质能清洁供暖的发展机遇一同破解目前面临的产业难题。

冷艳的香水
动人的心锁
2025-08-11 18:59:57
生物质能源应用技术研究开发 

 

 

摘要: 

生物质能是人类用火以来,最早直接应用的能源。生物质能的应用技术开发,旨在把森林砍伐和木材加工剩余物以及农林剩余物如秸杆、麦草等原料通过物理或化学化工的加工方法,使之成为高品位的能源,提高使用热效率,减少化石能源使用量,保护环境,走可持续发展的道路。本文从生物质能源应用技术的研究现状展开,并且对生物质能源的应用发展方向进行了描述。 

 

正文: 

    随着人类文明的发展,生物质能的应用研究开发几经波折,最终人们深刻认识到,石油、煤、天然气等化石能源的有限性,同时无节制地使用化石能源,大量增加CO2、粉尘、SO2等废弃物的排放,污染了环境,给人类赖以生存的星球,造成十分严重的后果。而使用大自然馈赠的生物质能源,几乎不产生污染,资源可再生而不会枯竭,同时起着保护和改善生态环境的重要作用,是理想的可再生能源之一。生物质能(biomass energy ),就是太阳能以化学能形式贮存在生物质中的能量形式,即以生物质为载体的能量。它直接或间接地来源于绿色植物的光合作用,可转化为常规的固态、液态和气态燃料,取之不尽、用之不竭,是唯一一种可再生的碳源。 

  七十年代,由于中东战争引发的能源危机以来,生物质的开发利用研究,进一步引起了人们的重视。美国、瑞典、奥地利、加拿大、日本、英国、新西兰等发达国家,以及印度、菲律宾巴西等发展国家都分别修定了各自的能源,投入大量的人力和资金从事生物质能的研究开发。我国生物质能研究开发工作,起步较晚。随着经济的发展,开始重视生物质能利用研究工作,从八十年代起,将生物质能研究开发列入国家攻关计划,并投入大量的财力和人力。已经建立起一支专业研究开发队伍,并取得了一批高水平的研究成果,初步形成了我国的生物质能产业。 

生物质能应用技术的研究开发现状  1.国外研究开发简介 

  在发达国家中,生物质能研究开发工作主要集中于气化、液化、热解、固化和直接燃烧等方面。 

  生物质能气化是在高温条件下,利用部份氧化法,使有机物转化成可燃气体的过程。产生的气体可直接作为燃料,用于发动机、锅炉、民用炉灶等场合。气化技术应用在二战期间达到高峰。随着人们对生物质能源开发利用的关注,对气化技术应用研究重又引起人们的重视。目前研究主要用途是利用气化发电和合成甲醇以及产生蒸汽。奥地利成功地推行建立燃烧木材剩余物的区域供电计划,目前已有容量为1000~2000kw的80~90个区域供热站,年供应10×109MJ能量。加拿大有12个实验室和大学开展了生物质的气化技术研究。1998年8月发布了由Freel,BarryA.申请的生物质循环流化床快速热解技术和设备。瑞典和丹麦正在实行利用生物质进行热电联产的计划,使生物质能在提供高品位电能的同时满足供热的要求。1999年,瑞典地区供热和热电联产所消耗的能源中,26是生物质。 

  美国在利用生物质能方面,处于世界领先地位,据报道,目前美国有350多座生物质发电站,主要分布在纸浆、纸产品加工厂和其它林产品加工厂,这些工厂大都位于郊区。装机容量达7000MW,提供了大约66000个工作岗位,根据有关科学家预测,到2010年,生物质发

电将达到13000MW装机容量,届时有4000000英亩的能源农作物和生物质剩余物用作气化发电的原料,同时,可按排170000个以上的就业人员,对繁荣乡村经济起到积极的推动作用。   流化床气化技术由于具有床内气固接触均匀、反应面积大、反应温度均匀、单位截面积气化强度大。反应温度较固定床低等优点,从1975年以来一直是科学家们关注的热点。包括循环流化床、加压流化床和常规流化床。印度Anna大学新能源和可再生能源中心最近开发研究用流化床气化农业剩余物如稻壳、甘蔗渣等,建立了一个中试规模的流化床系统,气体用于柴油发电机发电。1995年美国Hawaii大学和Vermont大学在国家能源部的资助下开展了流化床气化发电的工作。Hawaii大学建立了处理生物质量为100T/d的工化压力气化系统,1997年已经完成了设计,建造和试运行达到预定生产能力。Vermont大学建立了气化工业装置,其生产能力达200T/d,发电能力为50MW。目前已进入正常运行阶段。 

  生物质的直接燃烧和固化成型技术的研究开发,主要着重于专用燃烧设备的设计和生物质成型物的应用。目前,已开发的技术有:林产品加工厂的废料(如造纸厂的树皮、家具厂的边角料等)的专用燃烧蒸汽锅炉,国外造纸厂几乎都有专门的设备,用来处理废弃物。由于生物质形状各异,堆积密度小较松散,给运输和贮存以及使用带来了较大困难,影响生物质的使用。因此,从四十年代开始了生物质的成型技术研究开发。现已成功开发的成型技术按成型物形状分主要有三大类:以日本为代表开发的螺旋挤压生产棒状成型物技术,欧洲各国开发的活塞式挤压制得园柱块状成型技术,以及美国开发研究的内压滚筒颗粒状成型技术和设备。美国颗粒成型燃料年产量达80万吨。 

成型燃料应用于二个方面:其一:进一步炭化加工制成木炭棒或木炭块,作为民用烧栲木炭或工业用木炭原料;其次是作为燃料直接燃烧,用于家庭或暧房取暧用燃料。日本、美国、加拿大等国家,开发了专用炉灶。在北美有50万户以上家庭使用这种专用炉灶作为取暧炉。   将生物质能进行正常化学加工,制取液体燃料如乙醇、甲醇、液化油等;是一个热门的研究领域。利用生物发酵或酸水解技术,在一定条件下,将生物质转化加工成乙醇,供汽车和其它工业使用。加拿大用木质原料生产的乙醇上产量为17万吨。比利时每年用甘蔗为原料,制取乙醇量达3.2万吨以上,美国每年用农林生物质和玉米为原料大约生产450万吨乙醇,计划到2010年,可再生的生物质可提供约5300万吨乙醇。 

  生物质能的另一种液化转换技术,是将生物质经粉碎预处理后在反应设备中,添加催化剂或无催化剂,经化学反应转化成液化油。美国、新西兰、日本、德国、加拿大国家都先后开展了研究开发工作,液化油的发热量达3.5×104KJ/kg左右,用木质原料液化的得率为绝干原料的50以上。欧盟组织资助了三个项目,以生物质为原料,利用快速热解技术制取液化油,已经完成100kg/hr的试验规模,并拟进一步扩大至生产应用。该技术制得的液化油得率达70,液化油低热值为1.7×104KJ/kg。 

  生物质能催化气化研究,旨在降低气化反应活化能,改变生物质热处理过程,分解气化副产物焦油成为小分子的可燃气体,增加煤气产量,提高气体热解;同时降低气化温度,提高气化速度和调整生物质气体组成,以便进一步加工制取甲醇或合成氨。欧美等发达国家科研人员在催化气化方面已经作了大量的研究开发,研究范围涉及到催化剂的选择,气化条件的优化和气化反应装置的适应性等方面,并且已经在工业生产装置中得到了应用。   2.国内研究开发 

  我国生物质能的应用技术研究,从八十年代以来一直受到政府和科技人员的重视。主要在气化、固化、热解和液化开展研究开发工作。 

  生物质气化技术的研究在我国发展较快,应用于集中供气、供热、发电方面。中国林科

院林产化学工业研究所,从八十年代开始研究开发了集中供热、供气的上吸式气化炉,并且先后在黑龙江、福建得到工业化应用,气化炉的最大生产能力达6.3×106kJ/hr。建成了用枝桠材削片处理,气化制取民用煤气,供居民使用的气化系统。最近在江苏省又研究开发以稻草、麦草为原料,应用内循环流化床气化系统,产生接近中热值的煤气,供乡镇居民使用的集中供气系统,气体热值约8000KJ/NM3。气化热效率达70/以上。山东省能源研究所研究开发了下吸式气化炉。主要用于秸杆等农业废弃物的气化。在农村居民集中居住地区得到较好的推广应用,并已形成产业化规模。广州能源所开发的以木屑和木粉为原料,应用外循环流化床气化技术,制取木煤气作为干燥热源和发电,并已完成发电能力为180KW的气化发电系统。另外北京农机院、浙江大学等单位也先后开展了生物质气化技术的研究开发工作。   我国生物质的固化技术在八十年代中期开始,现已达到工业化规模生产。目前国内有数十家工厂,用木屑为原料生产棒状成型物木炭。螺旋挤压成型机有单头和双头二种,单头机生产能力为120Kg/hr,双头机生产能力达200Kg/hr。1990年中国林科院林化所与江苏省东海粮机厂合作,研究开发生产了单头和双头二种型号的棒状成型机,1998年又与江苏正昌集团合作,共同开发了内压滚筒式颗粒成型机,机器生产能力为250~300kg/hr,生产的颗粒成型燃料尤其适用于家庭或暖房取暖使用。南京市平亚取暖器材有限公司,从美国引进适用于家庭使用的取暖炉,通过国内消化吸收,现已形成生产规模。 

  生物发酵制气技术,在我国已经形成工业化,技术亦趋成熟,利用的原料主要是动物粪便和高浓度的有机废水。在上海亦已建成沼气集中供气系统。 

  沈阳农业大学从国外引进一套流化床快速热解试验装置,研究开发液化油的技术,和利用发酵技术制取乙醇试验。另外,中国林科院林化所进行了生物质催化气化技术研究。华东理工大学还开展了生物质酸水解制取乙醇的试验研究,但尚未达到工业化生产。 我国生物质能应用技术的展望 

  生物质能是一个重要的能源,预计到下世纪,世界能源消费的40来自生物质能,我国农村能源的70是生物质,我国有丰富的生物质能资源,仅农村秸杆每年总量达6亿多吨。随着经济的发展,人们生活水平的提高,环境保护意识的加强,对生物质能的合理、高效开发利用,必然愈来愈受到人们的重视。因此,科学地利用生物质能,加强其应用技术的研究,具有十分重要的意义。 

目前,我国已有一批长期从事生物质转换技术研究开发的科技人员,已经初步形成具有中国特色的生物质能研究开发体系,对生物质转化利用技术从理论上和实践上进行了广泛的研究,完成一批具有较高水平的研究成果,部分技术已形成产业化,为今后进一步研究开发,打下了良好的基础。 

从国外生物质能利用技术的研究开发现状结合我国现有技术水平和实际情况来看,本人认为我国生物质能应用技术将主要在以下几方面发展。   1.高效直接燃烧技术和设备 

  我国有12亿多人口,绝大多数居住在广大的乡村和小城镇。其生活用能的主要方式仍然是直接燃烧。剩余物秸杆、稻草松散型物料,是农村居民的主要能源,开发研究高效的燃烧炉,提高使用热效率,仍将是应予解决的重要问题。乡镇企业的快速兴起,不仅带动农村经济的发展,而且加速化石能源,尤其是煤的消费,因此开发改造乡镇企业用煤设备(如锅炉等),用生物质替代燃煤在今后的研究开发中应占有一席之地。把松散的农林剩余物进行粉碎分级处理后,加工成型为定型的燃料,结合专用技术和设备的开发,在我国将会有较大的

市场前景,家庭和暧房取暧用的颗粒成型燃料,推广应用工作,将会是生物质成型燃料的研究开发之热点。 

  2.集约化综合开发利用 

生物质能尤其是薪材不仅是很好的能源,而且可以用来制造出木炭、活性炭、木醋液等化工原料。大量速生薪炭材基地的建设,为工业化综合开发利用木质能源提供了丰富的原料。由于我国经济不断发展,促进了农村分散居民逐步向城镇集中,为集中供气,提高用能效率提供了现实的可能性。将来应根据集中居住人口的多少,建立能源工厂,把生物质能进行化学转换,产生的气体收集净化后,输送到居民家中作燃料,提高使用热效率和居民生活水平。这种生物质能的集约化综合开发利用,既可以解决居民用能问题,又可通过工厂的化工产品生产创造良好的经济效益,也为农村剩余劳动力提供就业机会。因此,从生态环境和能源利用角度出发,建立能源材基地,实施“林能”结合工程,是切实可行的发展方向。

谢谢。。。。。。。。。