什么是生物质能?生物质能的转化与利用有哪些途径
生物质是指通过光合作用而形成的各种有机体,包括所有的动植物和微生物。而所谓生物质能(biomass energy ),就是太阳能以化学能形式贮存在生物质中的能量形式,即以生物质为载体的能量。它直接或间接地来源于绿色植物的光合作用,可转化为常规的固态、液态和气态燃料,取之不尽、用之不竭,是一种可再生能源,同时也是唯一一种可再生的碳源。生物质能的原始能量来源于太阳,所以从广义上讲,生物质能是太阳能的一种表现形式。
生物质能的利用
生物质能一直是人类赖以生存的重要能源,它是仅次于煤炭、石油和天然气而居于世界能源消费总量第四位的能源,在整个能源系统中占有重要地位。有关专家估计,生物质能极有可能成为未来可持续能源系统的组成部分,到下世纪中叶,采用新技术生产的各种生物质替代燃料将占全球总能耗的40%以上。
目前人类对生物质能的利用,包括直接用作燃料的有农作物的秸秆、薪柴等;间接作为燃料的有农林废弃物、动物粪便、垃圾及藻类等,它们通过微生物作用生成沼气,或采用热解法制造液体和气体燃料,也可制造生物炭。生物质能是世界上最为广泛的可再生能源。据估计,每年地球上仅通过光合作用生成的生物质总量就达1440~1800亿吨( 干重 ),其能量约相当于20世纪90年代初全世界总能耗的3~8倍。但是尚未被人们合理利用,多半直接当薪柴使用,效率低,影响生态环境。现代生物质能的利用是通过生物质的厌氧发酵制取甲烷,用热解法生成燃料气、生物油和生物炭 ,用生物质制造乙醇和甲醇燃料,以及利用生物工程技术培育能源植物,发展能源农场。
生物质能的分类
依据来源的不同,可以将适合于能源利用的生物质分为林业资源、农业资源、生活污水和工业有机废水、城市固体废物和畜禽粪便等五大类。
林业资源:林业生物质资源是指森林生长和林业生产过程提供的生物质能源,包括薪炭林、在森林抚育和间伐作业中的零散木材、残留的树枝、树叶和木屑等;木材采运和加工过程中的枝丫、锯末、木屑、梢头、板皮和截头等;林业副产品的废弃物,如果壳和果核等。
农业资源:农业生物质能资源是指农业作物(包括能源作物);农业生产过程中的废弃物,如农作物收获时残留在农田内的农作物秸秆(玉米秸、高粱秸、麦秸、稻草、豆秸和棉秆等);农业加工业的废弃物,如农业生产过程中剩余的稻壳等。能源植物泛指各种用以提供能源的植物,通常包括草本能源作物、油料作物、制取碳氢化合物植物和水生植物等几类。
生活污水和工业有机废水:生活污水主要由城镇居民生活、商业和服务业的各种排水组成,如冷却水、洗浴排水、盥洗排水、洗衣排水、厨房排水、粪便污水等。工业有机废水主要是酒精、酿酒、制糖、食品、制药、造纸及屠宰等行业生产过程中排出的废水等,其中都富含有机物。
城市固体废物:城市固体废物主要是由城镇居民生活垃圾,商业、服务业垃圾和少量建筑业垃圾等固体废物构成。其组成成分比较复杂,受当地居民的平均生活水平、能源消费结构、城镇建设、自然条件、传统习惯以及季节变化等因素影响。
畜禽粪便:畜禽粪便是畜禽排泄物的总称,它是其他形态生物质(主要是粮食、农作物秸秆和牧草等)的转化形式,包括畜禽排出的粪便、尿及其与垫草的混合物。
临猗县国耀新能源有限公司是2017-05-16在山西省注册成立的有限责任公司(自然人投资或控股的法人独资),注册地址位于山西省运城市临猗县牛杜镇杨家庄村。
临猗县国耀新能源有限公司的统一社会信用代码/注册号是91140821MA0HFUX06Y,企业法人乔峰,目前企业处于开业状态。
临猗县国耀新能源有限公司的经营范围是:生物质能发电、热力生产项目筹建。(依法须经批准的项目,经相关部门批准后方可开展经营活动)。本省范围内,当前企业的注册资本属于一般。
通过百度企业信用查看临猗县国耀新能源有限公司更多信息和资讯。
生物质能是蕴藏在生物质中的能量,是指直接或间接地通过绿色植物的光合作用,把太阳能转化为化学能后固定和贮藏在生物体内的能量。它是是一种唯一可再生的碳源,可转化成常规的固态、液态和气态燃料。
特点:
1) 可再生性
生物质属可再生资源,生物质能由于通过植物的光合作用可以再生,与风能、太阳能等同属可再生能源,资源丰富,可保证能源的永续利用;
2) 低污染性
生物质的硫含量、氮含量低、燃烧过程中生成的SOX、NOX较少;生物质作为燃料时,由于它在生长时需要的二氧化碳相当于它排放的二氧化碳的量,因而对大气的二氧化碳净排放量近似于零,可有效地减轻温室效应;
3) 广泛分布性
缺乏煤炭的地域,可充分利用生物质能;
4) 生物质燃料总量十分丰富。
生物质能是世界第四大能源,仅次于煤炭、石油和天然气。根据生物学家估算,地球陆地每年生产1000~1250亿t干生物质海洋年生产500亿t干生物质。生物质能源的年生产量远远超过全世界总能源需求量,相当于目前世界总能耗的10倍。我国可开发为能源的生物质资源到2010年可达3亿t。随着农林业的发展,特别是炭薪林的推广,生物质资源还将越来越多。
应用:沼气、压缩成型固体燃料、气化生产燃气、气化发电、生产燃料酒精、
热裂解生产生物柴油等。
森林能源是森林生长和林业生产过程提供的生物质能源,主要是薪材,也包括森林工业的一些残留物等。森林能源在我国农村能源中占有重要地位,1980年前后全国农村消费森林能源约1亿吨标煤,占农村能源总消费量的30%以上,而在丘陵、山区、林区,农村生活用能的50%以上靠森林能源。 薪材来源于树木生长过程中修剪的枝杈,木材加工的边角余料,以及专门提供薪材的薪炭林。1979年全国合理提供薪材量8885万吨,实际消耗量18100万吨,薪材过樵1倍以上;1995年合理可提供森林能源14322.9万吨,其中薪炭林可供薪材2000万吨以上,全国农村消耗21339万吨,供需缺口约7000万吨。
二、农作物秸秆
农作物秸秆是农业生产的副产品,也是我国农村的传统燃料。秸秆资源与农业主要是种植业生产关系十分密切。根据1995年的统计数据计算,我国农作物秸秆年产出量为6.04亿吨,其中造肥还田及其收集损失约占15%,剩余5.134亿吨。可获得的农作物秸秆5.134亿吨除了作为饲料、工业原料之外,其余大部分还可作为农户炊事、取暖燃料,目前全国农村作为能源的秸秆消费量约2.862亿吨,但大多处于低效利用方式即直接在柴灶上燃烧,其转换效率仅为10%一20%左右。随着农村经济的发展,农民收入的增加,地区差异正在逐步扩大,农村生活用能中商品能源的比例正以较快的速度增加。事实上,农民收入的增加与商品能源获得的难易程度都能成为他们转向使用商品能源的契机与动力。在较为接近商品能源产区的农村地区或富裕的农村地区,商品能源(如煤、液化石油气等)已成为其主要的炊事用能。以传统方式利用的秸秆首先成为被替代的对象,致使被弃于地头田间直接燃烧的秸秆量逐年增大,许多地区废弃秸秆量已占总秸秆量的60%以上,既危害环境,又浪费资源。因此,加快秸秆的优质化转换利用势在必行。
三、 禽畜粪便
禽畜粪便也是一种重要的生物质能源。除在牧区有少量的直接燃烧外,禽畜粪便主要是作为沼气的发酵原料。中国主要的禽畜是鸡、猪和牛,根据这些禽畜品种、体重、粪便排泄量等因素,可以估算出粪便资源量。根据计算,目前我国禽畜粪便资源总量约8.5亿吨,折合7840多万吨标煤,其中牛粪5.78亿吨,4890万吨标煤,猪粪2.59亿吨,2230万吨标煤,鸡粪0.14亿吨,717万吨标煤。 在粪便资源中,大中型养殖场的粪便是更便于集中开发、规模化利用的。我国目前大中型牛、猪、鸡场约6000多家,每天排出粪尿及冲洗污水80多万吨,全国每年粪便污水资源量1.6亿吨,折合1157.5万吨标煤。
四、 生活垃圾
随着城市规模的扩大和城市化进程的加速,中国城镇垃圾的产生量和堆积量逐年增加。1991和1995年,全国工业固体废物产生量分别为5.88亿吨和6.45亿吨,同期城镇生活垃圾量以每年10%左右的速度递增。1995年中国城市总数达640座,垃圾清运量10750万吨。 城镇生活垃圾主要是由居民生活垃圾,商业、服务业垃圾和少量建筑垃圾等废弃物所构成的混合物,成分比较复杂,其构成主要受居民生活水平、能源结构、城市建设、绿化面积以及季节变化的影响。中国大城市的垃圾构成已呈现向现代化城市过渡的趋势,有以下特点:一是垃圾中有机物含量接近1/3甚至更高;二是食品类废弃物是有机物的主要组成部分;三是易降解有机物含量高。目前中国城镇垃圾热值在4.18兆焦/千克(1000千卡/千克)左右。
生物质能利用的方式主要是直接燃烧、发电、气化和转变为成型燃料。所谓生物质气化是指利用工业手段将秸秆变成天然气,用秸秆转变而成的天然气虽然与煤相比缺乏竞争力,但是和煤气、天然气相比是具有竞争力的。秸秆气化也可解决小区域集中供气问题。此外生物质成型燃料是替代煤的好产品。成型燃料在我国已实践了几年,技术已比较成熟,如秸秆固化成型是成熟的技术。
近年来,随着对可再生能源的加大开发、利用,生物质能发电得到了快速发展。2016年我国生物质能发电项目装机容量达到1224.8万千瓦,较2015年再增加104.9万千瓦,发电量达到634.1亿千瓦时,相当于2/3个三峡水电。数据显示,目前我国生物质发电项目达到了665个,仅2016年一年内就再添66个项目,成为投资领域的新宠。
图表:2012-2017年生物质能发电项目累计装机容量(单位:GW)
生物质发电成为分布式能源发展新动力
生物质发电在国际上越来越受到重视,在国内也越来越受到政府的关注。根据“十三五”生物质能源发展规划,到2020年,生物质能利用量将达5700万吨标准煤,其中生物质能锅炉供热每小时将达2万蒸吨,生物质能固体燃料年利用量达1000万吨标准煤;生物天然气达100亿立方米;生物质液体燃料总量将达600万吨,其中燃料乙醇400万吨,生物柴油200万吨。
此外,按照可再生能源中长期发展规划要求,到2020年,我国生物质发电总装机容量要达到3000万千瓦。可以认为生物质发电,将是分布式能源发展的又一重大市场。
图表:生物质发电总装机容量预测(单位:GW)
——以上数据及分析均来自于前瞻产业研究院发布的《中国分布式能源行业商业模式创新与投资前景预测分析报告》。
摘要:
生物质能是人类用火以来,最早直接应用的能源。生物质能的应用技术开发,旨在把森林砍伐和木材加工剩余物以及农林剩余物如秸杆、麦草等原料通过物理或化学化工的加工方法,使之成为高品位的能源,提高使用热效率,减少化石能源使用量,保护环境,走可持续发展的道路。本文从生物质能源应用技术的研究现状展开,并且对生物质能源的应用发展方向进行了描述。
正文:
随着人类文明的发展,生物质能的应用研究开发几经波折,最终人们深刻认识到,石油、煤、天然气等化石能源的有限性,同时无节制地使用化石能源,大量增加CO2、粉尘、SO2等废弃物的排放,污染了环境,给人类赖以生存的星球,造成十分严重的后果。而使用大自然馈赠的生物质能源,几乎不产生污染,资源可再生而不会枯竭,同时起着保护和改善生态环境的重要作用,是理想的可再生能源之一。生物质能(biomass energy ),就是太阳能以化学能形式贮存在生物质中的能量形式,即以生物质为载体的能量。它直接或间接地来源于绿色植物的光合作用,可转化为常规的固态、液态和气态燃料,取之不尽、用之不竭,是唯一一种可再生的碳源。
七十年代,由于中东战争引发的能源危机以来,生物质的开发利用研究,进一步引起了人们的重视。美国、瑞典、奥地利、加拿大、日本、英国、新西兰等发达国家,以及印度、菲律宾巴西等发展国家都分别修定了各自的能源,投入大量的人力和资金从事生物质能的研究开发。我国生物质能研究开发工作,起步较晚。随着经济的发展,开始重视生物质能利用研究工作,从八十年代起,将生物质能研究开发列入国家攻关计划,并投入大量的财力和人力。已经建立起一支专业研究开发队伍,并取得了一批高水平的研究成果,初步形成了我国的生物质能产业。
生物质能应用技术的研究开发现状 1.国外研究开发简介
在发达国家中,生物质能研究开发工作主要集中于气化、液化、热解、固化和直接燃烧等方面。
生物质能气化是在高温条件下,利用部份氧化法,使有机物转化成可燃气体的过程。产生的气体可直接作为燃料,用于发动机、锅炉、民用炉灶等场合。气化技术应用在二战期间达到高峰。随着人们对生物质能源开发利用的关注,对气化技术应用研究重又引起人们的重视。目前研究主要用途是利用气化发电和合成甲醇以及产生蒸汽。奥地利成功地推行建立燃烧木材剩余物的区域供电计划,目前已有容量为1000~2000kw的80~90个区域供热站,年供应10×109MJ能量。加拿大有12个实验室和大学开展了生物质的气化技术研究。1998年8月发布了由Freel,BarryA.申请的生物质循环流化床快速热解技术和设备。瑞典和丹麦正在实行利用生物质进行热电联产的计划,使生物质能在提供高品位电能的同时满足供热的要求。1999年,瑞典地区供热和热电联产所消耗的能源中,26是生物质。
美国在利用生物质能方面,处于世界领先地位,据报道,目前美国有350多座生物质发电站,主要分布在纸浆、纸产品加工厂和其它林产品加工厂,这些工厂大都位于郊区。装机容量达7000MW,提供了大约66000个工作岗位,根据有关科学家预测,到2010年,生物质发
电将达到13000MW装机容量,届时有4000000英亩的能源农作物和生物质剩余物用作气化发电的原料,同时,可按排170000个以上的就业人员,对繁荣乡村经济起到积极的推动作用。 流化床气化技术由于具有床内气固接触均匀、反应面积大、反应温度均匀、单位截面积气化强度大。反应温度较固定床低等优点,从1975年以来一直是科学家们关注的热点。包括循环流化床、加压流化床和常规流化床。印度Anna大学新能源和可再生能源中心最近开发研究用流化床气化农业剩余物如稻壳、甘蔗渣等,建立了一个中试规模的流化床系统,气体用于柴油发电机发电。1995年美国Hawaii大学和Vermont大学在国家能源部的资助下开展了流化床气化发电的工作。Hawaii大学建立了处理生物质量为100T/d的工化压力气化系统,1997年已经完成了设计,建造和试运行达到预定生产能力。Vermont大学建立了气化工业装置,其生产能力达200T/d,发电能力为50MW。目前已进入正常运行阶段。
生物质的直接燃烧和固化成型技术的研究开发,主要着重于专用燃烧设备的设计和生物质成型物的应用。目前,已开发的技术有:林产品加工厂的废料(如造纸厂的树皮、家具厂的边角料等)的专用燃烧蒸汽锅炉,国外造纸厂几乎都有专门的设备,用来处理废弃物。由于生物质形状各异,堆积密度小较松散,给运输和贮存以及使用带来了较大困难,影响生物质的使用。因此,从四十年代开始了生物质的成型技术研究开发。现已成功开发的成型技术按成型物形状分主要有三大类:以日本为代表开发的螺旋挤压生产棒状成型物技术,欧洲各国开发的活塞式挤压制得园柱块状成型技术,以及美国开发研究的内压滚筒颗粒状成型技术和设备。美国颗粒成型燃料年产量达80万吨。
成型燃料应用于二个方面:其一:进一步炭化加工制成木炭棒或木炭块,作为民用烧栲木炭或工业用木炭原料;其次是作为燃料直接燃烧,用于家庭或暧房取暧用燃料。日本、美国、加拿大等国家,开发了专用炉灶。在北美有50万户以上家庭使用这种专用炉灶作为取暧炉。 将生物质能进行正常化学加工,制取液体燃料如乙醇、甲醇、液化油等;是一个热门的研究领域。利用生物发酵或酸水解技术,在一定条件下,将生物质转化加工成乙醇,供汽车和其它工业使用。加拿大用木质原料生产的乙醇上产量为17万吨。比利时每年用甘蔗为原料,制取乙醇量达3.2万吨以上,美国每年用农林生物质和玉米为原料大约生产450万吨乙醇,计划到2010年,可再生的生物质可提供约5300万吨乙醇。
生物质能的另一种液化转换技术,是将生物质经粉碎预处理后在反应设备中,添加催化剂或无催化剂,经化学反应转化成液化油。美国、新西兰、日本、德国、加拿大国家都先后开展了研究开发工作,液化油的发热量达3.5×104KJ/kg左右,用木质原料液化的得率为绝干原料的50以上。欧盟组织资助了三个项目,以生物质为原料,利用快速热解技术制取液化油,已经完成100kg/hr的试验规模,并拟进一步扩大至生产应用。该技术制得的液化油得率达70,液化油低热值为1.7×104KJ/kg。
生物质能催化气化研究,旨在降低气化反应活化能,改变生物质热处理过程,分解气化副产物焦油成为小分子的可燃气体,增加煤气产量,提高气体热解;同时降低气化温度,提高气化速度和调整生物质气体组成,以便进一步加工制取甲醇或合成氨。欧美等发达国家科研人员在催化气化方面已经作了大量的研究开发,研究范围涉及到催化剂的选择,气化条件的优化和气化反应装置的适应性等方面,并且已经在工业生产装置中得到了应用。 2.国内研究开发
我国生物质能的应用技术研究,从八十年代以来一直受到政府和科技人员的重视。主要在气化、固化、热解和液化开展研究开发工作。
生物质气化技术的研究在我国发展较快,应用于集中供气、供热、发电方面。中国林科
院林产化学工业研究所,从八十年代开始研究开发了集中供热、供气的上吸式气化炉,并且先后在黑龙江、福建得到工业化应用,气化炉的最大生产能力达6.3×106kJ/hr。建成了用枝桠材削片处理,气化制取民用煤气,供居民使用的气化系统。最近在江苏省又研究开发以稻草、麦草为原料,应用内循环流化床气化系统,产生接近中热值的煤气,供乡镇居民使用的集中供气系统,气体热值约8000KJ/NM3。气化热效率达70/以上。山东省能源研究所研究开发了下吸式气化炉。主要用于秸杆等农业废弃物的气化。在农村居民集中居住地区得到较好的推广应用,并已形成产业化规模。广州能源所开发的以木屑和木粉为原料,应用外循环流化床气化技术,制取木煤气作为干燥热源和发电,并已完成发电能力为180KW的气化发电系统。另外北京农机院、浙江大学等单位也先后开展了生物质气化技术的研究开发工作。 我国生物质的固化技术在八十年代中期开始,现已达到工业化规模生产。目前国内有数十家工厂,用木屑为原料生产棒状成型物木炭。螺旋挤压成型机有单头和双头二种,单头机生产能力为120Kg/hr,双头机生产能力达200Kg/hr。1990年中国林科院林化所与江苏省东海粮机厂合作,研究开发生产了单头和双头二种型号的棒状成型机,1998年又与江苏正昌集团合作,共同开发了内压滚筒式颗粒成型机,机器生产能力为250~300kg/hr,生产的颗粒成型燃料尤其适用于家庭或暖房取暖使用。南京市平亚取暖器材有限公司,从美国引进适用于家庭使用的取暖炉,通过国内消化吸收,现已形成生产规模。
生物发酵制气技术,在我国已经形成工业化,技术亦趋成熟,利用的原料主要是动物粪便和高浓度的有机废水。在上海亦已建成沼气集中供气系统。
沈阳农业大学从国外引进一套流化床快速热解试验装置,研究开发液化油的技术,和利用发酵技术制取乙醇试验。另外,中国林科院林化所进行了生物质催化气化技术研究。华东理工大学还开展了生物质酸水解制取乙醇的试验研究,但尚未达到工业化生产。 我国生物质能应用技术的展望
生物质能是一个重要的能源,预计到下世纪,世界能源消费的40来自生物质能,我国农村能源的70是生物质,我国有丰富的生物质能资源,仅农村秸杆每年总量达6亿多吨。随着经济的发展,人们生活水平的提高,环境保护意识的加强,对生物质能的合理、高效开发利用,必然愈来愈受到人们的重视。因此,科学地利用生物质能,加强其应用技术的研究,具有十分重要的意义。
目前,我国已有一批长期从事生物质转换技术研究开发的科技人员,已经初步形成具有中国特色的生物质能研究开发体系,对生物质转化利用技术从理论上和实践上进行了广泛的研究,完成一批具有较高水平的研究成果,部分技术已形成产业化,为今后进一步研究开发,打下了良好的基础。
从国外生物质能利用技术的研究开发现状结合我国现有技术水平和实际情况来看,本人认为我国生物质能应用技术将主要在以下几方面发展。 1.高效直接燃烧技术和设备
我国有12亿多人口,绝大多数居住在广大的乡村和小城镇。其生活用能的主要方式仍然是直接燃烧。剩余物秸杆、稻草松散型物料,是农村居民的主要能源,开发研究高效的燃烧炉,提高使用热效率,仍将是应予解决的重要问题。乡镇企业的快速兴起,不仅带动农村经济的发展,而且加速化石能源,尤其是煤的消费,因此开发改造乡镇企业用煤设备(如锅炉等),用生物质替代燃煤在今后的研究开发中应占有一席之地。把松散的农林剩余物进行粉碎分级处理后,加工成型为定型的燃料,结合专用技术和设备的开发,在我国将会有较大的
市场前景,家庭和暧房取暧用的颗粒成型燃料,推广应用工作,将会是生物质成型燃料的研究开发之热点。
2.集约化综合开发利用
生物质能尤其是薪材不仅是很好的能源,而且可以用来制造出木炭、活性炭、木醋液等化工原料。大量速生薪炭材基地的建设,为工业化综合开发利用木质能源提供了丰富的原料。由于我国经济不断发展,促进了农村分散居民逐步向城镇集中,为集中供气,提高用能效率提供了现实的可能性。将来应根据集中居住人口的多少,建立能源工厂,把生物质能进行化学转换,产生的气体收集净化后,输送到居民家中作燃料,提高使用热效率和居民生活水平。这种生物质能的集约化综合开发利用,既可以解决居民用能问题,又可通过工厂的化工产品生产创造良好的经济效益,也为农村剩余劳动力提供就业机会。因此,从生态环境和能源利用角度出发,建立能源材基地,实施“林能”结合工程,是切实可行的发展方向。
谢谢。。。。。。。。。