求一份关于 “动力工程中的若干热点问题”的论文或报告~
一、 热能与动力工程示范性专业理论与实践项目的意义
1.能源及环境是目前世界各国头等重大的社会问题。我国现有能源利用效率和环境保护存在着很多问题。实现能源、经济、环境的可持续发展是我国面临的重要选择。如何培养适应上述21世纪社会需要的能源动力类专业人才,是每个大学相关专业以及每位从事能源类专业教育工作者需要解决的重要问题。
2。钢铁工业的快速发展,使能源资源和环境面临着重大压力。使能源消耗和冶金技术进步相协调,是在发展中首要解决的重点问题之一。因此适用于我国钢铁工业快速发展的高质量的热能与动力工程专业人才培养尤为重要。本专业在我国高等教育和国家经济建设中的重要地位。
3.热能与动力工程专业涉及到传统工业,同时使环境科学、生命科学、信息科学、材料科学等相融合,相交叉,相渗透,揭示了专业交叉的优势,也突出了特色和创新。能源和资源的开发转化,利用水平和应用技术与本专业发展息息相关。建设好热能与动力工程专业,是我们的一项重要任务。
4.在我省高校中,除东北大学、大连理工大学外,我校热能与动力工程专业具有较长办学历史。在专业建设过程中,得到热能院、东大、北科大及鞍钢等企业的支持和协助。本专业的发展迅速,在省内有很好的学术声誉。本专业具有年龄结构合理的师资队伍;具有热能工程、动力工程、制冷与低温技术及热工测量及自动化4个专业方向,面向能源资源和环境发展的现代化工业建设。
5.热能与动力工程专业是辽宁科大重点建设专业之一。该专业在教育部下发的教字(2000)10号文件的“关于公布国家管理的专业点名单的通知”中,被列入国家管理专业。在专业基础上,现有2个硕士点,研究方向不断拓宽,现有的冶金热工技术、系统节能、热工过程自动化、能源及环保工程、低温技术等方向引入本专业,使研究方向突出特色。
6.热能与动力工程专业的特点:(1)专业与环境问题的密切相关性;(2)不同学科间的高度交叉性。(3)对国家政策法规及发展计划的依赖性。(4)基础知识的广泛适用性。(5)专业方向的对口性。示范性专业的理论和实践,对指导专业建设具有重要的意义。
随着热能与动力工程专业建设的不断深入和扩展,越加显示出本专业在我国高等教育和国家经济建设中的重要地位。热能与动力工程专业不仅涉及到传统工业,同时使环境科学、生命科学、信息科学、材料科学等相融合,相交叉,相渗透,揭示了专业交叉的优势,也突出了特色和创新,具有重要意义。热能与动力工程专业的发展和建设对人类社会进步和经济发展及人类的生活质量具有重要影响,能源和资源的开发转化,利用水平和应用技术与本专业发展息息相关。我国热能与动力工程专业发展水平不均,与国际先进国家相比,存在一定的差距,发展和建设好热能与动力工程专业,是我们面临的重要任务。
我校地处全国工业大省的钢都,热能与动力工程专业在研究领域有广阔的应用基地和服务对象。面对辽宁重工业基地的振兴和大中国有企业的技术改造和技术创新,热能与动力工程专业发展建设也具有特殊的意义。因为本科涉及到冶金、机械、化工、轻工、航空、电子、能源、交通等各行业,在这些行业中。本专业的方向和领域对其发展起着重要的促进作用。
在我省高校学科布局中,除东北大学、大连理工大学的热能与动力工程专业之外,在普通高校中,我校热能与动力工程专业,是具有较长办学历史的专业。在专业建设过程中,得到中钢集团鞍山热能研究院、东北大学、北京科技大学及鞍钢等企业的支持和协助。我校热能与动力工程专业的发展迅速,在省内得到了很好的学术声誉,并取得较大的成就。本学科具有年龄结构合理的师资队伍,形成以老带新,以中青年为主体的学术梯队队伍。本专业具有热能工程、动力工程、制冷与低温技术及热工测量及自动化4个专业方向,面向能源资源和环境发展的现代化工业建设。
热能与动力工程专业是鞍山科大重点建设和新兴的特色专业之一。热能与动力工程专业在教育部下发的教字(2000)10号文件的“关于公布国家管理的专业点名单的通知”中,被列入国家管理专业。在热能与动力工程专业基础上,现有2个能源动力类硕士点,研究方向不断拓宽,现在除保留原有的冶金热工技术和热工数值模拟的研究方向外,还将系统节能、热工过程自动化、能源及环保工程、低温技术等方向引入本学科,使研究方向具有实际意义和理论价值。热能与动力工程的专业建设。近年来专业方向调整及招生规模的扩大,教学和科技水平也相应进一步提高。热能与动力工程专业在辽宁省地区和冶金行业具有较高的声誉,本学科专业的发展能极大的促进地方经济建设和行业及企业的科技进步。从促进社会发展和科技进步的角度看,热能与动力工程专业建设具有重要意义。本专业的建设具有教学科研和社会服务等功能,它的建设具有创新性和地域特色,能为我国经济建设起到促进作用。
专业适应经济结构的调整、社会的全面进步和振兴老工业基地的需要,有利于促进先进生产力和先进文化的发展和建设新型国家的需求,能反映出专业的先进教育理念。
二、热能与动力工程示范性专业理论与实践项目解决的关键问题
热能与动力工程专业示范性专业建设项目的提出和实践过程,针对专业建设过程中出现的专业方向、专业定位、专业特色、专业师资队伍和教学基本建设等普遍存在的共性问题,结合现行的示范性专业标准和建设实践,旨在理清思路明确方向,处理好各种矛盾,做好评建工作,切实落实专业建设。
热能与动力工程专业示范性专业建设项目的提出和实践过程,拟解决和协调下述关系:
1. 热能与动力工程专业与环境问题间的密切相关性。 常规化石能源的使用是能源动力学科专业教学的主要内容之一,而常规化石能源的使用与环境问题密切相关。这些常规化石能源主要直接应用于火力发电,这会带来一系列严重的环境问题,比如硫氧化物、氮氧化物等的大气污染、固体废物、水污染和热污染等。因此,对能源动力生产过程中的这些环境问题必须进行妥善处理和控制,实现其环境友好化,才能保证人类的生存和社会经济的可持续发展。
2. 不同学科间的高度交叉性。能源动力学科的技术基础课程和专业课程涉及到多学科领域的知识,热能动力工程专业涉及到热学学科、力学学科、机械制造学科、自动控制及计算机学科和化学学科。为适应21世纪初我国能源学科发展的需要,应当在各专业课程的设置中,适当安排各个有关学科的知识。
3.基础知识的广泛适用性。节能是我国能源发展战略的重要组成部分,关于节能的知识不仅能源动力学科的学生应当掌握,也是几乎所有工科学生应当掌握的内容。这就要求不仅要做好本学科专业人才的培养,而且也应当承担起向所有工程专业的学生进行节能技术教学的任务。
4.专业方向的对口性。目前,我国的能源动力学科的不同专业方向服务于不同的工程技术领域,还多少带有产品专业的烙印。不仅在冷的方向与热的方向中,主导专业的工作机械与系统差别巨大(例如制冷机与发电厂),就是在同一个专业方向,例如热方向中,锅炉与气轮机就有很大的差别。因此对于旨在以零距离模式培养学生的专业与学校,密切关注当前经济发展以及行业发展的需要,使得学生能到对口的专业单位工作,及时充分发挥其专业特长,具有重要意义。急需解决以能源动力类宽口径专业人才培养与目前我国能源动力类大部分企业对专业人才的知识结构强调专门化要求之间的矛盾。
三、热能与动力工程示范性专业理论与实践项目的特色与创新
热能与动力工程专业示范性专业理论与实践的研究的特色是基于热能与动力工程专业示范性专业理论与实践的研究教学改革实践,将本专业人才培养的定位和培养模式的理论相结合,通过调查研究、比较研究、综合研究和解析研究的方法,构造适合专业培养环境的和社会经济发展需求的新的培养模式人才培养体系和框架结构,找出专业建设的差距。
热能与动力工程专业的人才培养模式是以应用型人才培养为主。注重厚基础和宽口径结合重实践重创新。社会不同领域、不同分工对本专业人才有着不同的需求,国家需要多层次、多类型的人才培养规格和模式。具体情况形成我校集中冶金领域特色辐射全国各个行业领域。专业培养规格主要分“研究型”和“应用型”两大类。我校重点培养“应用型”人才,培养计划的学时分配适当向传授专门应用技术的专业课倾斜,实践教育环节注重培养学生用专业知识的能力。考虑学生在宽厚基础上的专业发展,我校热能与动力工程专业分成以冶金等工业生产为重点,以热能转换与利用系统为主的热能动力工程及控制方向;以制氧动力机械和空调系统为主的制冷与低温技术方向;以电能转换机械工程为主的锅炉动力与流体机械方向;以热工测试调节和自动化控制为主的热工测试及自动化工程方向。这些专业方向突出了我校专业特色。按照专业规范要求在培养学生的素质方面要求思想素质、专业素质、文化素质、身心素质协调发展;在能力方面要求要有获取知识的能力、应用知识的能力、实践能力和创新能力齐备;在知识结构方面要求具有较好的工具性知识、人文社会科学知识、经济管理知识、自然科学知识、学科技术基础知识和专业知识。
《燃煤电厂锅炉烟气净化用除尘过滤材料的试验研究》,这是我的题目,只要是试验部分很难。但是苦恼的很,还是学长给的莫文网,很快就帮忙搞定了
参考下吧:针对工程需求,本课题重点改进了针刺滤料结构、材料组成和后
整理措施,即采用具有表面超细纤维层、逐层逐渐采用更粗纤维层的梯度结构过滤层主要采用PTFE与PPS复合纤维,采用PTFE与适量玻璃纤维做底层,。
本次实习的任务是熟悉热能与动力工程专业相关企业,主要是火力发电厂的主要热力系统及其布置。本次参观的地点是电厂模型室,南京协鑫污泥发电厂,南京汽轮机制造厂。目的旨在让学生在短暂的认识实习期间,切实对火力发电厂主要生产设备的基本结构、工作原理及性能等有一个系统、全面的了解,并未后续专业课程的学习提供必要的感性认识和基础知识。
火力发电厂是利用煤、石油、天然气等燃料的化学能产出电能的工厂,即为燃料的化学能→蒸汽的热势能→机械能→电能。在锅炉中,燃料的化学能转变为蒸汽的热能,在汽轮机中,蒸汽的热能转变为轮子旋转的机械能,在发电机中机械能转变为电能。炉、机、电是火电厂中的主要设备,亦称三大主机。辅助三大主机的设备称为辅助设备简称辅机。主机与辅机及其相连的管道、线路等称为系统。徐塘火力发电厂的原料就是原煤。原煤用车或船运送到发电厂的储煤场(南京协鑫污泥发电厂是用运煤船到电厂码头),再用输煤皮带输送到煤斗。再从煤斗落下由给煤机送入磨煤机磨成煤粉,并同时输送热空气来干燥和输送煤粉。最后送入锅炉的炉膛中燃烧。燃料燃烧所需要的热空气由送风机送入锅炉的空气预热器中加热,预热后的热空气,经过风道一部分送入磨煤机作干燥以及送煤粉,另一部分直接引至燃烧器进入炉膛。燃烧生成的高温烟气,在引风机的作用下先沿着锅炉的倒“U”形烟道依次流过炉膛,水冷壁管,过热器,省煤器,空气预热器,同时逐步将烟气的热能传给工质以及空气,自身变成低温烟气,经除尘器和脱硫装置的净化后在排入大气。煤燃烧后生成的灰渣,其中大的灰子会因自重从气流中分离出来,沉降到炉膛底部的冷灰斗中形成固态渣,最后由排渣装置排入灰渣沟,再由灰渣泵送到灰渣场。大量的细小的灰粒(飞灰)则随烟气带走,经除尘器分离后也送到灰渣沟。炉给水先进入省煤器预热到接近饱和温度,后经蒸发器受热面加热为饱和蒸汽,再经过热器被加热为过热蒸汽,此蒸汽又称为主蒸汽。经过以上流程,就完了燃料的输送和燃烧、蒸汽的生成燃物(灰、渣、烟气)的处理及排出。由锅炉过热气出来的主蒸汽经过主蒸汽管道进入汽轮机膨胀做功,冲转汽轮机,从而带动发电机发电。从汽轮机排出的乏汽排入凝汽器,在此被凝结冷却成水,此凝结水称为主凝结水。主凝结水通过凝结水泵送入低压加热器,有汽轮机抽出部分蒸汽后再进入除氧器,在其中通过继续加热除去溶于水中的各种气体(主要是氧气)。经化学车间处理后的补给水与主凝结水汇于除氧器的水箱,成为锅炉的给水,再经过给水泵升压后送往高压加热器,汽轮机高压部分抽出一定的蒸汽加热,然后送入锅炉,从而使工质完成一个热力循环。循环水泵将冷却水(又称循环水)送往凝结器,这就形成循环冷却水系统。经过以上流程,就完成了蒸汽的热能转换为机械能,电能,以及锅炉给水供应的过程。因此火力发电厂是由炉,机,电三大部分和各自相应的辅助设备及系统组成的复杂的能源转换的动力厂。
二.锅炉部分
1.整体概况
锅炉是火力发电厂的三大主要设备之一,他的作用是将水变成高温高压的蒸汽。锅炉是进行燃料燃烧、传热和使水汽化三种过程的总和装置。
(1)南京协鑫污泥发电厂锅炉工作示意图
(2)锅炉的技术参数
名称 单位 锅炉最大连续出力 锅炉额定出力
过热蒸汽 蒸汽流量 T/h
出口蒸汽压力 MPa
出口蒸汽温度
在热蒸汽 蒸汽流量 T/h
蒸汽压力,出口/进口 MPa
蒸汽温度,出口/进口
给水温度
2.锅炉系统
(1)汽水系统:给水加热、蒸发、过热的整个过程中的设备。由省煤器、汽包、下降管、水冷壁、过热器、再热器等设备组成。
(2)风烟系统:风经过加热,与燃料燃烧生成烟气,烟气放热,排入大气整个过程经过的设备。
(3)制粉系统:原煤磨制成煤粉,再送入粉仓,炉膛整个过程中经过的设备。主要部件有磨煤机、给煤机、煤粉分离器等。
3.锅炉本体设备结构
(1)汽包的结构和布置方式
汽包(亦称锅通)是自然循环及强制循环锅炉最终要的受压组件,无汽包则不存在循环回路。汽包的主要作用有:是工质加热、蒸发、过热三个过程的连接枢纽,用它来保证过路正常的水循环。汽包内部装有汽水分离器及连续排污装置,用以保证锅炉正常的水循环。存有一定的水量,因而具有蓄热能力,可缓和气压的变化速度,有利于锅炉运行调节。
(2)下降管,炉水泵,定期排污
汽包底部焊有5根下降管管接头,下降管安装在汽包最底部,其目的是使下降管入口的上部有最大的水层高度,有利于下降管进口处工质汽化而导致下降管带汽。
(3)水冷壁的结构,管径,布置方式
炉膛四周炉墙上敷设的受热面通常称为水冷壁。中压自然循环锅炉的水冷壁全部都是蒸发受热面。高压、超高压和亚临界压力锅炉的水冷壁主要是蒸发受热面,在炉膛的上部常布置有辐射式过热器,或辐射式再热器。在直流锅炉中,水冷壁既是水加热和蒸发的受热面,又是过热器受热面,但水冷壁仍然主要是蒸发受热面。
(4)省煤器和空气预热器的结构和布置方式
省煤器和空气预热器通常布置在锅炉对流烟道的最后或对流烟道的下方。进入这些受热面的烟气温度较低,故通常把这两个受热面称为尾部受热面或低温受热面。
省煤器使利用锅炉尾部烟气的热量来加热给水的一种热交换装置。他可以降低排烟温度,提高锅炉效率,节省燃料。由于给水进入锅炉蒸发受热面之前,先在省煤器中加热,这样可以减少了水在蒸发受热面内的吸热量,采用省煤器可以取代部分蒸发受热面。而且,省煤器中的工质是水,其温度要比给水压力下的饱和温度要低得多,加上在省煤器中工质是强制流动,逆流传热,传热系数较高。此外,给水通过省煤器后,可使进入汽包的给水温度提高,减少了给水与汽包壁之间的温差,从而降低了汽包的热应力。因此,省煤器的作用不仅是省煤,实际上已成为现代锅炉中不可缺少的一个组成部件。
空气预热器不仅能吸收排烟中的热量,降低排烟温度,从而提高锅炉效率;而且由于空气的余热,改善了燃料的着火条件,强化了燃烧过程,减少了不完全燃烧热损失,这对于燃用难着火的无烟煤来说尤为重要。使用预热空气,可使炉膛温度提高,强化炉膛辐射热交换,使吸收同样辐射热的水冷壁受热面可以减少。较高温度的预热空气送到治煤粉系统作为干燥剂。因此,空气预热器也成为现代大型锅炉机组中不可缺少的重要组成部件。
三.汽轮机
1.整机概况
汽轮机是以蒸汽为工质的旋转式热能动力机械,与其他原动机相比,它具有单机功率大、效率高、运转平稳和使用寿命长的优点。
汽轮机的主要用途是作为发电用的原动机。汽轮机必须与锅炉、发电机、以及凝汽器、加热器、泵等机械设备组成成套装置,共同工作。具有一定压力和温度的蒸汽来自锅炉,经主气阀和调节气阀进入汽轮机内,一次流过一系列环形安装的喷嘴栅和动叶栅而膨胀做功,将其热能转换成推动汽轮机转子旋转的机械功,通过联轴器驱动其他机械,这里指发电机做功。在火电厂中,膨胀做工后的蒸汽有汽轮机排气部分被引入冷凝器,想冷却水放热而凝结。凝结水再经泵输送至加热器中加热后作为锅炉给水,循环工作。
汽轮机按工作原理分为两类:冲动式汽轮机和反动式汽轮机。
喷嘴栅和与其相配的动叶栅组成汽轮机中最基本的工作单元“级”,不同的级顺序串联构成多级汽轮机。蒸汽在级中以不同方式进行能量转换,便形成不同工作原理的汽轮机,即冲动式汽轮机和反动式汽轮机。
(1)冲动式汽轮机。主要有冲动级组成,在级中蒸汽基本上再喷嘴栅中膨胀,在动叶栅中只有少量膨胀。
(2)反动式汽轮机。主要有反动级组成,蒸汽在汽轮机的静叶栅和动叶栅中都有相当适度的膨胀。
2.转子静子等部分组成及功能
汽轮机的转动部分称为转子,他是汽轮机最重要的部件之一,担负着工质能量转换和传递扭矩的任务。转子的工作条件相当复杂,他处于高温工质中,并以高速旋转,因此他承受着叶片、叶轮、主轴本身质量离心力所引起的巨大盈利以及由于温度分布不均匀引起的热应力。另一方面,蒸汽作用在动叶栅上的力矩,通过转子的叶轮、主轴和联轴器传递给电机。
汽缸即汽轮机的外壳。其作用是将汽轮机的通流部分与大气隔开。以形成蒸汽热能转换为机械能的而封闭气室。气缸内装有喷嘴(静叶)、隔板、隔板套(静叶持环)、气封等部件。他们统称为静子。
汽轮机运转时,高速旋转,汽缸、隔板等静体固定不动,因此转子与静子之间需要留有适当的空隙,从而不相互碰撞。然而间隙的存在就要导致露气,这样不仅会降低机组效率,还会影响机组的安全运行。为了减少蒸汽泄露和防止空气漏人,需要有密封装置,通常称为气封。气封按其安装位置的不同,可分为流通部分气封、隔板气封、轴端气封。反动式汽轮机还装有高中亚平衡活塞气封和低压平衡活塞气封。
3.凝汽器及加热器
凝汽器是用循环冷却水使汽轮机排出的蒸汽凝结,在汽机排汽空间建立并维持所需的真空,并回收纯净的凝结水供给锅炉给水,提高了机组的热效率。
高压加热器是用汽轮机抽汽加热锅炉给水来提高给水温度,以提高机组的热经济性。高压加热器由壳体、管板、管束、隔板等部件组成。高压给水加热器为单列卧式表面凝结型换热器,水室采用自密封结构。
高加壳体为全焊接结构,由钢板焊接组成。为了便于壳体的拆移,安装了吊耳和壳体滚轮,并使其运行时自由膨胀。为防止壳体变形,每台有过热蒸汽冷却段加热器均设置护罩和档板。所有加热器的蒸汽入口和疏水入口处(在壳体内)均装有不锈钢防冲板,以防管子受汽水直接冲击和引起振动和腐蚀。
高压加热器由过热蒸汽冷却段、凝结段和疏水冷却段组成。过热蒸汽冷却段是利用从汽轮机抽出的过热蒸汽的一部分显热来提高给水温度,位于给水出口流程侧,并有包壳板密闭。过热蒸汽在一组隔板的导向下以适当的线速度和质量速度均匀的流过管子,并使蒸汽留有足够的过热度以保证蒸汽离开该段时呈干燥状态,这样,当蒸汽离开该段进入凝结段时,可防止湿蒸汽冲蚀和水蚀的损害。凝结段是利用蒸汽冷凝时的潜热加热给水,一组隔板使蒸汽沿着加热器长度方向均匀的分布,起支撑传热管作用。进入该段的蒸汽,根据气体冷却原理,自动平衡,直至由饱和蒸汽冷凝成饱和的凝结水,并汇集在加热器的尾部或底部,收聚非凝结气体的排气管必须置于管束最低压力处以及壳体内容易聚非冷凝气体处。非冷凝气体的集聚影响了有效传热,因而降低了效率并造成腐蚀。疏水冷却段是把离开凝结段的疏水的热量传给进入加热器的给水,而使疏水温度降至饱和温度以下。疏水冷却段位于给水进口流程侧,并有包壳板密闭。疏水温度降低后,当流向下一个压力较低的加热器时,减弱了在管道内发生汽化的趋势。包壳板在内部与加热器壳侧的总体部分隔开,从端板和吸入口或进口端保持一定的疏水水位,使该段密闭。疏水进入该段,由一组隔板引导流动,从疏水出口管输出。
四.系统和辅机
1.泵
泵是把机械能转变成液体压力势能和动能的一种动力设备,他是维持火电厂蒸汽动力循环的不可缺少的设备,是火电厂的主要辅助设备之一。在火力发电厂中应用泵的地方非常多,例如,用给水泵向锅炉提供给水,用凝结水泵从凝汽器热井中抽送凝结水,用循环水泵向凝汽器供应冷却水。火电厂中的泵都直接或间接的参与生产过程,他们的安全直接影响到火电厂的生产安全。
2.风机
风机是把机械能转变成气体压力势能和动能的一种动力设备,是火电厂的主要辅助设备之一。在火电场中的风机主要使用在锅炉的烟风系统和制粉系统中,用于输送空气、烟气和空气煤粉混合物等,主要有送风机、引风机、一次风机和排粉风机。
火电厂中的这些风机都直接参与生产过程,他们的安全可靠直接影响道火电厂的安全生产。这些风机消耗的电能也很大,他们的轴功率下则几百千瓦,大则上千千瓦,其用电量与火电厂的泵大体相当。所以,对风机的安全、经济运行必须引起足够的认识,对风机的维修保养也应予以高度的重视,才能确保电厂的总体安全与经济。
五.心得体会
短学期的认识实习,学校院系对我们进行理论知识的讲授。经过老师的讲解和观看相关的视频图片,我们对热电厂的锅炉、汽轮机、辅机等以及电厂的生产过程有了一个较为全面的认识。9月6日上午,我们首先在学校实验室参观了电厂模型及各种设备模型。然后分组到达装机容量较小的南京协鑫污泥发电厂,在进行了安全教育之后,接着分组,最后便跟着值班师傅认真的开始了参观实习。大家都遵守电厂的各种规章制度以及老师提出的各项要求,遇到不懂的地方就虚心向带我们的师傅们请教,师傅们也都很热心的为我们解答。通过这次实习,我们不仅将在学校的理论知识与具体的生产实践结合了起来,而且通过师傅们的讲解,对电厂的生产流程,化水,治煤,脱硫与除尘的流程有了更深刻的理解。通过对南京协鑫污泥发电厂的参观和师傅老师们的详细地讲解,我们对火力发电厂的发电流程有了进一步认识。
这次实习我学到了许许多多的只能在实践中才能获得的知识,了解了火电厂的大致情况及其运作流程。在当今的这个经济迅猛发展中的中国,电力有着起不可动摇的地位。生产实习是大学阶段的一个重要实践环节,是每一个大学生都应该参与的。这次实习为今后更好的理论学习打下基础,进一步认识到电力生产的重要性,并充分体现了我们热能专业注重实践的特色。
在四届人大的政府工作报告中,周恩来总理提出到二十世纪末要把我国建设成为农业、工业、国防和科学技术现代化的社会主义国家。但直到文革动乱结束后的1978年12月十一届三中全会上,党的工作重点转移到经济建设上来以后,四个现代化的建设才开始进行。这时,中央把实现四个现代化的具体目标确定为从1981年到2000年的二十年里,在不断提高经济效益的前提下,使全国工农业生产总值翻两番,达到人均800~1000美元。但是,就当时我国的单位产值能耗水平、能源生产和消费总量、能源的资源贮存量等方面来看,到2000年不可能提供总量高达24亿吨标准煤(ton coal equivalent, tce. 29.31GJ)的能源供给,而预计最多仅能生产出一半即12亿吨标准煤的能源。只能翻一番的能源需要支持产值翻两番,看起来形势相当严峻。在以吴仲华等为代表的能源科学界科技工作者的建议下,党中央提出了“开发与节约并重,近期以节约为主”的能源政策,掀起了一场节能降耗的浪潮,并取得了瞩目的成就。
同时,能源科学的教育工作也引起了能源领域老一辈科技工作者的重视,他们认为实现“开发与节约并重,近期以节约为主”的能源政策目标,必须培养一大批掌握扎实深厚理论基础的人才队伍。在1978年全国科技大会前后,吴仲华、史绍熙、王补宣等几位京津地区的学部委员,能源动力领域数一数二的领军人物,经过多次研究讨论,确定了目前这种研究生培养方面的动力工程及工程热物理学科的格局,并筹备在天津大学、重庆大学、南京工学院、华中工学院建立工程热物理本科专业,建立了师资、教材、实验基地等协作与建设机制。在当时的历史条件和经济人事制度条件下,这是快速培养各层次适用人才的最好办法。实际上,工程热物理专业本科生的理论基础和研究能力达到了准研究生的水平,为后来各单位迅速提高学术水平奠定了人才基础。但这批学生也存在工科基础训练不足的缺点,为以后的工程实际工作造成了一定的困难。进入社会主义市场经济时代以后,这种格局的划分就不合理了。工程热物理学科与其他几个二级学科的分割不再清晰,其它各个二级学科之间的界限也相当模糊。
工程热物理学科与其他学科的交叉是如此紧密,我们根本无法把它们分离出来。在实际工作中,没有任何一个从事与热沾边的工作的科技工作者不使用工程热物理理论,不研究工程热物理的问题,从事工程热物理理论研究的人们也决不可能完全脱离工程背景——从而必须介入热能工程、动力机械及工程、流体机械及工程、制冷及低温工程和/或化工过程机械等等其他学科,甚至不只介入几个。建筑环境与设备工程、农业建筑环境与能源工程、飞行器动力工程、环境工程、核技术与核工程、特种能源工程与烟火技术、消防工程等学科的理论基础显然也是工程热物理,化学工程、石油化工等等学科还要使用工程热物理的理论方法,就连冶金学科发展到现在,也在使用工程热物理提供的理论和方法——运用流体力学、传热学、传质学的基本方程和解决方法来研究、掌握和控制冶金过程。
1、 [热能与动力工程]太阳能溴化锂吸收式空调设计(双效)
2、 [热能与动力工程]板翅式换热器在天然气处理系统中的应用
10、 [热动]超临界及超超临界机组汽轮机特点分析
12、 [热能与动力工程]低温等离子对机动车尾气的净化实验研究
13、 [热能动力工程]汽轮机发电机组震动分析
14、 热声制冷机板叠内流动换热的数值模拟
15、 [发电厂热能动力]CEDI连续电除盐装置的设计
好好学习,天天向上。
只要用心去学,你就是最好的。
金猴献瑞,吉星临门。
祝你学业进步,马到功成。
各个学校根据自己的特点有不同的研究方向,比如:大连理工大学主要研究制冷方向的;东北大学是冶金热能方向;各大电力学校是电厂动力方向的。还有船舶动力、内燃机、国防和军工领域涉及到热量和动力方面的等等。就业是不错的,我们学校就业率最高的专业就是热能!热能专业学的知识多而杂,以后改行相比其他专业要容易!我是学热能制冷方向的。希望对您有帮助
1.热能工程专业方向:热能工程是研究热能的释放、转换、传递以及合理利用的学科,它广泛应用于能源、动力、空间技术、化工、冶金、建筑、环境保护等各个领域。
2.热力发动机专业方向:热力发动机主要研究高速旋转动力装置,包括蒸汽轮机、燃气轮机、涡喷与涡扇发动机、压缩机及风机等的设计、制造、运行、故障监测与诊断以及自动控制。为航空、航天、能源、船舶、石油化工、冶金、铁路及轻工等部门培养高级工程技术人才。
3.流体机械及流体动力工程专业方向:主要研究流体机械及其工作系统自动化,流体循环系统节能等,在水电水利、机械制造、交通运输、石油化工、工程机械、食品纺织、航天航空、舰船武备乃至市政设施、工民建筑等部门都有广泛的应用。
4.空调与制冷专业方向:主要研究制冷与低温技术。它广泛应用于能源、航天、航空、汽车、石油化工、食品与药品的生产、医疗设备与空调制冷设备的生产等领域。
简言之,此专业覆盖面广,就业灵活,修行在个人了,这里去电厂的待遇不错