太阳能光伏发电并网原理
太阳能光伏发电并网原理
太阳能光伏发电并网原理,光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。下面看看太阳能光伏发电并网原理。
太阳能光伏发电并网原理1光伏发电并网原理:依靠太阳能电池组件,利用半导体材料的电子学特性,当太阳光照射在半导体PN结上,产生了较强的内建静电场,在内建静电场的作用下,将光能转化成电能。
其工作原理是:太阳电池组件产生的直流电经并网逆变器转换成符合电网要求的交流电之后,直接进入公共电网,光伏电池方阵所产生的电力除了供给交流负载外,多余的电力反馈给电网。在阴雨天或夜晚,太阳电池组件没有产生电能或者电能不能满足负载需求时,就由电网供电。
由于太阳能发电直接供入电网,免除配置蓄电池,省掉了蓄电池储能和释放的过程,减少了能量的损耗,并降低了系统的成本。但是,系统需要专用的并网逆变器,以保证输出的电力满足电网对电压、频率等指标的要求。因为逆变器效率的问题,会有部分能量损失。
太阳能光伏发电并网原理2光伏发电的基本原理
独立光伏发电系统由太阳能电池阵列、蓄电池、逆变器组件、控制器和负载(直流负载和交流负载)组成。因为太阳能电池产生的电能为直流,但是由于光照强度实时变化,太阳能电池输出的电压也不稳定,这时也需要蓄电池来起到一个滤波的作用,将太阳能电池产生的电压稳定在蓄电池的电压值上,
在另外一种意义上,用蓄电池也有储能的作用,可以将过剩的电能储存起来供在光照强度较低的时候使用。如果是直流负载就可以直接接在蓄电池上工作,如果是交流负载,那么需要经过逆变器的DC-AC 变换,将直流电变成交流电,供给交流负载。
并网光伏发电的基本原理
独立光伏发电系统由太阳能电池阵列、蓄电池、逆变器组件、控制器和负载组成。因为需要将光伏发出来的电回馈给电网,这就需要将直流电转换为电网要求的220V、50HZ 的交流电,并且在相同相位的情况下并网,像电网供电。
无论是独立光伏发电系统还是并网光伏发电系统,逆变系统对于交流负载和并网发电都是必不可少的,接下来我们主要就光伏分布发电中的逆变系统的相关设计进行研究。
光伏发电逆变系统的组成
光伏发电系统主要由太阳能电池、主回路、控制电路和负载组成。主回路主要包括DC/DC 电路、DC/AC 电路、滤波器组件。下面主要对于主回路部分的设计做介绍,其中包括主回路的拓扑结构进行分析,介绍一下全桥逆变电路的工作原理以及逆变器模块的选型,以及相关保护的设计。
光伏发电逆变系统的拓扑结构
通常单相电压型逆变器主要分为推挽式、半桥和全桥逆变电路三种。这三种方式根据其不同的特点应用于不同的场合。
推挽式逆变电路的电路结构比较简单,如图3-1 所示。其上电路只需要两个晶闸管,基极驱动电路不需要隔离,驱动电路比较简单,但是晶闸管需要承受2 倍的线路峰值电压,所以适合于低输入电压的场合应用。
同时变压器存在偏磁现象,初级绕组有中心抽头,流过的电流有效值和铜耗较大,初级绕阻两部分应紧密藕合,绕制工艺复杂。因为推挽式逆变电路对于晶闸管的耐压要求比较高,不适合作为光伏发电的.逆变系统主回路。
相比于推挽式逆变电路,单相半桥式逆变电路中所使用的晶闸管的耐压要求就相对较低,不会有线电压峰值2 倍这么多,绝对不会超过线电压峰值。其逆变出来的波形也相对推挽式比较接近于正弦波,所以滤波的要求也相对较低。由于晶闸管的饱和压降减小到了最小,所以不是最重要的影响因素之一。
但是由于半桥式逆变电路的结构决定其集电极电流在晶闸管导通时会增加一倍,使得在晶闸管选型的过程中,要考虑大电流、承受高压的情况,就难免会因为其价格昂贵,所以不适合作为光伏发电的逆变系统主回路。
太阳能光伏发电并网原理3太阳能发电主要分为两种,一种是并网型发电,一种是独立光伏系统。二者的区别主要在于一个需要并网,可以不适用蓄电池,一个是自给自足,需要蓄电池,其他基本一致。
基本组成如下: 光伏阵列将太阳能转变成直流电能,经逆变器的直流和交流逆变后,根据光伏电站接入电网技术规定光伏电站容量确定光伏电站接入电网的电压等级,由变压器升压后,接入中压或高压电网。
原理如下: 光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。
目前市面上太阳能光伏发电站的“并网模式”通常有三种:自发自用余电上网模式、全额上网模式、全部自用模式。
首先,在这三种并网模式中选择其中一种,那么就需要根据自身的实际情况来进行选择了:比如说像普通家庭住户,大多数的人都选择自发自用余电上网的模式,这也是现在分布式光伏发电站中所用比例占最高的一种选择方式。
这种模式的好处,是光伏电站发出来的电优先给自己家里面供电使用,然后用不掉多余的电直接自动并入到电网里面,这样的话就避免了浪费,还能赚钱。这种模式是比较适合普通家庭用户选择的,也是非常经济实惠,因为不用额外花钱买电池来储存电量。
除了家庭用电以外,比如说工业用电、厂房屋顶、工商业楼房屋顶这些地方就是商业用电,也是比较适合自发自用余电上网模式的。
为什么这么说呢?因为商业用电的费用比民用电费更高,如果工商业以及厂房屋顶安装光伏电站的话,那么经济效益会大大地增高,回本时间也会更短,这种选择方式是非常有利的,用不掉的电直接并网到电网上面。
光伏发电并网就是太阳能组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电之后直接接入公共电网。可以分为带蓄电池的和不带蓄电池的并网发电系统。带有蓄电池的并网发电系统具有可调度性,可以根据需要并入或退出电网,还具有备用电源的功能,当电网因故停电时可紧急供电,带有蓄电池的光伏并网发电系统常常安装在居民建筑。不带蓄电池的并网发电系统不具备可调度性和备用电源的功能,一般安装在较大型的系统上。
光伏发电并网:太阳产生的直流电转换成交流电之后接入公共电网。
原理:
光伏发电的主要原理是半导体的光电效应。光子照射到金属上时,它的能量可以被金属中某个电子全部吸收,电子吸收的能量足够大,能克服金属原子内部的库仑力做功,离开金属表面逃逸出来,成为光电子。
硅原子有4个外层电子,如果在纯硅中掺入有5个外层电子的原子如磷原子,就成为N型半导体;若在纯硅中掺入有3个外层电子的原子如硼原子,形成P型半导体。当P型和N型结合在一起时,接触面就会形成电势差,成为太阳能电池。当太阳光照射到P-N结后,电流便从P型一边流向N型一边,形成电流。
光电效应就是光照使不均匀半导体或半导体与金属结合的不同部位之间产生电位差的现象。它首先是由光子(光波)转化为电子、光能量转化为电能量的过程;其次,是形成电压过程。
太阳能光伏发电是依靠太阳能电池组件,利用半导体材料的电子学特性,当太阳光照射在半导体PN结上,由于P-N结势垒区产生了较强的内建静电场,因而产生在势垒区中的非平衡电子和空穴或产生在势垒区外但扩散进势垒区的非平衡电子和空穴。
在内建静电场的作用下,各自向相反方向运动,离开势垒区,结果使P区电势升高,N区电势降低,从而在外电路中产生电压和电流,将光能转化成电能。
太阳能光伏发电系统大体上可以分为两类
一类是并网发电系统
即和公用电网通过标准接口相连接,像一个小型的发电厂
另一类是独立式发电系统
即在自己的闭路系统内部形成电路。
并网发电系统通过光伏数组将接收来的太阳辐射能量经过高频直流转换后变成高压直流电,经过逆变器逆变后向电网输出与电网电压同频、同相的正弦交流电流。
而独立式发电系统光伏数组首先会将接收来的太阳辐射能量直接转换成电能供给负载,并将多余能量经过充电控制器后以化学能的形式储存在蓄电池。
1.并网:就是指太阳能电池将转换的电能通过逆变器变成交流电直接送入电网。并网太阳能发电系统不再需要庞大笨重的蓄电池,不存在维护和更换蓄电池的麻烦,既降低了建设成本。又节约了运行费用,同时不受蓄电池容量的限制.只要有阳光就能发电,使用更加灵活。并网运行由于有电网作为光照不足时和夜间供电的备用电源,供电可靠性高;将多余的电能送入电网,还可通过售电收入谋求投资的商业回报。
2.离网:独立太阳能发电系统不需要市电.可免去接引电
网电源的设备及线路费用。适合于难以取得电网电源、独立的小容量用电设备,且用电设备失去电源后,不会造成特大损失的场所。但是,如果负荷较大,独立太阳能发电系统需要配置大量蓄电池及大面积机房,投资增加很大。且蓄电池寿命短,3~5年就需要更换,对环境还会造成污染,维护工作量也大。
写的有点多,也不知道你明白没?反正大概就这个意思。
不可逆流并网是分布式能源应用的新型模式,又被称为共网或单方向联网。就是以微电网和市政电力联网共同向负载供电,而且在供电时,微电网中的电能不会流向市政电网,只有当微电网不能满足负载的功耗时,市政电网作为补充供应.
您所说的情况时不可逆流并网系统(特指不向电网发送功率的产品)
它主要因为光伏发电的能量是来源于组件装换光能所来的电能,而光电装换取决于阳光的强度及温度等;这意味着光伏发电的功率是不稳定的,它不一定能够满足您的使用(即不能通过自发自用来满足您所需要的全部电能),这时候不够的那部分电能,就需要从我们的公共电网取得,这个就是不可逆流并网系统需要并网的一个非常重要的原因
首先,在这三种并网模式中选择其中一种,那么就需要根据自身的实际情况来进行选择了:比如说像普通家庭住户,大多数的人都选择自发自用余电上网的模式,这也是现在分布式光伏发电站中所用比例占最高的一种选择方式。
这种模式的好处,是光伏电站发出来的电优先给自己家里面供电使用,然后用不掉多余的电直接自动并入到电网里面,这样的话就避免了浪费,还能赚钱。这种模式是比较适合普通家庭用户选择的,也是非常经济实惠,因为不用额外花钱买电池来储存电量。
光伏并网发电系统的发电原理
这种形式的关键元件是太阳能板。太阳能板经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。
储能光伏发电系统(即储能光伏发电系统)由太阳能板方阵、蓄电池、逆变器组件、控制器和负载(直流负载和交流负载)组成。
如果是直流负载就可以直接接在蓄电池上工作,如果是交流负载,那么需要经过逆变器的DC-AC 变换,将直流电变成交流电,供给交流负载。
2.光伏并网发电系统
光伏并网发电系统的组成
光伏并网发电系统拓扑结构
推挽式逆变电路的电路结构比较简单,如图3-1 所示。其上电路只需要两个晶闸管,基极驱动电路不需要隔离,驱动电路比较简单,但是晶闸管需要承受2 倍的线路峰值电压,所以适合于低输入电压的场合应用。
相比于推挽式逆变电路,单相半桥式逆变电路中所使用的晶闸管的耐压要求就相对较低,不会有线电压峰值2 倍这么多,绝对不会超过线电压峰值。其逆变出来的波形也相对推挽式比较接近于正弦波,所以滤波的要求也相对较低。
一般太阳能发电厂内设置主变压器,通过主变压器的断路器与电网并网。断路器两侧设置同期装置,在并网前将太阳能发电厂的频率与电网频率调整到一致后,该断路器合闸并网。
全球最大的太阳能设备制造商第一太阳能公司将在鄂尔多斯市杭锦旗能源化工基地内,兴建占地65平方公里的太阳能发电厂。第一太阳能公司还计划建立专门工厂,生产电厂所需的太阳能模块和电池板。
该项目建设工程分为四期,第一期于2010年6月1日开工,建成后发电30兆瓦,二期和三期工程分别可发电100兆瓦和870兆瓦,在2014年底前完工,第四期可发电1000兆瓦,在2019年底前建成。
太阳能发电站好处:
1、太阳能资源取之不尽,用之不竭,照射到地球上的太阳能要比人类目前消耗的能量大6000倍。而且太阳能在地球上分布广泛,只要有光照的地方就可以使用光伏发电系统,不爱地域、海拔竺等因素的无限制。
2、太阳能资源随处可得,可就近供电, 不必长距离输送,避免了长距离输电线路所造成的电能损失。
3、光伏发电的能量转换过程简单,是直接从光子到电子的转换,没有中间过程(如热能转换为机械能,机械能转换为电磁能等)和机械运动,不存在机械磨损。根据热力学分析,光伏发电具有很高的理论发电效率,可达80%以上,技术开发潜力巨大。