建材秒知道
登录
建材号 > 生物质能 > 正文

什么是生物质能

拉长的秀发
动人的玫瑰
2022-12-22 01:39:21

什么是生物质能

最佳答案
迅速的母鸡
酷炫的楼房
2025-07-27 10:24:56

生物质能是指植物叶绿素将太阳能转化为化学能储存在生物质内部的能量,通过热化学转换技术将固体生物质转换成可燃气体、焦油等,通过生物化学转换技术将生物质在微生物的发酵作用下转换成沼气、酒精等,通过压块细密成型技术将生物质压缩成高密度固体燃料等。

生物质能源包括:能源林木、能源作物、水生植物、各种有机的废弃物等,它们是通过植物的光合作用转化而成的可再生资源。

生物质有广义和狭义之分,广义上的生物质是指利用大气、水、土地等通过光合作用而产生的各种有机体,即一切有生命的可以生长的有机物质通称为生物质,包括所有的植物、微生物以及以植物、微生物为食物的动物及其生产的废弃物。

狭义上的生物质主要是指农林业生产过程中除粮食、果实以外的秸秆、树木等木质纤维素、农产品加工业下脚料、农林废弃物及畜牧业生产过程中的禽畜粪便和废弃物等物质。

扩展资料:

生物质能具有四大特征:

1、一是可再生性。由于可以通过植物的光合作用而形成,生物质能与风能、太阳能等一样是可再生能源,源源不断生产,保障永续利用。

2、二是绿色环保。一方面,由于生物质中硫含量、氮含量很低,燃烧过程中基本不会造成有害气体;另一方面,生物质燃烧排放释放的二氧化碳的量与其生长需要的二氧化碳相当,因而对大气的二氧化碳净排放量近似于零,不会加剧温室效应。

3、三是分布广泛、总量丰富。根据生物学家的估算,陆地每年生产1000亿一1250亿吨生物质;海洋年生产500亿吨生物质。生物质能源的年生产量远远超过全世界年能源需求总量。

4、四是广泛应用性。生物质能源可以以沼气、压缩成型固体燃料、气化生产燃气、气化发电、生产燃料酒精、热裂解生产生物柴油等形式存在,应用在国民经济的各个领域。

参考资料来源:百度百科-生物质能

参考资料来源:人民网-“古典”能源迈上复兴路-中国生物质能开发利用成果丰硕

最新回答
愉快的外套
飘逸的豌豆
2025-07-27 10:24:56

‍‍

所谓生物质能,就是利用秸秆、稻草、蔗渣、木糠等植物燃料直接燃烧或发酵成沼气后燃烧,燃烧产生的热量使水蒸汽带动汽轮机发电。目前国内最大的机组为1.5万千瓦,主要是将平原地带农民废弃的麦杆、稻草拿来燃烧发电,燃烧后的草木灰作为肥料,国家视作清洁能源,有政策补贴,但目前已运行的机组基本上亏损.......

生物质发电主要是利用农业、林业和工业废弃物为原料,也可以将城市垃圾为原料,采取直接燃烧或气化的发电方式。

近年来中国能源、电力供求趋紧,国内外发电行业对资源丰富、可再生性强、有利于改善环境和可持续发展的生物质资源的开发利用给予了极大的关注。于是生物质能发电行业应运而生。世界生物质发电起源于20世纪70年代,当时,世界性的石油危机爆发后,丹麦开始积极开发清洁的可再生能源,大力推行秸秆等生物质发电。自1990年以来,生物质发电在欧美许多国家开始大发展。

中国是一个农业大国,生物质资源十分丰富,各种农作物每年产生秸秆6亿多吨,其中可以作为能源使用的约4亿吨,全国林木总生物量约190亿吨,可获得量为9亿吨,可作为能源利用的总量约为3亿吨。如加以有效利用,开发潜力将十分巨大。为推动生物质发电技术的发展,2003年以来,国家先后核准批复了河北晋州、山东单县和江苏如东3个秸秆发电示范项目,颁布了《可再生能源法》,并实施了生物质发电优惠上网电价等有关配套政策,从而使生物质发电,特别是秸秆发电迅速发展。

‍‍

负责的麦片
爱听歌的嚓茶
2025-07-27 10:24:56
一、对农林生物质发电项目实行标杆上网电价政策。未采用招标确定投资人的新建农林生物质发电项目,统一执行标杆上网电价每千瓦时0.75元(含税,下同)。通过招标确定投资人的,上网电价按中标确定的价格执行,但不得高于全国农林生物质发电标杆上网电价。

二、已核准的农林生物质发电项目(招标项目除外),上网电价低于上述标准的,上调至每千瓦时0.75元;高于上述标准的国家核准的生物质发电项目仍执行原电价标准。

三、农林生物质发电上网电价在当地脱硫燃煤机组标杆上网电价以内的部分,由当地省级电网企业负担;高出部分,通过全国征收的可再生能源电价附加分摊解决。脱硫燃煤机组标杆上网电价调整后,农林生物质发电价格中由当地电网企业负担的部分要相应调整。

四、农林生物质发电企业和电网企业要真实、完整地记载和保存项目上网交易电量、价格和补贴金额等资料,接受有关部门监督检查。各级价格主管部门要加强对农林生物质上网电价执行情况和电价附加补贴结算情况的监管,确保电价政策执行到位。

具体价格看各地的政府支持以及扶持力度了。

大胆的夏天
伶俐的手链
2025-07-27 10:24:56
对于生物质这个词大家都有肯能感到陌生, 所以我们先解释一下这个名词, 生物质是指 利用大气、水、土地等通过光合作用而产生的各种有机体,即一切有生命的可以生长的有机 物质通称为生物质。它包括植物、动物和微生物。广义概念:生物质包括所有的植物、微生 物以及以植物、微生物为食物的动物及其生产的废弃物。有代表性的生物质如农作物、农作 物废弃物、木材、木材废弃物和动物粪便。狭义概念:生物质主要是指农林业生产过程中除 粮食、果实以外的秸秆、树木等木质纤维素(简称木质素) 、农产品加工业下脚料、农林废 弃物及畜牧业生产过程中的禽畜粪便和废弃物等物质。特点:可再生、低污染、分布广泛。 因为生物质中含有能量, 因此引伸出生物质能这个词, 生物质能就是太阳能以化学能形式贮 存在生物质中的能量形式, 即以生物质为载体的能量。 它直接或间接地来源于绿色植物的光 合作用,可转化为常规的固态、 液态和气态燃料,取之不尽、用之不竭,是一种可再生能源, 同时也是唯一一种可再生的碳源。 国内生物质的资源分布 因为生物质包括植物、动物和微生物,所以在分析生物质资源分布的时候,我们只考虑 植物的分布。我国农林生物质资源丰富、数量巨大,较常见的有秸秆、稻壳、薪材、锯末和 甘蔗渣等。 据统计,我国农作物秸秆可收集量约为 4.5 亿 t/年, 折合标准煤 1.8 亿 t, 稻壳 5000 万 t,折合标准煤 2000 万 t ;林业加工过程产生的木质废弃物约 2400 万 m3,折合标准煤 150 万 t ;各种天然薪材的合理提供量为 1.4 亿 t ,折合标准煤 0.74 亿 t。 农业生物质资源 我国是农业生产大国,农业生物质资源丰富。 每年的农业生产废弃物的产量约为 6.5 亿 t, 到 2010 年产量可达 7.3 亿 t,可产生 12EJ 的能量。农业生物质资源主要包括农作物秸秆和 农产品加工废弃物。农作物秸秆是我国广大农村地区传统的生活用能,其中水稻、玉米和小 麦秸秆占到 84.3%;农产品加工废弃物有稻壳、玉米芯、花生壳和甘蔗渣等。1999 年,我 国各地区主要农业生物质可利用量的合计总量达 5.6 亿 t。 列前 10 位的地区是: 山东、 河南、 河北、江苏、黑龙江、吉林、四川、湖北、安徽和内蒙古。其中,秸秆类生物质的主要流向 为 15%还田,24%饲用,2.3%用于工业,近 60%用于薪柴或露地燃烧。因此,我国农业生 物质资源具有巨大的应用潜力。 林业生物质资源 我国现有森林面积为 1.75 亿 hm2,其蓄积量为 124.56 亿 m3。2002 年,全国造林面积 为 777.10hm2,比上一年增长 56.8%。我国陆地林木生物质资源总量在 180 亿 t 以上,可用 于生产生物质能源的主要是薪炭林、 林业废弃物和平茬灌木等。 林业生物质能资源在我国农 村能源中占有重要地位。2002 年,我国农村消耗的林业生物质能资源约 1.66 亿 tce,占农村 能源总消费量的 21.2%。在丘陵、山区和林区等区域,农民 50%以上的生活用能依靠林业资 源。1999 年,我国林业生物质产量列前 10 位的地区是:黑龙江、内蒙古、四川、云南、吉 林、江西、湖南、广西、广东和山西。另外,我国有宜林荒山荒地约 4692.71 万 hm2,可以 开发种植高产能源植物。 (资料来自于百度百科) 我国生物质能源的利用现状 我们国家生物质能源的资源十分丰富, 然而我国生物质能源的开发利用起步较晚, 随着 近些年的研究和开发,经取得了明显的效果。但总体来说主要是作为燃料提供热能或发电、 农田有机肥料及多种化工产品等。 生物质作为燃料或发电 (1)直接燃烧 我国 9 亿多农村人口的生活用能大部分依赖于生物质能源。 然而直接燃烧热效率低, 目 前生物质的直接燃烧利用着重于研究开发提高燃烧的热效率, 减少有害物排放, 如研究开发 各种锅炉等用能设备上。生物质的燃烧,国外用于商业化发电,我国在这一方面仍需进一步 完善。 直接燃烧主要包括炉灶燃烧、压缩成型燃料燃烧、联合燃烧和焚烧垃圾。炉灶燃烧是传 统农村人们的用能方式, 因效率比较低而逐渐被淘汰。 压缩成型燃料燃烧是将生物质压缩成 型,使其密度增大,性能接近煤,相当于锅炉直接燃煤技术,而且尾气排放污染小,进行发 电很有发展前景, 其中颗粒成型燃烧尤适合家庭或暖房取暖。 联合燃烧是燃煤掺入生物质燃 烧,可减少二氧化硫及氮的氧化物的排放。焚烧垃圾是锅炉在 800—1000℃高温下燃烧垃圾 可燃组分, 释放热量供热或发电。 目前我国现代生物质能中用于直接燃烧的高效燃烧锅炉有 200 多台,效率均可达 80%,有几十家垃圾焚烧炉正常运行。 垃圾顾名思义是一种环境污染物,其实它是“放错位置的财富” ,许多国家和地区,已 经形成垃圾产业,垃圾的资源化既可以减轻环境污染,又可以缓解资源短缺。近年来,国外 不断开发出新型发电技术如城市生活垃圾发电,据试验焚烧 500t 垃圾可以发电 1 万千瓦? 时。匈牙利建造的一座大型垃圾发电厂,有 4 个垃圾燃烧室,每个燃烧室可燃烧 15t 垃圾? 电站既发电又给附近用户提供了高达 250℃的蒸汽。垃圾发电在丹麦、瑞典、德国、法国、 日本、英国等国家也得到重视和应用。污泥发电,日本东京大学发明了一种使污泥固化的方 法,据试验固化污泥每千克有 4000 大卡热量,相当于低质煤的发热量,用它进行发电,既 可节约能源,又可保护环境卫生。但是我国垃圾资源的产业化尚未形成。 我国生物质能直接燃烧发电处于起步阶段, 仍具有较大的发展潜能, 美国利用生物质如 废木材和农业废弃物燃烧发电技术已经成熟,其发电设备装机容量为 736MW。 (2)利用转化技术 生物质能源的开发利用, 按照转化产物的形态可分为生物质的液化和气化, 液化与气化 通常采用生物技术和热化学两种方法。 生物质的液化, 生物质的热解液化技术在我国目前尚处于试验研究阶段。 我国各大院校 如浙江大学对生物质废弃物在回转窑中的热解特性, 以及各种碱金属和相关无机元素在生物 质热解中的析出行为进行了研究, 上海理工大学、 东南大学等也正在从不同的角度对生物质 液化技术进行研究。 研究生物质液化是为了提高液体产物的产率, 减少固体残留物和气态产 物的量获得品质更高的液体产品。 生物质热解液化所得液体燃料习惯上称为生物柴油, 可以直接作为燃料使用, 也可以转 化为品位更高的液体燃料或价值更高的化工产品。 生物柴油的研究与开发起步晚, 有望在今 后几十年中迅速发展起来,形成生物柴油产业。统计数据表明,我国乙醇产量的 1/3 以木薯 为原料,2004 年广西乙醇产量为 30 万 t,其中木薯生产乙醇总量达到 10 万 t。利用生物质生 产酒精方面巴西和美国成绩很突出。 研究结果表明木薯作为燃料乙醇原料的综合效益居第二 位,它是生产生物乙醇的首选原料,目前科技工作者在木薯乙醇生产中已经开发出诸如连续 发酵、差压精馏等可与玉米乙醇生产相媲美的技术。黑龙江、吉林和河南三省建设陈化粮为 燃料乙醇生产工程,主要原料为玉米、甘薯等,并已在全国十余个城市开展了掺和 10%乙醇的 汽油醇燃料应用示范工作。 生物质的气化,我国生物质生产沼气研究工作开展的较好,利用秸秆和粪便通过发酵,产 生沼气后照明和生活用燃料。目前,我国特别是四川等地在农村已普遍使用了较为实用的沼 气池。沼气开发利用主要有农业沼气,工业沼气,城市下水道污水沼气,城市垃圾沼气。生物 质气化产物主要包含甲烷、乙烷、氢气、一氧化碳、二氧化碳等,这些产物可用做生活燃气 或工业用气。生物质气化是生物质热转化技术中历史最长、最具实用性的一种技术,但生物 质气化气存在的最大弱点,即气体中 H2/CO 值较低。 我国在技术与装置开发方面自 1990 年代 以来,已取得了一系列的成果,如主要集中于生物法和热化学转换法生物质的制氢技术,中国 科学院广州能源研究所开发研制的各式气化炉 ,可用于清洁供热供电和供气,部分产品已经 出口东南亚各国。 目前二甲醚的合成主要通过煤气化、 天然气气化以及重渣油气化等途径获 得的合成气来合成。 据报道,该研究所研究出利用生物质间接液化一步法合成二甲醚的方法。 发明专利是一种利用沼气重整生物质气化气合成二甲醚的新方法,工艺涉及生物质的高效洁 净利用领域,提供了一种完全由生物质高效清洁利用合成燃料二甲醚的绿色合成方法。?? 生物质转化成其他化工产品 上海大学环境与化学工程学院固体废物研究中心,利用水热技术对甘蔗渣、树叶和菜皮 ?种生物质垃圾的转化产物和机理进行了研究。结果表明,生物质转化得到的产物中含有大 量的腐植酸物质。这类腐植酸物质可以作为生态肥料,腐植酸含量能达到 45%左右具有良好 的肥效和经济价值。广西大学生物技术学科的研究人员针对此难题经过两年的攻关,成功地 研制了利用污泥制造成高效无污染的生态有机肥的技术,生产的肥料不仅能使农作物产量有 较大的提高,而且使果蔬的品质有极大的提高,深受农民的普遍青睐。2000 年该技术转让给 上市公司桂林集琦集团,当年便实现产业化。 我国农村生产沼气过程中,同时得到发酵液、 渣 等厌氧发酵残留物,作为农田的有机肥料,效果很好,从而使得生物质能源得到充分利用。我 国木薯生产乙醇技术趋于成熟,乙醇除了作为运输燃料替代汽油,还可以生产冰醋酸、 乙烯及 其下游产品。生物质的催化合成甲醇技术发达国家,如美国、日本、英国、法国、德国、俄 罗斯等,早在 10 年前就已开展了技术攻关研究。朱灵峰等研究者开展了此项研究工作,填补 了我国此研究领域的空白。 结果表明,解决了催化剂失活问题,秸秆类生物质热化学法制得的 低热值燃气通过适当处理制备的合成气,可直接催化合成甲醇。生物质能的研究工作逐渐转 向热解产品的深加工开发,如活性炭、 木醋液等应用研究领域。 木焦油是国际紧俏产品,木醋 液可形成多种化工产品。 (资料来源江西林业科技报 2006 年第 5 期) 开发和利用生物质能源已成为世界许多国家开源节流、化害为利和保护环境的重要措 施。据联合国环境保护机构发表的一份调查报告说,至少有多个工业化国家在开发利用“绿 色能源”方面取得了显著成绩,其中有些国家通过实施“绿色能源”计划,在很大程度上缓 解了本国能源紧缺的矛盾?同时有效地改善了环境。 而我们国家在拥有丰富的生物质资源时, 我们更要合理的开发与利用, 改善利用生物质 能源的技术,提高能源利用效率,使我国在利用生物质能源方面更加完善,最终使生物质能 源成为我国重要能源的之一。

强健的奇异果
标致的皮带
2025-07-27 10:24:56
综合科技部生物技术工程中心、清华大学、南京科技大学等单位调研结果,石元春院士基本概括了我国发展生物质能源潜在优势:

其一,我国林业生物质能源原料丰富。

据专家介绍,我国发展林业生物质能源前景十分广阔,在已查明的油料植物中,种子含油率在40%以上的植物有150多种,能够规模化培育利用的乔灌木树种有10多种。目前,作为生物柴油开发利用较为成熟的有麻疯树、黄连木、光皮树、文冠果、油桐等树种。

国家能源办副主任徐锭明认为,我国有着发展林业生物质能源的巨大资源优势与潜力,丰富的林地和沙地等边缘土地资源,可以有计划地发展为林木生物质能源的基地。充分利用这些资源开发生物质能源,对改善我国能源结构,减少对化石能源的依赖,保障国家能源安全具有重大意义。

2006年11月,财政部、国家发改委、国家林业局下发了《关于发展生物质能源和生物化工财税扶持政策的实施意见》,对发展生物质能源产业和生物化工实施风险基金制度与弹性亏损补贴机制,国家对生物质能源及生物化工生产的原料基地龙头企业和产业化技术示范企业予以适当补助。“十一五”期间,将最终使林业生物质能源达到从原料培育、加工生产到销售的“林油一体化”格局。

越来越多的企业将目光投向生物柴油。中粮、中石油、中海油等大集团均投资生物柴油项目,建设多个能源林基地。日前国家林业局与中国石油天然气股份有限公司签署协议,从今年起,将共同在云南、四川两省建设第一批林业生物质能源基地。

其二,利用边际性土地种植非粮能源作物。

耕地面积较少是我们国家的基本国情之一。我国存在大量的山地、滩涂、盐碱地等边际性土地。利用种粮难的边际性土地种植能源作物将为生物质能源提供充足的原料,例如,甜高粱、木薯等非粮农作物。上世纪70年代,我国在山东等地的滩涂大面积试种菊芋获得成功,亩产上万斤,果糖含量超过甘蔗。南方山地木薯种植前景也非常广阔。

其三,农林业的废弃物(包括城市工业的有机废弃物)都可作为生物能源原料。

我国每年生产粮食五亿吨,产生秸秆近七亿吨。也是生物能源的主要原料之一。目前我们国家已经有利用秸秆制造生物燃料的技术。我国生物能源主力生产厂家安徽丰原集团成功突破了用秸秆生产乙醇燃料的关键技术,目前实验已取得阶段性成果,今年将建成年产300吨秸秆生产燃料酒精的中试项目。由于秸秆的价格只有玉米的几分之一,生产成本将大为降低。有人预言,用这种最经济的原料将生产出中国最需要的“新汽油”。中科大还实现了“秸秆变油”,利用“生物质热解液化技术”成功用木屑、稻壳、玉米秆和棉花秆等多种农林废弃物生产生物油,可以直接作为燃料使用。

另外农业生产中的畜禽粪便、森林中的枯枝腐叶等;城市的工业有机废弃物、城市生活中废弃的厨余垃圾、剩余倒掉的泔水等等,所有的有机物质都可以转化为生物能源。现在我国已有一大批万吨以下生物柴油项目,多数是提取厨余垃圾、剩余倒掉的泔水中的油脂作为生物原料。

俭朴的金鱼
复杂的电源
2025-07-27 10:24:56

1.我国的生物质能资源情况

我国拥有丰富的生物质能资源,据测算,我国理论生物质能资源50×108t左右,是我国目前总能耗的4倍。生物质能资源按原料的化学性质分,主要为糖类、淀粉和木质纤维素类。按原料来源分,则主要包括以下几类:(1)农业生产废弃物,主要为作物秸秆。(2)薪柴、枝丫柴和柴草。(3)农林加工废弃物,木屑、谷壳和果壳。(4)人畜粪便和生活有机垃圾等。(5)工业有机废弃物、有机废水和废渣等。(6)能源植物,包括所有可作为能源用途的农作物、林木和水生植物资源等。其中来源最广、储量最大、利用前景最可观的是农业生物质和林业生物质这两大类。

1)农业生物质

农业生物质资源包括农产品加工废弃物和农作物秸秆,如图7.13所示。农产品加工废弃物有花生壳、玉米芯、稻壳和甘蔗渣等;农作物秸秆包括水稻秸秆、小麦秸秆和玉米秸秆等。据统计,我国各地区主要农业生物质的可利用总量约为5.6×108t,排名前三的地区分别是山东、河南、河北,而秸秆类农业生物质资源利用的主要方向为24%用于饲用,15%用于还田,2.3%用于工业,剩余的约60%用于露地燃烧或薪柴。因此,我国的农业生物质资源的应用潜力非常大。

图7.13 农业生物质

2)林业生物质

我国现有森林面积约1.95×108hm2,林业生物质总量超过180×108t,其中可利用的林业生物质资源有以下三类:一类是木本淀粉类资源,如栎类、果实、橡子等;二类是木本油料资源,如油桐、油茶、黄连木、文冠果、麻疯树等;三类是木质燃料资源,如灌木林、薪炭林、林业“三剩物”等。而且,我国还有近4000×104hm2的宜林荒山、荒地可用于种植能源林,还有近600×104hm2疏林地和5000×104hm2郁闭度(指森林中乔木树冠遮蔽地面的程度)低于0.4的低产林地可用于改造。

目前世界上已有20多个国家在种植“柴油树”。我国河北省武安市马家庄乡连绵起伏的青山上,满山遍野生长着枝繁叶茂的黄连木树,这种树木的果实可以提炼柴油,当地群众将它称为“柴油树”。现在武安市共有这样的“柴油树”10万亩,年提炼柴油产量可达1000×104kg。据介绍,到2012年,武安市计划将“柴油树”发展到20万亩,年产柴油量达到2000×104kg。

2.生物质能资源的利用

主要应用在生物乙醇、生物柴油、生物质固体成型燃料和生物质能发电行业。

1)生物乙醇的应用

生物乙醇是指通过微生物的发酵将各种生物质转化为燃料酒精。它可以单独或与汽油混配制成乙醇汽油作为汽车燃料。我国生产生物乙醇的原料有甘蔗、甜高粱、木薯等高能品种,并建立了年产能力达5000t的甜高粱茎秆生产乙醇的工业示范装置。因传统粮食生产乙醇价格昂贵,为降低生产成本,我国已转向对微生物混合发酵法的研发。国家发展和改革委员会称,到2020年,我国15%生物质燃料将应用在汽车、轮船等行业。

2)生物柴油的应用

可从动植物油,如大豆、油菜、动物油脂以及餐饮垃圾中提炼生物柴油,因其环保性、润滑性、安全性能良好,可与石化柴油混合作为燃料。2005年6月,我国使用自主研发的生物酶法生产生物柴油,技术指标达到欧美生物柴油标准,标志着我国生物柴油研究取得了突破性进展。2010年生物柴油产能达300×104t/年,主要用于交通运输行业。我国提出了在2020年,生物柴油产能达200×104t的目标,已在海南建立了6×104t/年装置,产量居我国首位。

3)生物质固体成型燃料的应用

生物质固体成型燃料是将城市垃圾或农林废弃物,通过外力作用,压缩成型来增加其密度的可燃物质,具有高效、清洁、无污染等优点。图7.14为生物质捆装压缩示意图。我国的生物质成型燃料生产设备有螺旋挤压式、活塞冲压式、模辊碾压式,燃料形状主要有块状、棒状、颗粒状三种。北京奥科瑞丰公司生物质固体成型燃料年产量为60×104t,居全国首位,主要应用在直接燃烧取暖与工业锅炉等方面。

图7.14 生物质捆装压缩

4)生物质能发电的应用

生物质能发电是利用生物质所具有的生物质能进行的发电,是可再生能源发电的一种,包括农林废弃物直接燃烧发电、农林废弃物气化发电、垃圾焚烧发电、垃圾填埋气发电、沼气发电。为推动生物质能发电技术的发展,2003年以来,国家先后核准批复了河北晋州、山东单县和江苏如东三个秸秆发电示范项目,颁布了《中华人民共和国可再生能源法》,并实施了生物质能发电优惠上网电价等有关配套政策,从而使生物质能发电,特别是秸秆发电迅速发展。

2008年,蒙牛建成全球最大的生物质能沼气发电厂,得到联合国开发计划署环保基金的大力支持。图7.15为蒙牛生物质能沼气发电厂。

图7.15 蒙牛的全球最大生物质能沼气发电厂

3.生物质能开发利用的主要技术

生物质能开发利用在目前阶段的主要技术有三大类:物理转化、化学转化和生物转化。涉及压缩成型、气化、液化、热解、发酵、水解等具体技术,具体情况如图7.16所示。

1)物理转化

生物质的物理转化是将农林废弃物,如秸秆、锯屑、稻壳、蔗渣等,干燥后在一定压力的作用下,压制成棒状、粒状、块状的成型燃料或饲料。农林废弃物主要由纤维素、半纤维素和木质素构成,生物质压缩成型主要是靠木质素的胶结作用。木质素为光合作用形成的天然聚合体,具有复杂的三维结构,是高分子物质,在植物中含量约为15%~30%。当温度达到70~100℃时,木质素开始软化并具有一定的黏度,当温度达到200~300℃时,木质素呈熔融状态,黏度变高,此时施加一定压力就能使木质素与纤维素黏结,使植物体积大量减少,密度显著增加,取消外力后,由于非弹性的纤维分子间的相互缠绕,其仍能保持给定形状,冷却后强度进一步增加,大大降低农林废弃物的体积,便于运输和储存。

图7.16 生物质能开发利用的主要技术

2)化学转化

生物质的化学转化涉及气化、液化和热解等三个方面。

(1)气化:

生物质气化是指在一定的温度条件下,借助氧气或水蒸气的作用,使高聚合的生物质发生热解、氧化、还原等反应,最终转化为CO,H2和低分子烃类等可燃气体的过程。在我国,应用生物质气化技术最广的领域是生物质气化发电(BGPG)。生物质气化发电的成本约为0.2~0.3元/(kW·h),已经接近或优于常规发电,其单位投资约为3500~4000元/kW,仅为煤电的60%~70%,具备进入市场竞争的条件,发展前景非常广阔。

(2)液化:

生物质液化技术是指在高温高压的条件下,进行生物质热化学转化的过程。通过液化,可将生物质转化成高热值的液体产物,即将固态的大分子有机聚合物转化成液态的小分子有机物,生物柴油就是利用生物质液化技术生产出的可再生燃料。油料作物如大豆、油菜、棕榈等在酸性或碱性催化剂和高温的作用下发生酯交换反应,生产相应脂肪酸甲酯或乙酯,再经过洗涤干燥后得到生物柴油。与传统的石化能源相比,其硫和芳烃含量低,十六烷值高,闪点高,具有良好的润滑性,可添加到化石柴油中。

(3)热解:

生物质热解是指利用热能将生物质的大分子打断,从而转化为含碳原子数目较少的低分子化合物的过程,即生物质在完全缺氧条件下,经加热或不完全燃烧后,最终转化成高能量密度的气体、液体和固体产物的过程,而木炭就是利用生物质热解技术生产出的重要产物。木炭产品包括白炭、黑炭、活性炭、机制炭四大类,其中应用范围最广的是活性炭。活性炭是具有发达孔隙结构、强吸附力、比表面积巨大等一系列优点的木炭。在我国,活性炭广泛应用于葡萄糖、味精和医药等产业的生产。

3)生物转化

生物转化技术是指依靠微生物发酵或者酶法水解作用,对生物质进行生物转化,生产出乙醇、氢、甲烷等液体或气体燃料的技术。生物转化的生物质原料包括淀粉和木质纤维素两大类。玉米、木薯、小麦等淀粉类粮食作物是生物转化的主体,但是以农作物为原料转化的产品成本较高,且易受土地和人口的因素限制,产量无法大幅度增加。因此以廉价的农作物废料等木质纤维素为原料的生物转化技术才是解决能源危机的有效途径。然而,木质纤维素的结构和组分与淀粉类原料有很大的不同,解决高效、低成本降解木质纤维素原料的问题是木质纤维素转化产物取代化石燃料的根本途径。

优秀的凉面
懵懂的雨
2025-07-27 10:24:56
在无氧或者缺氧的条件下,对固体废物中的有机物进行加热,使其发生不可逆的化学变化,主要是使高分子的化合物分解为低分子化合物的处理技术,称为热分解技术,简称热解。热解处理的主要产物包括气体部分(如氢气、甲烷、一氧化碳、二氧化碳等)、液体部分(如甲醇、丙酮、醋酸、焦油、溶剂油、水溶液等)和固体部分(主要是炭黑)。不同于仅有热能可以回收的焚烧处理,热解技术可产生便于贮存运输的燃气、燃油等。适合于热解技术应用的固体废物主要包括废塑料(含氯废物除外)、废橡胶、废轮胎、废油和油泥、有机污泥等。城市生活垃圾、农林废弃物(如纤维素类物质)的热解技术也在蓬勃发展之中 。

1. 生物质是植物光合作用直接或间接转化的产物。生物质能是指利用生物质生产的能源。目前,作为能源的生物质主要是农林废弃物、城市和工业有机废弃物以及动物粪便等。本文所指的生物质具体指农林废弃物,即农林作物收获和加工过程中所产生的废弃物质和垃圾,如秸秆(玉米秆、花生秆、棉花秆、高梁秆、豆类秆等)、糠皮、山茅草、灌木枝、枯树叶、藤蔓、木屑、皮壳、刨花、锯末等,以及食品加工业排出的残渣,如饼粕、酒糟、甜菜渣、废糖蜜、蔗渣、食品工业下脚料等。

我国每年产生的各种农林废弃物有15亿,其中农业废物资源分布广泛,仅农作物秸杆年产量就7亿吨,可作为能源用途的秸杆约3.5亿吨,折合标准煤1.8亿吨;薪炭林和林业及木材加工废物的资源量约折合3亿吨标准煤,相当于我国石化能源消耗量的1/10还要多。另外,一些油料作物还是制取液体燃料的优质原料,如麻疯树、油菜籽、蓖麻、漆树、黄连木和甜高粱等。预计到2020年,农林废弃物约合11.65亿吨标准煤,可开发量约合8.3亿吨标准煤。另外,目前全国还有5700~公顷宜林地和荒沙荒地,l亿公顷不适宜发展农业的边际土地资源,发展林木生物质能源潜力巨大。

虽然目前新开发的生物质资源的综合利用途径相当多,并且有些途径生物质资源利用率和经济效益都很高,但消耗量小,不能从根本上解决农林废弃物资源的处理和利用问题。生物质作为能源能够最大量地回收利用农林废弃物资源,其产物不但不存在销路问题,还能替代传统燃料,缓解日趋严重的能源危机,能够产生良好的社会经济效益和环境效益。

2生物质能转化机理和技术途径

生物质均由纤维素、半纤维素和木质素等高聚物组成,其基本液化反应分别如下:根据热重分析,纤维素在325 K时,开始降解,随着温度升高,降解加剧,到623~643 K时,降解为低分子碎片。其降解过程如下:

而半纤维素结构上带有支链,比纤维素更易降解,其降解机制与纤维素相似。木质素结构单元通过醚键和c—c键相联,结构比纤维素、半纤维素要复杂得多,木质素的热化学液化反应首先是烷基醚键的断裂反应。木质素大分子在高温、供氢溶剂存在下,通过自由基反应,首先断裂成低分子碎片,其基本反应如下:

通过以上过程,形成小分子碎片,这些碎片进一步通过侧链C—O键、C—C键及芳环C—O键断裂形成低分子量化合物。以上是生物质降解为低分子的基本断裂反应。

快速热解是一个加热速率极快,而滞留时间极短且快速冷却的过程,是一个瞬间完成的过程。上述过程对生物质的降解仍然适用,然而时间极短,可近似等温过程。从反应物与生成物来看有如下过程:

Larfldt J等进行大量研究后,根据反应动力学提出4种热解模式:

模式2、3中炭的馏分通过计算预测,模式 l、4中有竞争反应,因而炭产量有变化。生产过程中,即使用最佳工艺参数,也不能生成单一产物,但通过调整参数可使反应尽可能向所需产物方向发展。如模式1中温度在500℃左右时,极高的加热速率、很短的滞留时间和快速冷却,能提高其K2值,主要产物为焦油,故模式1更适合快速热解。

目前生物质能的转化技术主要有3种:(1)生物质经生物化学处理转化为富含能量的燃料。如将生物质(农作物秸秆、粪便、有机废水等)发酵制得沼气,糖和淀粉原料发酵制酒精。我国在这方面的技术比较成熟,但在大规模处理生物质中将会受到生物质种类和生物技术的限制。(2)生物质经化学处理转化为高价值的化工产品。如利用生物质中的半纤维素在酸性介质下加热获得糠醛,利用稻壳生产白炭黑等。(3)生物质经热化学处理,即生物质在隔绝或少量氧气的条件下,热解反应获得可燃气体、固体木炭和液体生物油3类产品,又称生物质热裂解(生物质热解)。一般地说,生物质热解分低温慢速热解(<400℃),产物以木炭为主;高温闪速热解(700~1000℃),产物以可燃气体为主;中温快速热解(400~650℃),产物以生物油为主。快速热解技术,即生物质瞬间热解制取液体燃料油,是20世纪70年代末国外研究人员研究开发的。其收率高达70%以上,并有文献报道液体生物油的产率最高可达85%,是一种很有开发前景的生物质应用技术。

液体产物收率相对较高的快速热解技术,最大的优点在于其产物生物油易存贮、运输,为工农业大宗消耗品,不存在产品规模和消费的地域限制问题。生物油不但可以简单替代传统燃料,而且还可以从中提取出许多较高附加值的化学品。通过分散热解、集中发电的方式,热解生物油通过内燃机、燃气涡轮机、蒸汽涡轮机完成发电,这些系统可产生热和能,能够达到更高的系统效率,一般为35%~45%,从而解决了发电要求的规模效益,并大大降低了农林废弃物的运输和贮存费用高、占用场地大的问题。

3国内外生物质快速热解技术的研究现状

该技术始于20世纪70年代末,迄今为止,为降低快速热解法的生产成本(按等热值粗略折算,2 t生物原油可折合1 t石化燃料,则目前生产l石油当量吨的生物原油的成本远比生产1 t石化燃料的成本要高),各国已经对多种反应器和工艺进行了研究,特别是欧、美等发达国家,在进行全面的理论研究的基础上,已建立了相应的实验装置。快速热解法生产的液体燃料可以替代许多锅炉、发动机及透平机所用的燃油,而且还可以从中萃取或衍生出一系列化学物质,如食品添加剂、树脂、药剂等。正因为这些优势,快速热解技术越来越受到关注,工艺发展有了长足的进步。

在美国,采用循环流化床反应器和输送床反应器生产食品添加剂已投入商业运营,生产能力达l~2 t/h。欧洲各国多采用鼓泡流化床反应器,现在西班牙、英国分别建成了200 kg/h的试验厂,意大利建成了500 kg/h的示范装置。为了方便热解液化方面的学术交流和技术合作,欧洲在1995年专门成立了一个PyNE组织(Pyrolysis Net. work for Europe),拥有18个成员国;2001年成立了GasNet(Europe Biomass Gasification Network),现已拥有20个成员国以及8家工业单位成员。这些组织成立以来,在快速热解液化技术的开发以及生物油的利用方面做了大量富有成效的工作。

我国关于生物质快速热解研究较为薄弱,但近几年也有不少科研院所在这方面开展了工作。沈阳农业大学开展了国家科委“八五”重点攻关项目“生物质热裂解液化技术”的研究工作,他们在生物质热裂解过程的实验和理论分析方面做了很有成效的工作。浙江大学、中科院化工冶金研究所和广州能源所、河北省环境科学院等单位近年来也进行了生物质流化床或循环流化床液化实验。山东工程学院开发了等离子体快速加热生物质液化技术,利用实验室设备液化玉米秸粉,制出了生物油,并进行了成分分析。

国外的生物质能工作者偏重于不同类型的快速热解反应器的开发,以期提高生物油的产率。因为反应器能极大地影响化学反应体系的热量、动量、质量传递过程,设计合理的反应器可改善物料和温度在反应体系中的分布,从而提高化学反应的速度和进行程度。从实践中看,国外研制的某些反应器具有非常高的生物油产率。国内工作者着眼于通过控制温度、使用催化剂、寻找适宜的物料来探索提高生物油产量和质量的途径。

在生物质快速热解生产液体燃料的工艺中,反应器都是其核心部分,反应器的类型及加热方式的选择在很大程度上决定了产物的最终分布。因此,反应器类型和加热方式的选择是各种技术路线的关键环节。作为一种只有30多年发展历史的新工艺,在技术、产品和应用方面还存在许多不足,至今未实现大规模工业化应用。目前,亟待解决的问题有:(1)鼓励开发、改进工艺和设备;(2)工业放大;(3)降低成本;(4)改善生物油使用性能;(5)开发有价值的生物油副产品;(6)处理输送和使用过程的环境卫生与安全。

4生物质自混合下行循环流化床快速热解技术

山东科技大学化工学院清洁能源研究中心提出生物质自混合下行循环流化床快速热解技术,正处于实验研究阶段,并有一套处理量为200~300 kg/h的示范装置在建设中。

农林废弃物被锤片式粉碎机粉碎成合适的生物质颗粒,经烟气提升管干燥和提升,生物质颗粒被旋分器气固分离进入上部料仓。经螺旋进料器在专有热解反应器顶端,与通过蝶阀控制下落的高温循环热载体迅速实现自混合、升温、热解。在反应器立管下部油气与半焦和热载体快速分离。热解油气经冷凝器获得液体产品和煤气。半焦和循环热载体通过热空气输送的返料阀进入烧焦提升管燃烧加热,加热后的热载体经旋分器

与烟气分离后进入专有热解反应器顶部,实现热载体循环供热,烟气预热空气后被引到烟气提升管底部,提升和干燥生物质颗粒。

生物质自混合下行循环流化床快速热解工艺流程见图l。

其技术优点:

(1)专有热解反应器为静态混合结构,无机械运动部件,可解决机械设备存在的高温时焦渣磨损设备、设备的运动部件容易出现故障以及难以工业化放大的难题。

(2)专有热解反应器利用重力、无需载气即可实现生物质颗粒和高温循环热载体的快速混合、快速升温和热解,提高液体收率和系统热效率。

(3)利用烟气余热干燥生物质颗粒,降低了生物油的水含量,提高了系统热效率。

(4)反应器立管下部油气与半焦和热载体通过专有快速分离装置,减少了高温热解油气的二次反应,提高了液体收率。

生物质自混合下行循环流化床快速热解新技术是根据我国农村农林废弃物集散难度较大的国情,利用先进技术研制开发的一种热效率高、投资低、操作方便的快速热解工艺。

该热解工艺为彻底实现农林作物资源的最大化利用、实现农业循环经济、提高农民收入、改善农村产业结构、改善农村缺能现状,解决剩余秸秆就地焚烧或随意堆弃造成大气污染、土壤矿化势加剧、火灾和交通事故等大量的社会经济和生态问题提供了技术支撑和指导方向,对农业和农村发展以及化石能源危机的缓解,都有重要的现实意义。

美满的金毛
彪壮的草莓
2025-07-27 10:24:56
生物能源既不同于常规的矿物能源,又有别于其他新能源,兼有两者的特点和优势,是人类最主要的可再生能源之一。

生物质包括植物、动物及其排泄物、垃圾及有机废水等几大类。从广义上讲,生物质是植物通过光合作用生成的有机物,它的能量最初来源于太阳能,所以生物质能是太阳能的一种,它的生成过程如下: 叶绿素 CO2+H2O+太阳能(CH2O)+O2

叶绿素

每个叶绿素都是一个神奇的化工厂,它以太阳光作动力,把CO2和水合成有机物,它的合成机理目前人类仍未清楚。研究并揭示光合作用的机理,模仿叶绿素的结构,生产出人工合成的叶 生物质和生物能源手册

绿素,建成工业化的光合作用工厂,是人类的梦想。如果这一梦想能实现,它将根本上改变人类的生产活动和生活方式,所以研究叶绿素的机理一直是激动人心的科学活动

生物质能

生物质是太阳能最主要的吸收器和储存器。太阳能照射到地球后,一部分转化为热能,一部分被植物吸收,转化为生物质能;由于转化为热能的太阳能能量密度很低,不容易收集,只有少量能被人类所利用,其他大部分存于大气和地球中的其他物质中;生物质通过光合作用,能够把太阳能富集起来,储存在有机物中,这些能量是人类发展所需能源的源泉和基础。基于这一独特的形成过程,生物质能既不同于常规的矿物能源,又有别于其他新能源,兼有两者的特点和优势,是人类最主要的可再生能源之一。

生物质能的分类

生物质具体的种类很多,植物类中最主要也是我们经常见到的有木材、农作物(秸秆、稻草、麦秆、豆秆、棉花秆、谷壳等)、杂草、藻类等。非植物类中主要有动物粪便、动物尸体、废水中的有机成分、垃圾中的有机成分等。

编辑本段可观的数目

由于地球上生物数量巨大,由这些生命物质排泄和代谢出许多有机质,这些物质所蕴藏的能量是相当惊人的。根据生物学家估算,地球上每年生长的生物能总量约1400—1800亿吨(干重),相当于目前世界总能耗的10倍。我国的生物质能也极为丰富,现在每年农村中的秸秆量约6.5亿吨,到2010年将达7.26亿吨,相当于5亿吨标煤。柴薪和林业废弃物数量也很大,林业废弃物(不包括炭薪林),每年约达3700万m3,相当于2000万吨标煤。

编辑本段地位

随着人类大量使用矿物燃料带来的环境问题日益严重,各国政府开始关心重视生物质能源的开发利用。虽然各国的自然条件和技术水平差别很大,对生物质能今后的利用情况将千差万别,但总的来说,生物质能今后的发展将不再像最近200多年来一样日渐萎缩,而是重新发挥重要作用,并在整个一次能源体系中占据稳定的比例和重要的地位。

编辑本段影响生物质能开发利用的因素

简述

影响生物质能开发利用的因素很多,所以不同的预测方法结果差别很大,从100到300EJ,但不论哪种预测方法都说明了生物质在未来的能源体系中有特别重要的意义,不论那个时 合肥金意公司生物柴油炼油平台

间,生物质能总是总能耗的10-30%之间。

化学角度看

从化学的角度上看,生物质的组成是C-H化合物,它与常规的矿物燃料,如石油、煤等是同类。由于煤和石油都是生物质经过长期转换而来的,所以生物质是矿物燃料的始祖,被喻为即时利用的绿色煤炭。正因为这样,生物质的特性和利用方式与矿物燃料有很大的相似性,可以充分利用已经发展起来的常规能源技术开发利用生物质能。但与矿物燃料相比,它的挥发组分高,炭活性高,含硫量和灰分都比煤低,因此,生物质利用过程中SO2、NOx的排放较少,造成空气污染和酸雨现象会明显降低;这也是开发利用生物质能的主要优势之一。

色能源

生物能源又称绿色能源,是指从生物质得到的能源,它是人类最早利用的能源.古人钻木取火,伐薪烧炭,实际上就是在使用生物能源. “万物生长靠太阳”,生物能源是从太阳能转化而来的,只要太阳不熄灭,生物能源就取之不尽。其转化的过程是通过绿色植物的光合作用将二氧化碳和水合成生物质,生物能的使用过程又生成二氧化碳和水,形成一个物质的循环,理论上二氧化碳的净排放为零。生物能源是一种可再生的清洁能源,开发和使用生物能源,符合可持续的科学发展观和循环经济的理念。因此,利用高新技术手段开发生物能源,已成为当今世界发达国家能源战略的重要内容。 但是通过生物质直接燃烧获得的能量是低效而不经济的.随着工业革命的进程,化石能源的大规模使用,使生物能源逐步被煤和石油天然气为代表的化石能源所替代.但是,工业化的飞速发展,化石能源也被大规模利用,产生了大量的污染物,破坏了自然界的生态平衡,为了进行可持续发展,以及化石能源的弊端日益显现,生物能源的开发和利用又被人们所侧重. 张国宝会见美国能源部助理部长卡斯纳先生

哪些生物质能

因此,人类走向以生物能源开发利用为标志的可再生能源时代,意义十分重大:能大量利用农村的土地,提高农民收入.直接增加能源供给,改善大气环境,使二氧化碳的排放与吸收形成良性循环,缓解二氧化碳排放的压力.当前生物能源的主要形式有沼气,生物制氢,生物柴油和燃料乙醇. 沼气是微生物发酵秸秆,禽畜粪便等有机物产生的混合气体,主要成分是可燃的甲烷.生物氢可以通过微生物发酵得到,由于燃烧生成水,因此氢气是最洁净的能源.生物柴油是利用生物酶将植物油或其他油脂分解后得到的液体燃料,作为柴油的替代品更加环保.燃料乙醇是植物发酵时产生的酒精,能以一定比例掺入汽油,使排放的尾气更清洁.虽然现在的主要能源还是化石能源,但是生物能源的前途无量.虽然生物能源的开发利用处于起步阶段,生物能源在整个能源结构中所占的比例还很小,但是其发展潜力不可估量.以我国为例,目前全国农村每年有7亿吨秸秆,可传化为1亿吨的酒精.南方有大量沼泽地,可以种植油料作物,发展生物柴油产业.加上禽畜粪便,森林加工剩余物等.我国现有可供开发用于生物能源的生物质资源至少达到4.5亿吨标准煤,相当于我国2000年全部一次能源消费的40%.

百度百科上的呵呵

虚心的蜜蜂
彪壮的钢铁侠
2025-07-27 10:24:56
一、生物能源是利用生物质的可再生 无公害获取能量 为我们的生活提供便利,生物质包括植物、动物及其排泄物、[2]垃圾及有机废水等几大类。

二、常见的生物能源有:

(1)燃料乙醇

概念:燃料乙醇一般是指提及浓度达到99.5%以上的无水乙醇。

特点:可作为新兴能源,减少石油消耗,保障国家能源安全;辛烷值高,抗爆性能好,可作为汽油添加剂,提高辛烷值,减少矿物燃料对大气污染;是可再生能源,利用农作物发酵生产乙醇,燃烧排放二氧化碳与作物在生长过程中消耗二氧化碳基本持平,可减少矿物燃料燃烧产生的二氧化碳。

(2)生物柴油

概念:生物柴油是清洁的可再生能源,它是一大豆和油菜籽等油料作物、油棕和黄连木等油料林木果实、工程薇藻等油料水生植物以及动物油脂、废餐饮油等为原料制成的液体燃料,是优质的石化柴油代替品。

特点:优良的环保性、较好的低温发动机启动性能、较好的安全性能、较好的安全性能、具有可再生性能、无需改动柴油发动机

(3)生物沼气

概念:生物沼气是指利用城市生活垃圾、农作物废料甚至污泥等分解产生的气体,主要成分为甲烷和二氧化碳,可用于发电和供热。

(4)生物丁醇

概念:生物丁醇是以生物为原料,通过与乙醇相似的发酵工艺制备而成的可再生能源。

特点:碳排放量较低、蒸汽压力较低、与汽油混合与水的宽容度较大,与汽油混合比较高

(5)微藻制油

概念:薇澡即指是生长在海中的藻类,是植物界的隐花植物,通过有效的利用太阳能,进行光合作用固定二氧化碳,将无机物转化为氢、高不饱和烷烃、油脂等能源物资。

特点:薇澡生物是可再生、速生生物、对大气二氧化碳没有净增加、人工培养资源占用小。

(6)生物质发电

概念:生物质发电是指利用生物质所具有的生物质能进行的发电,是可再生能源发电的一种,包括农林废弃物直接燃烧发电、农林废弃物气化发电、垃圾焚烧发电、垃圾填埋发电、沼气发电等。