建材秒知道
登录
建材号 > 生物质能 > 正文

1.生物质能研发技术开发是什么

无心的大门
动听的外套
2022-12-22 01:30:14

1.生物质能研发技术开发是什么?包括哪些内容?急需谢谢。

最佳答案
矮小的煎蛋
微笑的刺猬
2025-07-26 10:37:09

生物质能源应用技术研究开发 

 

 

摘要: 

生物质能是人类用火以来,最早直接应用的能源。生物质能的应用技术开发,旨在把森林砍伐和木材加工剩余物以及农林剩余物如秸杆、麦草等原料通过物理或化学化工的加工方法,使之成为高品位的能源,提高使用热效率,减少化石能源使用量,保护环境,走可持续发展的道路。本文从生物质能源应用技术的研究现状展开,并且对生物质能源的应用发展方向进行了描述。 

 

正文: 

    随着人类文明的发展,生物质能的应用研究开发几经波折,最终人们深刻认识到,石油、煤、天然气等化石能源的有限性,同时无节制地使用化石能源,大量增加CO2、粉尘、SO2等废弃物的排放,污染了环境,给人类赖以生存的星球,造成十分严重的后果。而使用大自然馈赠的生物质能源,几乎不产生污染,资源可再生而不会枯竭,同时起着保护和改善生态环境的重要作用,是理想的可再生能源之一。生物质能(biomass energy ),就是太阳能以化学能形式贮存在生物质中的能量形式,即以生物质为载体的能量。它直接或间接地来源于绿色植物的光合作用,可转化为常规的固态、液态和气态燃料,取之不尽、用之不竭,是唯一一种可再生的碳源。 

  七十年代,由于中东战争引发的能源危机以来,生物质的开发利用研究,进一步引起了人们的重视。美国、瑞典、奥地利、加拿大、日本、英国、新西兰等发达国家,以及印度、菲律宾巴西等发展国家都分别修定了各自的能源,投入大量的人力和资金从事生物质能的研究开发。我国生物质能研究开发工作,起步较晚。随着经济的发展,开始重视生物质能利用研究工作,从八十年代起,将生物质能研究开发列入国家攻关计划,并投入大量的财力和人力。已经建立起一支专业研究开发队伍,并取得了一批高水平的研究成果,初步形成了我国的生物质能产业。 

生物质能应用技术的研究开发现状  1.国外研究开发简介 

  在发达国家中,生物质能研究开发工作主要集中于气化、液化、热解、固化和直接燃烧等方面。 

  生物质能气化是在高温条件下,利用部份氧化法,使有机物转化成可燃气体的过程。产生的气体可直接作为燃料,用于发动机、锅炉、民用炉灶等场合。气化技术应用在二战期间达到高峰。随着人们对生物质能源开发利用的关注,对气化技术应用研究重又引起人们的重视。目前研究主要用途是利用气化发电和合成甲醇以及产生蒸汽。奥地利成功地推行建立燃烧木材剩余物的区域供电计划,目前已有容量为1000~2000kw的80~90个区域供热站,年供应10×109MJ能量。加拿大有12个实验室和大学开展了生物质的气化技术研究。1998年8月发布了由Freel,BarryA.申请的生物质循环流化床快速热解技术和设备。瑞典和丹麦正在实行利用生物质进行热电联产的计划,使生物质能在提供高品位电能的同时满足供热的要求。1999年,瑞典地区供热和热电联产所消耗的能源中,26是生物质。 

  美国在利用生物质能方面,处于世界领先地位,据报道,目前美国有350多座生物质发电站,主要分布在纸浆、纸产品加工厂和其它林产品加工厂,这些工厂大都位于郊区。装机容量达7000MW,提供了大约66000个工作岗位,根据有关科学家预测,到2010年,生物质发

电将达到13000MW装机容量,届时有4000000英亩的能源农作物和生物质剩余物用作气化发电的原料,同时,可按排170000个以上的就业人员,对繁荣乡村经济起到积极的推动作用。   流化床气化技术由于具有床内气固接触均匀、反应面积大、反应温度均匀、单位截面积气化强度大。反应温度较固定床低等优点,从1975年以来一直是科学家们关注的热点。包括循环流化床、加压流化床和常规流化床。印度Anna大学新能源和可再生能源中心最近开发研究用流化床气化农业剩余物如稻壳、甘蔗渣等,建立了一个中试规模的流化床系统,气体用于柴油发电机发电。1995年美国Hawaii大学和Vermont大学在国家能源部的资助下开展了流化床气化发电的工作。Hawaii大学建立了处理生物质量为100T/d的工化压力气化系统,1997年已经完成了设计,建造和试运行达到预定生产能力。Vermont大学建立了气化工业装置,其生产能力达200T/d,发电能力为50MW。目前已进入正常运行阶段。 

  生物质的直接燃烧和固化成型技术的研究开发,主要着重于专用燃烧设备的设计和生物质成型物的应用。目前,已开发的技术有:林产品加工厂的废料(如造纸厂的树皮、家具厂的边角料等)的专用燃烧蒸汽锅炉,国外造纸厂几乎都有专门的设备,用来处理废弃物。由于生物质形状各异,堆积密度小较松散,给运输和贮存以及使用带来了较大困难,影响生物质的使用。因此,从四十年代开始了生物质的成型技术研究开发。现已成功开发的成型技术按成型物形状分主要有三大类:以日本为代表开发的螺旋挤压生产棒状成型物技术,欧洲各国开发的活塞式挤压制得园柱块状成型技术,以及美国开发研究的内压滚筒颗粒状成型技术和设备。美国颗粒成型燃料年产量达80万吨。 

成型燃料应用于二个方面:其一:进一步炭化加工制成木炭棒或木炭块,作为民用烧栲木炭或工业用木炭原料;其次是作为燃料直接燃烧,用于家庭或暧房取暧用燃料。日本、美国、加拿大等国家,开发了专用炉灶。在北美有50万户以上家庭使用这种专用炉灶作为取暧炉。   将生物质能进行正常化学加工,制取液体燃料如乙醇、甲醇、液化油等;是一个热门的研究领域。利用生物发酵或酸水解技术,在一定条件下,将生物质转化加工成乙醇,供汽车和其它工业使用。加拿大用木质原料生产的乙醇上产量为17万吨。比利时每年用甘蔗为原料,制取乙醇量达3.2万吨以上,美国每年用农林生物质和玉米为原料大约生产450万吨乙醇,计划到2010年,可再生的生物质可提供约5300万吨乙醇。 

  生物质能的另一种液化转换技术,是将生物质经粉碎预处理后在反应设备中,添加催化剂或无催化剂,经化学反应转化成液化油。美国、新西兰、日本、德国、加拿大国家都先后开展了研究开发工作,液化油的发热量达3.5×104KJ/kg左右,用木质原料液化的得率为绝干原料的50以上。欧盟组织资助了三个项目,以生物质为原料,利用快速热解技术制取液化油,已经完成100kg/hr的试验规模,并拟进一步扩大至生产应用。该技术制得的液化油得率达70,液化油低热值为1.7×104KJ/kg。 

  生物质能催化气化研究,旨在降低气化反应活化能,改变生物质热处理过程,分解气化副产物焦油成为小分子的可燃气体,增加煤气产量,提高气体热解;同时降低气化温度,提高气化速度和调整生物质气体组成,以便进一步加工制取甲醇或合成氨。欧美等发达国家科研人员在催化气化方面已经作了大量的研究开发,研究范围涉及到催化剂的选择,气化条件的优化和气化反应装置的适应性等方面,并且已经在工业生产装置中得到了应用。   2.国内研究开发 

  我国生物质能的应用技术研究,从八十年代以来一直受到政府和科技人员的重视。主要在气化、固化、热解和液化开展研究开发工作。 

  生物质气化技术的研究在我国发展较快,应用于集中供气、供热、发电方面。中国林科

院林产化学工业研究所,从八十年代开始研究开发了集中供热、供气的上吸式气化炉,并且先后在黑龙江、福建得到工业化应用,气化炉的最大生产能力达6.3×106kJ/hr。建成了用枝桠材削片处理,气化制取民用煤气,供居民使用的气化系统。最近在江苏省又研究开发以稻草、麦草为原料,应用内循环流化床气化系统,产生接近中热值的煤气,供乡镇居民使用的集中供气系统,气体热值约8000KJ/NM3。气化热效率达70/以上。山东省能源研究所研究开发了下吸式气化炉。主要用于秸杆等农业废弃物的气化。在农村居民集中居住地区得到较好的推广应用,并已形成产业化规模。广州能源所开发的以木屑和木粉为原料,应用外循环流化床气化技术,制取木煤气作为干燥热源和发电,并已完成发电能力为180KW的气化发电系统。另外北京农机院、浙江大学等单位也先后开展了生物质气化技术的研究开发工作。   我国生物质的固化技术在八十年代中期开始,现已达到工业化规模生产。目前国内有数十家工厂,用木屑为原料生产棒状成型物木炭。螺旋挤压成型机有单头和双头二种,单头机生产能力为120Kg/hr,双头机生产能力达200Kg/hr。1990年中国林科院林化所与江苏省东海粮机厂合作,研究开发生产了单头和双头二种型号的棒状成型机,1998年又与江苏正昌集团合作,共同开发了内压滚筒式颗粒成型机,机器生产能力为250~300kg/hr,生产的颗粒成型燃料尤其适用于家庭或暖房取暖使用。南京市平亚取暖器材有限公司,从美国引进适用于家庭使用的取暖炉,通过国内消化吸收,现已形成生产规模。 

  生物发酵制气技术,在我国已经形成工业化,技术亦趋成熟,利用的原料主要是动物粪便和高浓度的有机废水。在上海亦已建成沼气集中供气系统。 

  沈阳农业大学从国外引进一套流化床快速热解试验装置,研究开发液化油的技术,和利用发酵技术制取乙醇试验。另外,中国林科院林化所进行了生物质催化气化技术研究。华东理工大学还开展了生物质酸水解制取乙醇的试验研究,但尚未达到工业化生产。 我国生物质能应用技术的展望 

  生物质能是一个重要的能源,预计到下世纪,世界能源消费的40来自生物质能,我国农村能源的70是生物质,我国有丰富的生物质能资源,仅农村秸杆每年总量达6亿多吨。随着经济的发展,人们生活水平的提高,环境保护意识的加强,对生物质能的合理、高效开发利用,必然愈来愈受到人们的重视。因此,科学地利用生物质能,加强其应用技术的研究,具有十分重要的意义。 

目前,我国已有一批长期从事生物质转换技术研究开发的科技人员,已经初步形成具有中国特色的生物质能研究开发体系,对生物质转化利用技术从理论上和实践上进行了广泛的研究,完成一批具有较高水平的研究成果,部分技术已形成产业化,为今后进一步研究开发,打下了良好的基础。 

从国外生物质能利用技术的研究开发现状结合我国现有技术水平和实际情况来看,本人认为我国生物质能应用技术将主要在以下几方面发展。   1.高效直接燃烧技术和设备 

  我国有12亿多人口,绝大多数居住在广大的乡村和小城镇。其生活用能的主要方式仍然是直接燃烧。剩余物秸杆、稻草松散型物料,是农村居民的主要能源,开发研究高效的燃烧炉,提高使用热效率,仍将是应予解决的重要问题。乡镇企业的快速兴起,不仅带动农村经济的发展,而且加速化石能源,尤其是煤的消费,因此开发改造乡镇企业用煤设备(如锅炉等),用生物质替代燃煤在今后的研究开发中应占有一席之地。把松散的农林剩余物进行粉碎分级处理后,加工成型为定型的燃料,结合专用技术和设备的开发,在我国将会有较大的

市场前景,家庭和暧房取暧用的颗粒成型燃料,推广应用工作,将会是生物质成型燃料的研究开发之热点。 

  2.集约化综合开发利用 

生物质能尤其是薪材不仅是很好的能源,而且可以用来制造出木炭、活性炭、木醋液等化工原料。大量速生薪炭材基地的建设,为工业化综合开发利用木质能源提供了丰富的原料。由于我国经济不断发展,促进了农村分散居民逐步向城镇集中,为集中供气,提高用能效率提供了现实的可能性。将来应根据集中居住人口的多少,建立能源工厂,把生物质能进行化学转换,产生的气体收集净化后,输送到居民家中作燃料,提高使用热效率和居民生活水平。这种生物质能的集约化综合开发利用,既可以解决居民用能问题,又可通过工厂的化工产品生产创造良好的经济效益,也为农村剩余劳动力提供就业机会。因此,从生态环境和能源利用角度出发,建立能源材基地,实施“林能”结合工程,是切实可行的发展方向。

谢谢。。。。。。。。。

最新回答
认真的钢笔
俊逸的钻石
2025-07-26 10:37:09

生物质能一直是人类赖以生存的重要能源,它是仅次于煤炭、石油和天然气而居于世界能源消费总量第四位的能源,在整个能源系统中占有重要地位。有关专家估计,生物质能极有可能成为未来可持续能源系统的组成部分,到下世纪中叶,采用新技术生产的各种生物质替代燃料将占全球总能耗的40%以上。

人类对生物质能的利用,包括直接用作燃料的有农作物的秸秆、薪柴等;间接作为燃料的有农林废弃物、动物粪便、垃圾及藻类等,它们通过微生物作用生成沼气,或采用热解法制造液体和气体燃料,也可制造生物炭。生物质能是世界上最为广泛的可再生能源。据估计,每年地球上仅通过光合作用生成的生物质总量就达1440~1800亿吨( 干重 ),其能量约相当于20世纪90年代初全世界总能耗的3~8倍。但是尚未被人们合理利用,多半直接当薪柴使用,效率低,影响生态环境。现代生物质能的利用是通过生物质的厌氧发酵制取甲烷,用热解法生成燃料气、生物油和生物炭,用生物质制造乙醇和甲醇燃料,以及利用生物工程技术培育能源植物,发展能源农场。 2006年(丙戌年)底全国已经建设农村户用沼气池1870万口,生活污水净化沼气池14万处,畜禽养殖场和工业废水沼气工程2,000多处,年产沼气约90亿立方米,为近8000万农村人口提供了优质生活燃料。

中国已经开发出多种固定床和流化床气化炉,以秸秆、木屑、稻壳、树枝为原料生产燃气。2006年用于木材和农副产品烘干的有800多台,村镇级秸秆气化集中供气系统近600处,年生产生物质燃气2,000万立方米。

发展生物质能源重在解决“五难”

面对全球性的减少化石能源消耗,控制温室气体排放的形势,利用生物质能资源生产可替代化石能源的可再生能源产品,已成为我国应对全球气候变暖和控制温室气体排放问题的重要途径之一,国家出台了具体的补贴措施,并且规划到2015年,生物质能发电将达1300万千瓦的目标。然而受原料收集难、政策补贴不到位等难题,生物质能源产业的发展规模和水平远远低于风能、太阳能的利用。如何发挥生物质能企业的生产积极性,尽快解决这些难题,为此,记者采访了中国农村能源行业协会生物质专委会秘书长肖明松,国家发展和改革委员会能源研究所研究员秦世平教授,以及可再生能源学会生物质能专业委员会秘书长袁振宏。

一难:认识不够

生物质能源正处在一个很尴尬的境地。国家发展和改革委员会能源研究所秦世平研究员开门见山地告诉本刊记者:“要说重要,在可再生能源中生物质能源是最重要的,但相比而言,它的产业化程度,发展规模都是最差的。这其中有一些客观原因,也有一些属于认识问题。”

生物质能源的重要性体现在以下四点,秦世平介绍:第一,我国是地少人多的国家,农林剩余物、城市垃圾等废弃物是生物质资源的主要来源,以往农民处理秸秆大多是一把火点着,城市垃圾多是填埋,但废弃物的处理是个刚性需求,随着国家对CO2的排放限制的提高,生物质的能源化利用成为更为先进和有效的方法;第二,我国化石能源短缺,其中液体燃料是最缺少的,而液体燃料只有利用生物质可以转化;第三,生物质能的各个生产阶段都是可以人为干预的,而风能、太阳能只能靠天吃饭,发电必须配合调峰,而生物质能源则不需要,甚至可以为其他能源提供调峰;第四,生物质原料需要收集,这样能够增加农民收入,刺激当地消费,可以有效促进农村经济的发展。一个2500万~3000万千瓦的电厂,在原料收集阶段农民获得的实惠约有五六千万元。“三农”问题解决好了,对于整个社会发展将起到非常重要的作用。

除了客观上发展规模受限以外,秦世平认为:对生物质能的认识各不相同,对其投资的额度,与地方的GDP增长是不相符的,资源的分散性导致生物质能源在一地的投资,最多也就2亿多;这在某些政府官员那来看,生物质能源有点像“鸡肋”,有呢吃不饱,丢了又有点可惜,并且地方政府还要帮助协调农民利益、禁烧等“麻烦事”。由此导致生物质能源整体项目规模较小,技术投入不足,尽管它是利国利农的好事,却处于发展欠佳的尴尬地位。

可再生能源学会生物质能专业委员会秘书长袁振宏也在电话里向记者表示,相比于煤炭、石油、天然气这些传统能源,生物质能源在技术上的投入显然要低得多。对于生物质能源发展,首先要从上层统一思想,提高对生物质能源重要性的认识,并要在技术上加大投入。

二难:补贴门槛过高

对生物质能源的支持,国家采取了多种补贴手段。但补贴门槛过高,手续繁琐、先垫付后补贴也困扰着不少企业。财政部财建[2008]735号文件规定,企业注册资本金要在1000万元以上,年消耗秸秆量要在1万吨以上,才有条件获得140元/吨的补助。对此,中国农村能源行业协会生物质专委会秘书长肖明松认为:1000万元的注册资金,是国家考虑防范企业经营风险时的必要手段,这对大企业无所谓,但对一些中小公司则很难达到。而1万吨秸秆的年消耗量,需要相当规模的贮存场地,由此带来的火灾隐患,成本增加问题也是企业不得不考虑的事情。事实上,如果扩大鼓励面的话,三五千吨也是适用的。受制于这些现实难题,财政部的万吨补贴政策遭遇落地难。

而参与国家补贴政策制定的秦世平对此解释说,国家制订政策的初衷并不鼓励生物质能源企业因陋就简,遍地开花,而是鼓励企业专门从事生物质能源,培养骨干型企业,这就需要一定的物质基础。一万吨的厂子,固定资产就大概需要400万元,加上流动资金,1000万元并不算多。而万吨规模在能源化利用上,刚称得上有点规模,只要是同一个业主,生产点可以分散,如果规模太小,补贴监管成本也太高。对于补贴方式上,秦世平承认存在一定缺陷,整个机制缺乏能源主管部门、技术部门的参与。制度怎样更有利于监管,公平公开还有待于进一步完善。而该行业的快速发展,补贴政策功不可没,但不能因为出现一些问题,因噎废食,取消这个补贴政策,那将会对刚刚起步的生物质能源化利用产业造成重大的打击。因为国家补贴不仅仅是提供资金,还表明国家对该行业的支持态度,对企业和投资具有强力的引导作用。

除此之外,固定电价也是补贴的重要一块。生物质发电是0.75元/度,垃圾和沼气发电是0.65元/度。增值税实行即征即退,所得税按销售收入的90%来计算。袁振宏则指出政府鼓励生产,生产完了没有销路,这个产业还是发展不起来。所以生产者和用户两头都要鼓励,为企业开拓市场。产业发展了国家才有政策,反过来不给政策,企业也难有市场。

三难:布局不好要吃亏

到底企业要建多大产能的好?秦世平经常碰到有企业负责人向他请教。

“没有最好,只有最适合的,适合的就是最好的。比如苏南地区每人只有几分地,那就没法收,这些地方就没法建大厂,但东北垦区就比较适合建大型电厂,有条件上规模,成本才越低,效益才越高。一定要因地制宜。密集地区可以建气化发电,做成型燃料,不一定去建发电厂。”

肖明松也建议企业要多方考虑,合理布局,否则很容易陷入发展困局。建生物质能电厂首先要考虑可持续发展,原料分散,就需要分散性利用,要考虑水资源、电力、人文环境是不是可以支撑这个项目。

四难:成本价格难控

受耕作制度的限制,我国农村土地高度分散,从资源的收集储存运输带来很大不利因素,在后续的环节上会放大很多倍。“有些人认为收集半径的扩大就是多一个油钱,实际上运输工具、人力成本都不一样。”秦世平解释说,“装机容量3万千瓦的生物质电厂,一年大概需要25万-30万吨秸秆,按我国户均10亩耕地计算,需要大约20万农户来完成,那么收购时你要带秤,光开票都需要20万张。还要一个个装车,不能实现高效的机械化。”

肖明松也非常理解企业的苦楚。“生物质能源要依赖农业,资源掌握在老百姓手里,农民的市场意识很好,完全随行就市。如果收集半径过大,需要农民花费大量时间收集、运输,那农民就会要求按外出打工时计算人力成本,如此一来,企业为原料支出的成本就会大大提高。如果企业坚持不抬价,就可能造成企业吃不饱,缩量生产,影响经济效益。每度电原料成本如果超出一定范围,无论怎么发电都是赔钱。加上人工费用近年来的快速增加,成本成了扼住企业脖子的一道枷锁。”

“所以准备入行的企业首先要考虑的是原料资源的可获得性,如果不成熟千万不要贸然进入。”肖明松认为地方政府可以进行协调,比如利用示范效应,鼓励农民种植秸秆作物,做好企业加农户的结合,平衡好企业和农户之间的利益。

五难:技术投入小

“我国的生物质能源技术与国外有一定的差距,但目前的技术加上国家的补贴可以维持产业化经营。技术进步永无止境,国外的技术、设备成本太高并不一定适合我们,轿车科技水平高,但要是去农田就不如拖拉机。”秦世平笑着向记者打了个比方。科研部门每年都在做前端的研究,力度并不大。从实验室到田间再到工业企业的规模化生产,技术的创新需要一个较长的时间。企业可以一边生产一边进行探索。

“目前存在的问题是,有些研究成果与生产有些脱节,并没有转化为生产力,推向社会。”肖明松说,一方面技术部门因缺少资金,无法进行规模化生产,另一方面为了尽可能多地收回技术成本,企业有意拉长新技术向市场投放的周期。“但是,我们现在面临的是国际化的市场,如果抱着老的技术不放,一旦有新技术投放市场,企业始终面临着效率低下,最终难以维持。”

“生物质能源的技术投入还很小,从宏观方面来说,现有能源还没有用尽。垄断企业控制着部分能源的终端,也限制了中小企业的技术投入。中石油若投入生物质能源,生产乙醇汽油很容易,因为燃料乙醇按标准要求添加到汽油里形成乙醇汽油,整个产业链他们可以控制,别人加不进去。当大能源还能够持续的时候,就不会在生物质能源上下太大的力气。”此外,国际石油、煤炭,天然气价格有一个联动关系,当他们的价格逼近生物质能源的产品价格时,企业就会有更多的利润,当化石能源资源枯竭到一定程度的时候,生物质能源的优势就体现出来了。 1. 直接燃烧

生物质的直接燃烧和固化成型技术的研究开发主要着重于专用燃烧设备的设计和生物质成型物的应用。现已成功开发的成型技术按成型物形状主要分为大三类:以日本为代表开发的螺旋挤压生产棒状成型物技术,欧洲各国开发的活塞式挤压制的圆柱块状成型技术,以及美国开发研究的内压滚筒颗粒状成型技术和设备。

2. 生物质气化

生物质气化技术是将固体生物质置于气化炉内加热,同时通入空气、氧气或水蒸气,来产生品位较高的可燃气体。它的特点是气化率可达70%以上,热效率也可达85%。生物质气化生成的可燃气经过处理可用于合成、取暖、发电等不同用途,这对于生物质原料丰富的偏远山区意义十分重大,不仅能改变他们的生活质量,而且也能够提高用能效率,节约能源。

3. 液体生物燃料

由生物质制成的液体燃料叫做生物燃料。生物燃料主要包括生物乙醇、生物丁醇、生物柴油、生物甲醇等。虽然利用生物质制成液体燃料起步较早,但发展比较缓慢,由于受世界石油资源、价格、环保和全球气候变化的影响,20世纪70年代以来,许多国家日益重视生物燃料的发展,并取得了显著的成效。

4.沼气

沼气是各种有机物质在隔绝空气(还原)并且在适宜的温度、湿度条件下,经过微生物的发酵作用产生的一种可燃烧气体。沼气的主要成分甲烷类似于天然气,是一种理想的气体燃料,它无色无味,与适量空气混合后即可燃烧。

1) 沼气的传统利用和综合利用技术

我国是世界上开发沼气较多的国家,最初主要是农村的户用沼气池,以解决秸秆焚烧和燃料供应不足的问题,后来的大中型沼气工程始于1936年,此后,大中型废水、养殖业污水、村镇生物质废弃物、城市垃圾沼气的建立扩宽了沼气的生产和使用范围。

自20世纪80年代以来,建立起的沼气发酵综合利用技术,以沼气为纽带,将物质多层次利用、能量合理流动的高效农业模式,已逐渐成为我国农村地区利用沼气技术促进可持续发展的有效方法。通过沼气发酵综合利用技术,沼气用于农户生活用能和农副产品生产加工,沼液用于饲料、生物农药、培养料液的生产,沼渣用于肥料的生产,我国北方推广的塑料大棚、沼气池、气禽畜舍和厕所相结合的“四位一体”沼气生态农业模式,中部地区以沼气为纽带的生态果园模式,南方建立的“猪-果”模式,以及其他地区因地制宜建立的“养殖-沼气”、“猪-沼-鱼”和“草-牛-沼”等模式,都是以农业为龙头,以沼气为纽带,对沼气、沼液、沼渣的多层次利用的生态农业模式。沼气发酵综合利用生态农业模式的建立使农村沼气和农业生态紧密结合,是改善农村环境卫生的有效措施,也是发展绿色种植业、养殖业的有效途径,已成为农村经济新的增长点。

2)沼气发电技术

沼气燃烧发电时随着大型沼气池建设和沼气综合利用的不断发展而出现的一项沼气利用技术,它将厌氧发酵处理产生的沼气用于发动机上,并装有综合发电装置,以产生电能和热能。沼气发电具有高效、节能、安全和环保等特点,是一种分布广泛且价廉的分布式能源。沼气发电在发达国家已收到广泛重视和积极推广。生物质能发电并网电量在西欧一些国家占能源总量的10%左右。

3) 沼气燃料电池技术

燃料电池是一种将储存在燃料和氧化剂中的化学能直接转化为电能的装置。当源源不断地从外部向燃料电池供给燃料和氧化剂时,它可以连续发电。依据电解质的不同,燃料电池分为碱性燃料电池(AFC)、质子交换膜(PEMFC)、磷酸(PAFC)、溶融碳酸盐(MCFC)及固态氧化物(SOFC)等。

燃料电池能量转换效率高、洁净、无污染、噪声低,既可以集中供电,也适合分散供电,是21世纪最有竞争力的高效、清洁的发电方式之一,它在洁净煤炭燃料电站、电动汽车、移动电源、不间断电源、潜艇及空间电源等方面,有着广泛的应用前景和巨大的潜在市场。

5.生物制氢

氢气是一种清洁、高效的能源,有着广泛的工业用途,潜力巨大,来生物制氢究逐渐成为人们关注的热点,但将其他物质转化为氢并不容易。生物制氢过程可分为厌氧光合制氢和厌氧发酵制氢两大类。

6. 生物质发电技术

生物质发电技术是将生物质能源转化为电能的一种技术,主要包括农林废物发电、垃圾发电和沼气发电等。作为一种可再生能源,生物质能发电在国际上越来越受到重视,在我国也越来越受到政府的关注和民间的拥护。

生物质发电将废弃的农林剩余物收集、加工整理,形成商品,及防止秸秆在田间焚烧造成的环境污染,又改变了农村的村容村貌,是我国建设生态文明、实现可持续发展的能源战略选择之一。如果我国生物质能利用量达到5亿吨标准煤,就可解决目前我国能源消费量的20%以上,每年可减少排放二氧化碳中的碳量近3.5亿吨,二氧化硫、氮氧化物、烟尘减排量近2500万吨,将产生巨大的环境效益。尤为重要的是,我国的生物质能资源主要集中在农村,大力开发并利用农村丰富的生物质能资源,可促进农村生产发展,显著改善农村的村貌和居民生活条件,将对建设社会主义新农村产生积极而深远的影响。

7.原电池

通过化学反应时电子的转移制成原电池,产物和直接燃烧相同但是能量能充分利用。 脂肪燃料快艇(说明:本词条顶部图片即为脂肪燃料快艇)

新西兰业余航海家和环境保护家皮特·贝修恩宣布,他将驾驶以脂肪为动力的快艇“地球竞赛”号,进行一次环球航行。据悉,贝休恩将于2008年3月1日从西班牙的瓦伦西亚出发,开始全长约4.5万公里的环球航行。贝休恩表示,他打算挑战英国船只“有线和无线冒险”号于1998年创造的75天环球航行的世界纪录。

脂肪当燃料“地球竞赛”号被称为世界上最快的生态船,造价240万美元,融合多项高科技。“地球竞赛”号长约23.8米,形似一只展翅欲飞的天鹅。船身有三层外壳保护,内有两个功能先进的发动机,最高时速可达每小时40节(约74公里),即使航行在巨浪中,速度也不会减慢。

虽然动物脂肪种类丰富,但贝修恩计划只利用人类脂肪转化成的生物燃料作为“地球竞赛号”的动力来源,百分之百采用生物燃料完成一次环游世界的环保之旅。

为了能募集到足够的脂肪生物燃料,贝修恩身先士卒,主动躺到了手术台上。然而整形医生尽管做了很大努力,从他体内抽出的脂肪也只够制造100毫升的生物燃料。他的两名助手抽出的10升脂肪能够制成7升生物燃料,可供“地球竞赛”号航行15公里。

而皮特进行“绿色”环游世界之旅,以打破英国“有线和无线冒险者”号于1998年创造的75天环游世界的纪录,总共需要7万升的生物燃料,也就是说,皮特需要胖子志愿者们捐赠出大约7万公斤的脂肪。

坚定的外套
结实的小蝴蝶
2025-07-26 10:37:09
1、废弃的生物质能制备氢气、沼气、发电等。

2、生物质是指利用大气、水、土地等通过光合作用而产生的各种有机体,即一切有生命的可以生长的有机物质通称为生物质。特点:可再生性。低污染性。广泛分布性。资源丰富。碳中性。生物质包括植物、动物和微生物。

3、生物质能是可再生能源的重要组成部分.生物质能的高效开发利用,对解决能源、生态环境问题将起到十分积极的作用.进入20世纪70年代以来,世界各国尤其是经济发达国家都对此高度重视,积极开展生物质能应用技术的研究,并取得许多研究成果,达到工业化应用规模.本文概述了国内外研究和开发进展,涉及到生物质能固化、液化、气化和直接燃烧等研究技术。

4、中国对生物质能源利用极为重视,己连续在四个国家五年计划将生物质能利用技术的研究与应用列为重点科技攻关项目,开展了生物质能利用技术的研究与开发,如户用沼气池、节柴炕灶、薪炭林、大中型沼气工程、生物质压块成型、气化与气化发电、生物质液体燃料等,取得了多项优秀成果。政策方面,2005年2月28日,第十届全国人民代表大会常务委员会第十四次会议通过了《可再生能源法》,2006年1月1日起已经正式实施,并于2006年陆续出台了相应的配套措施。这表明中国政府已在法律上明确了可再生能源包括生物质能在现代能源中的地位,并在政策上给予了巨大优惠支持。2007年,国家发展与改革委员会制订的《中国对应气候变化国家方案》确认,2010年后每年将通过发展生物质能源减少温室气体排放0.3亿吨CO2当量。因此,中国生物质能发展前景和投资前景极为广阔。

从容的眼神
明理的期待
2025-07-26 10:37:09

生物质能的主要利用形式包括直接燃烧和发电、生物质裂解与干馏、生物质致密成型、生物质气化及发电、生物质热解液化、燃料乙醇、生物柴油 、能源作物。

1、直接燃烧和发电:直接燃烧大致可分炉灶燃烧、锅炉燃烧、垃圾焚烧和致密成型燃料燃烧四种情况。我国小型生物质燃烧发电也已商业化,南方地区的许多糖厂利用甘蔗渣发电。广东、广西两地共有小型发电机组380台,总装机容量达800兆瓦,云南省也有一些此类电厂。

2、生物柴油:目前我国生物柴油研究开发尚处于起步阶段。先后有上海内燃机研究所和贵州山地农机所、中国农业工程研究设计院、辽宁省能源研究所、中国科技大学、河南科学院化学所、华东理工大学、云南师范大学农村能源工程重点实验室等单位都对生物柴油作了不同程度的研究,并取得可喜的成绩。

3、生物质致密成型:致密成型燃料燃烧是把生物质固化成型后再采用传统的燃煤设备燃用,主要优点是将分散和疏松的生物燃料进行集中和加密,以便于储存和运输,使之成为便捷和清洁高效的能源。主要缺点是生产成本偏高。

4、生物质气化及发电:我国已开发出多种固定床和流化床小型气化炉,以秸秆、木屑、稻壳、树枝等为原料生产燃气,热值为4~10兆焦/立方米。

目前用于木材和农副产品烘干的有800多台,村镇级秸秆气化集中供气系统近600处。兆瓦级生物质气化发电系统已推广应用20多套。“十五”期间,按照国家高科技发展计划(863计划)已建成4兆瓦规模生物质气化发电的示范工程。

5、能源作物:能源作物种植是近期发展起来的新型产业,是随着生物质能开发与利用的不断深入和扩大逐步形成的。能源作物是指各种用以提供能源的植物,通常包括速生薪炭林、能榨油或产油的植物、可供厌氧发酵用的藻类和其它植物等。

许多能源作物是自然生长的,收集比较困难。现在人们有意识地培育一些能源作物,经过嫁接、驯化、繁殖,不断提高产量,以满足对能源不断增长的需要。甜高粱就是一种很好的能源作物。

自然的小蘑菇
舒心的黄蜂
2025-07-26 10:37:09
生物质能是由植物的光合作用固定于地球上的太阳能,最有可能成为21世纪主要的新能源之一。据估计,植物每年贮存的能量约相当于世界主要燃料消耗的10倍;而作为能源的利用量还不到其总量的l%。这些未加以利用的生物质,为完成自然界的碳循环,其绝大部分由自然腐解将能量和碳素释放,回到自然界中。事实上,生物质能源是人类利用最早、最多、最直接的能源,至今,世界上仍有15亿以上的人口以生物质作为生活能源。生物质燃烧是传统的利用方式,不仅热效率低下,而且劳动强度大,污染严重。通过生物质能转换技术可以高效地利用生物质能源,生产各种清洁燃料,替代煤炭,石油和天然气等燃料,生产电力。而减少对矿物能源的依赖,保护国家能源资源,减轻能源消费给环境造成的污染。专家认为,生物质能源将成为未来持续能源重要部分,到2015年,全球总能耗将有40%来自生物质能源。

1.2能源与环境

人类正面临着发展与环境的双重压力。经济社会的发展以能源为重要动力,经济越发展,能源消耗多,尤其是化石燃料消费的增加,就有两个突出问题摆在我们面前:一是造成环境污染日益严重,二是地球上现存的化石燃料总有一天要掘空。按消费量推算,世界石油资源在今后50年到80年间将最终消耗殆尽。到2059年,也就是世界上第一口油井开钻二百周年之际,世界石油资源大概所剩无几。另一方面,由于过度消费化石燃料,过快、过早地消耗了这些有限的资源,释放大量的多余能量和碳素,打破了自然界的能量和碳平衡,是造成臭氧层破坏,全球气候变暖,酸雨等灾难性后果的直接因素。这就是说,如果不发展出新的能源来取代化石常规能源在能源结构中的主导地位,在21世纪必将发生严重的、灾难性的能源和环境危机,是人类在下一世纪所面临的三大最可能发生的灾难之一。

1.3国家安全

固然,发展生物质能源不是获得新的能源的唯一途径,人类可以采用高技术手段获得核能源,甚至从外太空获得能源,但其中的危害也是有目共睹的。首先,核能源的发展极可能给已经不安的世界带来新的不稳定因素,甚至直接威胁到人类的生存环境;其次,各国或各集团在人类下世纪技术水平下所能到达的有限外太空区域内进行的能源开发,将不可避免地引发新的争夺或争端,其祸福不言自明。而生物质能源则不仅是最安全、最稳定的能源,而且通过一系列转换技术,可以生产出不同品种的能源,如固化和炭化可以生产因体燃料,气化可以生产气体燃料,液化和植物油可以获得液体燃料,如果需要还可以生产电力等等。目前,世界各国,尤其是发达国家,都在致力于开发高效、无污染的生物质能利用技术,保护本国的矿物能源资源,为实现国家经济的可持续发展提供根本保障。

2.国外生物质能技术的发展状况

生物质能源的开发利用早已引起世界各国政府和科学家的关注。有许多国家都制定了相应的开发研究计划,在日本的阳光计划、印度的绿色能源工程、美国的能源农场和巴西的酒精能源计划等发展计划。其它诸如丹麦、荷兰、德国、法国、加拿大、芬兰等国,多年来一直在进行各自的研究与开发,并形成了各具特色的生物质能源研究与开发体系,拥有各自的技术优势。

2.1沼气技术

主要为厌氧法处理禽畜粪便和高浓度有机废水,是发展较早的生物质能利用技术。80年代以前,发展中国家主要发展沼气池技术,以农作物秸秆和禽畜粪便为原料生产沼气作为生活炊事燃料。如印度和中国的家用沼气池;而发达国家则主要发展厌氧技术,处理禽畜粪便和高浓度有机废水。目前,日本、丹麦、荷兰、德国、法国、美国等发达国家均普遍采取厌氧法处理禽畜粪便,而象印度、菲律宾、泰国等发展中国家也建设了大中型沼气工程处理禽畜粪便的应用示范工程。采用新的自循环厌氧技术。荷兰IC公司已使啤酒废水厌氧处理的产气率达到10m3/m3.d的水平,从而大大节省了投资、运行成本和占地面积。美国、英国、意大利等发达国家将沼气技术主要用于处理垃圾,美国纽约斯塔藤垃圾处理站投资2000万美元,采用湿法处理垃圾,日产26万m3沼气,用于发电、回收肥料,效益可观,预计10年可收回全部投资。英国以垃圾为原料实现沼气发电18MW,今后10年内还将投资1.5亿英镑,建造更多的垃圾沼气发电厂。

2.2生物质热裂解气化

早在70年代,一些发达国家,如美国、日本、加拿大、欧共体诸国,就开始了以生物质热裂解气化技术研究与开发,到80年代,美国就有19家公司和研究机构从事生物质热裂解气化技术的研究与开发;加拿大12个大学的实验室在开展生物质热裂解气化技术的研究;此外,菲律宾、马来西亚、印度、印尼等发展明家也先生开展了这方面的研究。芬兰坦佩雷电力公司开始在瑞典建立一座废木材气化发电厂,装机容量为60MW,产热65MW,1996年运行:瑞典能源中心取得世界银行贷款,计划在巴西建一座装机容量为20-3OMW的发电厂,利用生物质气化、联合循环发电等先进技术处理当地丰富的蔗渣资源。

2.3生物质液体燃料

另一项令人关注的技术,因为生物质液体燃料,包括乙醇、植物油等,可以作为清洁燃料直接代替汽油等石油燃料。巴西是乙醇燃料开发应用最有特色的国家,70年代中期,为了摆脱对进口石油的过度依赖,实施了世界上规模最大的乙醇开发计划,到1991年,乙醇产量达到130亿升,在980万辆汽车中,近400万辆为纯乙醇汽车,其余大部分燃用20%的乙醇-汽油混合燃料,也就是说乙醇燃料已占汽车燃料消费量的50%以上。1996年,美国可再生资源实验室已研究开发出利用纤维素废料生产酒精的技术,由美国哈斯科尔工业集团公司建立了一个1MW稻壳发电示范工程:年处理稻壳12,000吨,年发电量800万度,年产酒精2,500吨,具有明显的经济效益。

2.4其它技术

此外,生物质压缩技术可书固体农林废弃物压缩成型,制成可代替煤炭的压块燃料。如美国曾开发了生物质颗粒成型燃料:泰国、菲律宾和马来西亚等第三世界国家发展了棒状成型燃料。

3.我国的生物质能源

我国基本上是一个农业国家农村人口占总人口的70%以上,生物质一直是农村的主要能源之一,在国家能源构成中也占有益要地位。

3.1生物质能资源

我国现有森林、草原和耕地面积41.4亿公顷,理论上生物质资源理可达650亿吨/年以上(在但第平方公里土地面积上,植物经过光合作用而产生的有机碳量,每年约为158吨)。以平均热值为15,000千焦/公斤计算,折合理论资源最为33亿标准煤,相当于我国目前年总能耗的3倍以上.

实际上,目前可以作为能源利用的生物质主要包括秸秆、薪柴、禽畜粪便、生活垃圾和有机废渣废水等。据调查,目前我国秸秆资源量已超过7.2亿吨,约3.6亿吨标准煤,除约1.2亿吨作为饲料、造纸、纺织和建材等用途外其余6亿吨可作为能源用途:薪柴的来源主要为林业采伐、育林修剪和薪炭林,一项调查表明:我国年均薪柴产量约为1.27亿吨,折合标准煤0.74亿吨:禽畜粪便资源量约1.3亿吨标准煤;城市垃圾量生产量约1.2亿吨左右,并以每年8%-10%的速度增,据估算,我国可开发的生物质能资源总量约7亿吨标准煤。

3.2生物质能源和利用

我国生物质的能源利用绝大部分用于农村生活能源,极少部分用于乡镇企业的工业生产:而利用方式长期来一直以直接燃烧为主,只是近年来才开始采用新技术利用生物质能源,但规模较小。普及程度较低,在国家,甚至农村的能源结构中占有极小的比例。

生物质直接燃烧方式不仅热效率低下,而且大量的烟尘和余灰的排放使人们的居住和生活环境日益恶化,严重损害了妇女、儿童的身心健康。此外,还对生态、社会和经济造成极其不利的影响:

1.在必须使用生物质能源而利用方式不合理的情况下,必然对森林等自然资源进行不合理采伐,破坏了自然植被和生态平衡;

2.对于有机垃圾、有机废水、有机废渣、禽畜粪便以及部分农业废弃物等资源没有充分加以利用,不仅造成资源浪费,而且使其成为主要的有机污染源,除造成严重的大气和水污染之外,还排放大量的温室气体,加剧了全球温室效应;

3.同时,随着经济的迅速发展和人民生活水平的提高,能源短缺问题必将成为21世纪阻碍国家经济的持续发展的重大问题,必须予以足够的重视,并采取有效措施着力加以解决。

事实上,大力开发和利用生物质能源,对于缓解21世纪的能源、环境和生态问题具有重要意义,产生诸多利益;

4.减少污染,改善人民生活条件。不管是有机污水处理、城镇垃圾能源的利用还是秸秆热解利用中一个重要的共同点解决环境污染问题,这也是大部分生物质利用的首要目标。

5.解决农村能源供应问题,提高农民生活水平。

我国农村能源供应紧张,而生物质源丰富,所以可利开展利用生物质能,可以改善农村的能量供应。提高他们的生活水平。

6.改善能源结构,减轻对对环境的压力。我国可开发的生物资源达7亿吨,如果能充分开发,可以在我国的能源消费中占重要的地方,这对改善我国能源结构,减少我国对石化燃料的依赖,进而减少我国CO2和SO2等污染物的排放,最终缓解能源消耗给环境造成的压力有重要的意义。

3.3市场需求

可以预计,随着国民经济的发展和人民生活水平的提高,生物质能利用技术和装置的市场前景将会越来越广阔。主要依据:

1.目前,绝大部分农作物秸秆因得不到有效利用而就地焚烧于农田,不仅浪费了大量的能源,而成了严重的环境污染,给社会生活和经济发展造成了一定程度的负面影响。如发生在成都双流机场和首都机场的烟尘事件。逐渐富裕起来的农民,随着生活水平的提高,迫切改变原来直接燃用秸秆薪柴烟薰火燎的炊事取暖局面,以生物质可燃气作为他们的生活能源,就会改善其卫生环境,提高生活质量,减轻劳动强度。

2.众多粮食、木材、茶叶、果类等加工厂,每天都有大量的谷壳、锯末、木屑、果壳等废弃物产出堆放,利用生物质气化技术将其转换成可燃气,生产出优质能源,变废为宝,可谓一举两得。

3.禽畜粪便既是极为有害大环境污染源泉又是重要的生物质能资源,随着大型畜牧场的不断建成和发展,所产生的环境污染也日趋严重。应用厌氧技术处理禽畜粪便更具有能源与环境双重意义。

4.随着我国社会经济的迅速发展,城市人口的增多和居民生活的改善,城市的垃圾处理问题便显得日益突出。我国的以北京为例,1995年,年垃圾产量均已突破400万吨,1996年北京的垃圾量则达485万吨。采用厌氧技术处理有机垃圾,不仅可获得能源,而且达到低费用治理污染的目的。

5.我国的边远地区,生物质资源丰富,多属于缺电、少电地区,可将生物质气化发电,或供热可自产自用。

6.事买上,生物质能源技术之所以具有广阔的市场前景,其优势在于开发利用生物质能源不仅可以获得取之不尽的能源,而且具有保护环境,节省资源的功能。

3.4我国生物质能技术发展现状与问题

我国政府及有关部门对生物质能源利用极为重视,国家几位主要领导人曾多次批示和指示加强农作物秸秆的能源利用。国家科委已连续在三个国家五年计划中将生物质能技术的研究与应用列为重点研究项目,涌现出一大批优秀的科研成果和成功的应用范例,如产用沼气池、禽畜粪便沼气技术、生物质气化发电和集中供气、生物压块燃料等,取得了可观的社会效益和经济效益。同时,我国已形成一支高水平的科研队伍,包括国内有名的科研院所和大专院校:拥有一批热心从事生物质热裂解气化技术研究与开发的著名专家学者。

a.沼气技术是我国发展最早、曾晋遍推厂的生物质能源利用技术。70年代,我国为解决农村能源短缺的问题,曾大力开发和推广户用沼气地技术,全国已建成525万户用沼气池。在最近的连续三个五年计划中,国家都将发展新的沼气技术列为重点科技攻关项目,计划实施了一大批沼气及其利用的研究项目和示范工程。至今,我国已建设了大中型沼气池3万多个,总容积超过137万m3,年产沼气5,500万m3,仅100m3以上规模的沼气工程就达630多处,其中集中供气站583处,用户8.3万户,年均用气量431m3,主要用于处理禽畜粪便和有机废水。这些工程都取得了一定程度的环境效益和社会效益,对发展当地经济和我国厌氧技术起到了积极作用。在“九五”计划中,应用于处理高浓度有机废水和城市垃圾的高效厌氧技术被列为科技攻关重点项目,分别由中科院成都生物研究所和杭州能源环境研究所承担实施,现已取得预期的进展。

我国厌氧技术及工程中存在的主要问题:相关技术研究少、辅助设备配套性差、自动化程度低、非标设备加工粗糙、工程造价高、开放式前后处理的二次污染严重等。

b.我国的生物质气化技术近年有了长足的发展,气化炉的形式从传统上吸式、下吸式到最先进的流化床、快速流化床和双床系统等,在应用上除了传统的供热之外,最主要突破是农村家庭供气和气化发电上。“八五”期间,国家科委安排了“生物质热解气化及热利用技术”的科技攻关专题,取得了相当成果:采用氧气气化工艺,研制成功生物质中热值气化装置;以下吸式流化床工艺,研制成功l00户生物质气化集中供气系统与装置:以下吸式固定床工艺,研制成功食品与经济作物生物质气化烘干系统与装置;以流化床干馏工艺,研制成功1000户生物质气化 集中供气系统与装置。“九五”期间,国家科委安排了“生物质热解气化及相关技术”的科技攻关专题,重点研究开发1MW大型生物质气化发电技术和农村秸秆气化集中供气技术。目前全国已建成农村气化站近200多个,谷壳气化发电100多台套,气化利用技术的影响正在逐渐扩大。

c.“八五”期间,我国开始了利用纤维素废弃物制取乙醇燃料技术的探索与研究,主要研究纤维素废弃物的稀酸水解及其发酵技术,并在“九五”期间进入中间试验阶段。我国已对植物油和生物质裂解油等代用燃料进行了初步研究:如植物油理化特性、酯化改性工艺和柴油机燃烧性能等方面进行了初步试验研究。“九五”期间,开展了野生油料植物分类调查及育种基地的建设。我国的生物质液化也有一定研究,但技术比较落后,主要开展高压液化和热解液化方面的研究。

d.此外,在“八五”期间,我国还重点对生物质压缩成型技术进行了科技攻关,引进国外先进机型,经消化、吸收,研制出各种类型的适合我国国情的生物质压缩成型机,用以生产棒状、块状或颗粒生物质成型燃料。我国的生物质螺旋成型机螺杆使用寿命达500小时以上,属国际先进水平。

虽然我国在生物质能源开发方面取得了巨大成绩,技术水平却与发达国家相比仍存在一定差距,如:

a.新技术开发不力,利用技术单一。我国早期的生物质利用主要集中在沼气利用上,近年逐渐重视热解气化技术的开发应用,也取得了一定突破,但其他技术开展却非常缓慢,包括生产酒精、热解液化、直接燃烧的工业技术和速生林的培育等,都没有突破性的进展。

b.由于资源分散,收集手段落后,我国的生物质能利用工程的规模很小;为降低投资,大多数工程采用简单工艺和简陋设备,设备利用率低,转换效率低下。所以,生物质能项目的投资回报率低,运行成本高,难以形成规模效益,不能发挥其应有的、重大的能源作用。

c.相对科研内容来说,投入过少,使得研究的技术含量低,多为低水平重复研究,最终未能解决一些关键技术,如:厌氧消化产气率低,设备与管理自动化程度较差;气化利用中焦油问题没有彻底解决,给长期应用带来严重问题;沼气发电与气化发电效率较低,相应的二次污染问题没彻底解决。导致许多工程系统常处于维修或故障的状态,从而降低了系统运行强度和效率。

此外,在我国现实的社会经济环境中,还存在一些消极因素制约或阻碍着生物质能利用技术的发展、推广和应用,主要表现为:

a.在现行能源价格条件下,生物质能源产品缺乏市场竟争能力,投资回报率低挫伤了投资者的投资积极性,而销售价格高又挫伤了消费者的积极性。

b.技术标准未规范,市场管理混乱。在秸杆气化供气与沼气工程开发上,由于未有合适的技术标准和严格的技术监督,很多未具备技术力量的单位和个人参与了沼气工程承包和秸杆气化供气设备的生产,引起项目技术不过关,达不到预期目标,甚至带来安全问题,这给今后开展生物质利用工作带来很大的负面影响。

c.目前,有关扶持生物质能源发展的政策尚缺乏可操作性,各级政府应尽快制定出相关政策,如价格补贴和发电上网等特殊优惠政策。

d.民众对于生物质能源缺乏足够认识,应加强有关常识的宣传和普及工作。

e.政府应对生物质能源的战略地位予以足够重视,开发生物质能源是一项系统工程,应视作实现可持续发展的基本建设工程。

4.发展方向与对策

4.1发展方向

我国的生物质能资源丰富,价格便宜,而经济环境和发展水平对生物质技术的发展处于比较有利的阶段。根据这些特点,我国生物质的发展既要学习国外先进经验,又要强调自己的特色,所以,今后的发展方向应朝着以下几方面:

a.进一步充分发挥生物质能作为农村补充能源的作用,为农村提供清洁的能源,改善农村生活环境及提高人民生活条件。这包括沼气利用、秸杆供气和小型气化发电等实用技术。

b.加强生物质工业化应用,提高生物质能利用的比重,提高生物质能在能源领域的地位。这样才能从根本上扩大生物质能的影响,为生物质能今后的大规模应用创造条件,也是今后生物质能能否成为重要的替代能源的关键。

c.研究生物质向高品位能源产品转化的技术,提高生物质能的利用价值。这是重要的技术储备,是未来多途径利用生物质的基础,也是今后提高生物质能作用和地位的关键。

d.同时,利用山地、荒地和沙漠,发展新的生物质能资源,研究、培育、开发速生、高产的植物品种,在目前条件允许的地区发展能源农场、林场,建立生物质能源基地,提供规模化的木质或植物油等能源资源。

4.2对策

根据上面的主要发展方向,今后我国生物质利用技术能否得到迅速发展,主要取决于以下几个方面:

a.在产业化方面:加强生物质利用技术的商品化工作,制定严格的技术标准,加强技术监督和市场管理,规范市场活动,为生物质技术的推广创造良好的市场环境。

b.在工业化生产与规模化应用方面:加强生物质技术与工业生产的联系,在示范应用中解决关键的技术在技术研究方面:既重点解决推广应用中出现的技术难题,在生产实践中提高并考验生物质能技术的可靠性和经济性,为大规模使用生物质创造条件。

c.在技术研究方面:既重点解决推广应用中出现的技术难题,如焦油处理,寒冷地区的沼气技术等,又要同时开展生物质利用新技术的探索,如生物质制油,生物质制氧等先进技术的研究。

d.制定一项生物质能源国家发展计划,引进新技术、新工艺,进行示范、开发和推广,充分而合理地利用生物质能资源。在21世纪,逐步以优质生物质能源产品(固体燃料、液体燃料、可燃气、由、执等形式)取代部分矿物燃料,解决我国能源短缺和环境污染等问题。

4.3优先领域

.秸秆能源利用

.有机垃圾处理及能源化

.工业有机废渣与废水处理及能源化

.生物质液体燃料

4.4重大关键技术

.高效生物质气化发电技术

.有机垃圾IGCC发电技术

.高效厌氧处理及沼气回收技术

.纤维素制取酒精技术

.生物质裂解液化技术

.能源植物培育及利用技术

5.结语

生物质能源在未来世纪将成为可持续能源重要部分。我国幅员辽阔,但化石能源资源有限,生物质资源丰富,发展生物质能源具有重要的战略意义和现实意义。采用高新技术将秸秆、禽畜粪便和有机废水等生物质转化为高品位能源,开发生物质能源将涉及农村发展、能源开发、环境保护、资源保护、国家安全和生态平衡等诸多利益。希望得到社会各界、各级政府、专家学者的广泛关注与支持,为我国的生物质能源事业创造有益的发展环境。