“三桶油”纷纷入局风电场,看中的是什么?
中国风电领域迎来一位新成员。
10月29日,中国石油化工集团有限公司(下称中石化)新闻办发布消息称,下属新星公司将参与开发位于陕西渭南市大荔县的分散式风电项目,总装机容量20兆瓦。这将是中石化首个风电项目。
中石化称,分散式风电是一种小规模分散式、布置在用户附近、高效可靠的发电模式。虽然总容量较小,但它可利用已建成的电网进行输送,更加灵活,可实现风能资源的有效利用和就地消纳。
上述项目整体占地面积约35平方公里,设计安装八台单机容量2.5兆瓦风力发电机组,建成后上网年发电量可达4286.5万千瓦时,相当于年节约标准煤1.32万吨。
中国新能源电力投融资联盟秘书长彭澎对界面新闻表示,与其他央企风电项目最小为50兆瓦相比,中石化20兆瓦的总装机容量非常小,加之中国分散式风电的市场空间仍有局限性,未来进行大规模发展的可能性较小。
彭澎认为,中石化上述风电项目仅是“试水”。
风能是中石化未来构建新能源体系的业务之一。今年3月30日,中石化董事长张玉卓在2019年度业绩发布会上提出“一基两翼三新”的发展格局。
其中,在新能源领域,中石化提出将着力建设以风光热氢为引领的新能源体系,积极引领发展氢能,推进太阳能、风能发展,优化发展生物质能。
随着中石化此次加入,中国油气巨头“三桶油”齐聚风电领域。
中国石油天然气集团有限公司(下称中石油)和中国海洋石油集团有限公司(下称中国海油)在风电领域的布局稍早。
去年4月,中国电建集团山东电建四川公司发布消息称,中标了中国石油海洋工程(青岛)海上风电项目A、B段电气设备安装施工项目。
山东电建四川公司表示,该项目位于江苏省灌云、如东海域 ,A标段风电场拟安装95台单机容量为4.2 MW风力发电机组,总装机容量400兆瓦。B标段共布置50台单机容量为4兆瓦的风电机组,总装机规模200兆瓦。
中石油在《2019年环境保护公报》里表示,将适度发展风电和光伏等。但截至目前,尚未看到中石油对外公布相关风电项目的最新进展。
与中石化和中石油相比,中国海油在海上风电的发展决心更大、行动也更积极。
2019年年初,中国海油正式透露在 探索 海上风电业务。同年4月30日,中国海油第一个合作开发的江苏海上风电项目开工。今年9月15日,该项目实现并网发电。
据中国海油介绍,江苏海上风电场中心离岸距离39公里,水深约12米。该项目规划装机容量300兆瓦,计划在海上建设67台风机,首批风机已实现并网发电。项目预计今年底前全部投产,年上网电量达约8.6亿千瓦时。
这次是中国海油重返风电领域。2006年,中国海油首次提出进军上海风电业务,并将其列为“未来30年重点投入”领域,但后因盈利情况欠佳,2014年中断了新能源业务的发展。
去年6月10日,中国海油首次发布了《绿色发展行动计划》,提出大力发展海上风电产业开发等新能源新业务。
中国海油首席执行官袁光宇称,海上风电是诸多清洁能源、可再生能源种类中,与中国海油契合度最高的领域。中国海油有丰富的海上工程资源和生产作业经验,均可以应用到海上风电领域。
今年7月2日,中海石油(中国)有限公司全资子公司中海油融风能源有限公司在上海正式揭牌成立。该公司的发展思路是“本着低成本、市场化的原则,先近浅海练兵,后深远海发力,积极稳妥推进海上风电业务”。
中国海油正在同步开发广东省附近海域海上风电场,未来还将在深远海风电和分散式海上风电研发和投资方面持续发力。
在全球石油需求增长放缓,能源向低碳清洁转型的大背景下,“三桶油”进军风电等可再生能源行业是大势所趋。加之今年新冠疫情“雪上加霜”,全球石油企业加速转型成为必然。
2019年中国的可再生能源发电量结构中,水电、光伏发电、风电、生物质发电占比分别是63.73%、19.89%、10.10%、5.45%,同比增速分别是5.7%、10.9%、26.3%、20.4%。
其中,风电是增长速度较快、电源占比高的一类。
第三方咨询机构WoodMackenzie估算,以江苏沿海的风资源算,海上风电项目内部收益率约为8%-10%。在福建、广东等地海域,投资成本较高,约为1.8万-2.2万元/千瓦,但由于风资源更为优越,内部收益率可达10%-12%。
但风电行业留给“三桶油”的时间和空间并不多。
彭澎表示,陆上风电经过15年的高速发展后,适合安装风机并具备消纳条件的区域,已基本被开发了;80%的优质项目已沉淀在电力央企手里,通过交易进行产权置换的可能性较小。
“经过补贴阶段后,海上风电未来的发展规模也有限。“彭澎认为,从短期和中期看,风电尚难和光伏竞争。
与光伏发电相比,目前风电的发电成本更高。去年10月国网能源研究院发布的《2019年中国新能源发电分析报告》显示,当前陆上风电平均度电成本约为0.38元,海上风电平均度电成本约为0.64元;光伏电站平均度电成本约0.377元。
该报告预计,2020年中国陆上风电度电成本将下降至0.3-0.4元,光伏发电度电成本将下降到0.26-0.3元。
受困于建设安装技术不成熟和海上风机运维成本高企,海上风电是度电成本最高的可再生能源之一。
目前海上风电标杆电价为0.85元/度,相当于每度电补贴约0.4元,是陆上风电度电补贴金额的3倍。若去除中央补贴后,地方不支持海上风电补贴,且其成本未能实现降低,海上风电前景存忧。
“长期看,海上大型风电项目能否以合适的价格融入未来电力市场,存在较大的不确定性。”彭澎表示。
今年3月,财政部、国家发改委、国家能源局联合《关于促进非水可再生能源发电 健康 发展的若干意见》,明确提出新增海上风电和光热项目不再纳入中央财政补贴范围,按规定完成核准(备案)并于2021年12月31日前全部机组完成并网的存量海上风力发电和太阳能光热发电项目,按相应价格政策纳入中央财政补贴范围。
这意味着2021年之后将取消海上风电国家补贴。
按照中国《可再生能源发展“十三五”规划》目标,到2020年,风电项目电价可与当地燃煤发电同平台竞争,光伏项目电价可与电网销售电价相当。在部分资源条件较好的地区,这一目标已基本实现。“十四五”期间,中国风电、光伏发电将全面迎来平价上网时代。
尽管如此,“三桶油”在风电领域也有机会。彭澎表示,“三桶油”旗下的油田矿区和炼化企业大多建有自备电网,具备消纳太阳能和风能电力的电网条件,可以根据情况重新布局可再生能源的电力供应。
另外,“三桶油”具备大量的油田区块,如果有风资源比较好的区域,也可以进行开发。“三桶油”油田矿区集中分布在西北和东北地区,太阳能和风能资源较为丰富,且以盐碱地、戈壁荒漠为主,占用耕地和林地少,无高大遮挡物,具备良好的场地条件和资源条件。
彭澎建议,“三桶油”可以尽可能地开拓新的市场,比如做能源管理,开展综合能源、清洁能源和智慧能源等新的增值业务。
我国是世界上风力资源占有率最高的国家之一,同时也是世界上最早利用风能的国家之一。
据前瞻产业研究院发布的《2014-2018年中国风力发电设备行业产销需求与投资预测分析报告》资料统计显示,我国10m高度层风能资源总量为3226GW,其中陆上可开采风能总量为253GW,加上海上风力资源,我国可利用风力资源约为1000GW。如果风力资源开发率可达到60%,仅风电一项就可支撑我国目前的全部电力需求。我国利用风电起步较晚,和世界上风电发达国家如德国、美国、西班牙等相比还有很大差距。
风电是20世纪80年代开始迅速发展起来的,初期研制的风机主要是1kW、10kW、55kW、220kW等小型风电机组,后期开始研发可充电型风电机组,并在海岛和风场广泛应用。
至今,我国已经在河北张家口、内蒙古、山东荣城、辽宁营口、黑龙江富锦、新疆达坂城、广东南澳和海南等地建成了多个大型风电场,并且计划在江苏南通、灌云及盐城等地兴建GW级风电场。
截止2007年底,我国风机装机总量已达6.05GW,年发电量占全国发电量的0.8%左右,比2000年风电发电量增加近10倍。2012年一年新增风电装机容量625万千瓦,比过去20年累计的总量还多,新增装机增长率约为89%。累计风电装机容量约1215万千瓦,占全国装机总量的1.5%,累计装机增长率为106%。风电装机主要分布在24个省,比2007年增加了重庆、云南和江西三个省。
据 前瞻产业研究院 《2014-2018年中国风力发电设备行业产销需求与投资预测分析报告》显示,自2004年以来,全球风力发电能力翻了一番,2006年至2007年间,全球风能发电装机容量扩大27%。2007年已有9万兆瓦,这一数字到2010年是16万兆瓦。预计未来20-25年内,世界风能市场每年将递增25%。随着技术进步和环保事业的发展,风能发电在商业上将完全可以与燃煤发电竞争。
“十五”期间,中国的并网风电得到迅速发展。2006年,中国风电累计装机容量已经达到260万千瓦,成为继欧洲、美国和印度之后发展风力发电的主要市场之一。2007年我国风电产业规模延续暴发式增长态势,截至2007年底全国累计装机约600万千瓦。2008年8月,中国风电装机总量已经达到700万千瓦,占中国发电总装机容量的1%,位居世界第五,这也意味着中国已进入可再生能源大国行列。
中国风力等新能源发电行业的发展前景十分广阔,预计未来很长一段时间都将保持高速发展,同时盈利能力也将随着技术的逐渐成熟稳步提升。
据前瞻产业研究院风力发电行业研究小组数据显示,2012年底,全国风电并网装机容量为6266万千瓦,比2011年增加1482万千瓦,增长率31%,全年风电发电量1008亿千瓦时,比2011年增长41%,风电发电量约占全国总上网电量的2.0%。同时按照国家规划,到2015年,风电并网装机总容量达到1亿千瓦,以每千瓦装机容量设备投资7000元计算,届时风电设备市场规模达7000亿元。
公司聚乳酸产品处于建设期内,聚乳酸(PLA)产品是一种以可再生植物资源如蔗糖、玉米、木薯或秸秆等为原料,通过糖化、发酵、聚合而生成的全生物基、可生物降解的聚酯产品,可替代化石基来源的塑料聚酯,为环境友好型材料。
2、吉鑫科技601218:10月29日消息,吉鑫科技收盘于5,32元,涨9,92%。7日内股价上涨13,53%,总市值为52亿元。
3、中利集团002309:10月29日消息,中利集团开盘报价5,48元,收盘于5,67元,涨7,8%。当日最高价5,79元,最低达5,39元,总市值49,43亿。
根据《关于可再生能源发展“十三五”规划实施的指导意见》,2020年之前,国家将重点在16个省的471个县约3,5万个建档立卡贫困村,如采用村级光伏电站方式,每位扶贫对象的对应项目规模标准为5KW,这无疑是一个巨大的市场容量。
4、北巴传媒600386:10月29日消息,北巴传媒开盘报价3,45元,收盘于3,62元。5日内股价上涨0,55%,总市值为29,19亿元。
公告显示,银隆新能源主要从事钛酸锂材料、钛酸锂动力电池、电动汽车核心部件、电动汽车整车、电动汽车充电设备的研发、生产及销售;同时,珠海银隆基于在钛酸锂电池领域的技术积累,将业务拓展至储能领域,为电网、可再生能源发电系统、移动通信营运商等提供储能及调峰调频系统设备的系统集成服务。
5、*ST猛狮002684:10月29日,ST猛狮开盘报价6,49元,收盘于6,49元,涨5,02%。今年来涨幅上涨53%,总市值为36,82亿元。
拓展资料:可再生能源(英语:Renewable Energy)是指风能、太阳能、水能、生物质能、地热能、海洋能等非化石能源,是取之不尽,用之不竭的能源,是相对于会穷尽的不可再生能源的一种能源,对环境无害或危害极小,而且资源分布广泛,适宜就地开发利用。
再生能源包括太阳能、水能、风能、生物质能、波浪能、潮汐能、海洋温差能、地热能等。
它们在自然界可以循环再生。是取之不尽,用之不竭的能源,不需要人力参与便会自动再生,是相对于会穷尽的非再生能源的一种能源。
在19世纪中叶煤炭发展之前,所有使用的能源都是可再生能源。除了核能、潮汐能、地热能之外,人类活动的基本能源主要来自太阳光。
像生物能和煤炭、石油、天然气等化石能源,主要通过植物的光合作用吸收太阳能储存起来。其它像风力,水力,海洋潮流等等,也都是由于太阳光加热地球上的空气和水的结果。
水电
一是在做好布局的基础上,落实电力市场水电消纳和输电方案,包括四川、云南水电外送,以及“十三五”投产的重点水电。
二是落实水电与促进地方经济社会发展和扶贫协调机制,研究建立西藏水电的开发协调机制,促进藏东南水电基地的开发。
三是研究制定龙头水库综合效益共享机制与政策,进行抽水蓄能电站作用、效益机制研究,水电电价市场化改革及电价机制研究,探索和制定常规水电和抽水蓄能电站电价机制,促进水电持续健康发展。
四是做好流域综合监测规划,建立监测、监管体系,编制流域梯级水电站联合调度运行规程,优化水电站运行,提高利用效率。
到“十三五”时期,水电投资不足、开发技术难度较大等问题都会基本得以解决,而难点转向消纳、外送、移民、环保等方面。因此要把水电开发好,除了技术研究和积累之外,还应该加强水电开发机制体制等一系列问题研究,促进水电有序有效开发利用。
在自然界中可以不断再生并有规律地得到补充或重复利用的能源。例如太阳能、风能、水能、生物质能、潮汐能等。
可再生能源是指可以再生的能源总称,包括生物质能源、太阳能、光能、沼气等。生物质能源主要是指雅津甜高粱等,泛指多种取之不竭的能源,严格来说,是人类历史时期内都不会耗尽的能源。可再生能源不包含现时有限的能源,如化石燃料和核能。
2、生物能:由绿色植物通过光合作用,将太阳能转化为化学能,储存在体内,可沿食物链单向流动,最终转化为热能散失掉。通过燃烧和厌氧发酵获得沼气来取得能量。
3、风能:由太阳辐射提供能量,因冷热不均产生气压差异,导致空气水平运动——风的形成。主要是通过风力发电机来获得能量。
4、水能:由太阳辐射提供能量,产生水循环,来自海洋的暖湿空气,受热上升,太阳能转化为势能,当在高山上形成降水后,水往低处流,势能转化为动能,就是水能。主要是通过水力发电机来获得能量。
5、海洋能:包括潮汐、波浪、洋流等海水运动蕴藏的能量,也是取之不尽用之不竭的。潮汐能主要来自于月球、太阳等天体的引力,波浪、洋流的能量主要是受风的影响。主要是通过潮汐的动能来发电。
6、地热能:来自于地球内部放射性元素的衰变。可以用于地热发电和供暖。
7、氢能:通过燃烧或者是燃料电池来获得能量。
8、核能:通过核能发电站来取得能量。
上述能源都是可再生能源,而且是直接来自于自然界的一次能源。
希望我们能珍惜我们共同的财富,
望采纳、
引言:其实能源的问题一直都是人们关注,在以前的时候人们都是使用的是不可再生能源,在这样的情况之下呢,就会发现能源问题越来越严重了,于是就开始使用可再生能源。那么什么是可再生能源,应该怎么去寻找可再生能源呢?
可再生能源的寻找其实可再生能源就是指在日常的生活中,能够循环利用的取之不尽,用之不竭的能源,这样的能源通常都被称为可再生能源。而在日常生活中经常使用的可再生能源就是太阳能,风能,水能,这些能源在日常生活中都是会出现的,而且不用担心会用完。因为阳光的照射,风力的运动其实就是一种自然现象,而且这些自然现象还是经常发生的,所以说可再生能源在日常生活中是能够经常被食用的。而像石油天然气这样的能源就属于不可再生能源,这些东西用完了就是用完了,而且人类是没有办法通过人工合成的,成本实在是太高了。所以说可再生能源的寻找其实是比较简单的,但是重要的是怎么把可再生能源转化为日常中可以使用的电能。而且在这个过程中还需要控制成本,这才是很多人需要解决的问题,现在风能太阳能其实在转化的过程中效率算比较高。
要践行低碳生活实际上就算说有再多的能源被开发出来,如果人们在使用能源的过程中只是浪费的话,那么也没有办法让人们的环境变得更好。所以说在可再生能源还没有完全被开发的前景之下,人们一定要注意营造一种低碳生活的行为和习惯,日常生活中要避免浪费。在这样的情况之下呢,就可以减少能源的消耗,从而减少碳排放量,让地球的环境变得更好。
风能作为一次能源,是因空气流做功而提供给人类的一种可利用的能量,简而言之,空气流具有的动能称为风能。人类利用风能的历史可追溯到公元前中国是世界上最早开发利用风能的国家之一。中国人民利用风力提水、灌溉、磨面和用风帆推动船舶前进。但历经数千年,风能技术发展缓慢,没有引起人们足够的重视。
但自1973年世界石油危机以来,常规能源告急。尤其近几年,随着世界工业经济的发展、人口的剧增、人类欲望的无限上升和生产生活方式的无节制,全球整体呈现经济高速增长、能源消耗持续上升的态势。大量化石能源的使用直接导致了环境污染越发严重。尤其是以二氧化碳为主的温室气体排放量急剧上升,造成全球气候变暖、冰川积雪减少、两极冰山融化、海平面明显上升,使沿海地区遭受水灾,从而造成对生态环境的影响。在此种背景下,如何应对全球气候变暖成为全世界共同关注的议题,并上升成为全人类面临的巨大挑战之一。风能作为一种可再生清洁能源有着巨大开发潜力,开始得到越来越多的青睐,尤其是对沿海岛屿、交通不便的边远山区、地广人稀的草原牧场,远离电网和近期内电网还难以到达的农村、边疆。风能作为解决生产和生活能源的一种可靠途径,有着十分重要的意义(李莉,2016)。
我国位于亚洲大陆东南部,濒临太平洋西岸,季风强盛。季风是我国气候的基本特征,如冬季季风在华北长达6个月、在东北长达7个月,东南季风则遍及我国的东半部,全国风力资源的总储量为1.6×106MW。我国风力发电事业虽起步较晚,但是基于国家政策和资金的支持,其得到了快速的发展。迄今为止,我国已经在河北张家口、内蒙古、山东荣成、辽宁营口、黑龙江富锦、新疆达坂城、广东南澳和海南等地建成了多个大型风力发电场,并且计划在江苏南通、灌云及盐城等地兴建十亿瓦特(GW)级风电场。
目前,我国在风能的利用和开发上加大了投入力度,使高效清洁的风能利用在我国能源格局中占有应有的地位。
一、风能的成因和特点
风能就是地球表面大量空气流动所产生的动能,是太阳能的一种转化形式。由于地面各处受太阳辐照后气温变化不同和空气中水蒸气的含量不同,因而引起各地气压的差异,在水平方向高压空气向低压地区流动,即形成风。
风速9~10m/s的5级风,吹到物体表面上的力,每平方米约有0.1kN。风速20m/s的9级风,吹到物体表面上的力,每平方米可达0.5kN左右。台风的风速可达50~60m/s,它对每平方米物体表面上的压力可以达到2.0kN以上。波涛汹涌的海浪是被风激起的,它对海岸的冲击力极大,有时甚至可以高达每平方米200~300kN,最大时甚至可以达到每平方米600kN。由此可见,风的能量超乎我们想象。
风能不仅能量极大,并且在自然界中所起的作用也很大。它可以在地表做运输水分的工作,水汽主要是由强大的空气流输送的,从而影响气候,形成雨季和旱季。风中具有的能量,比人类迄今为止所能控制的能量高很多。风能与其他能源相比,既有显著的优势,也有一定的局限性。其特点包括:
(1)蕴量巨大。据估算,到达地球的太阳能中虽仅有约2%转化为风能,但其总量十分可观,全球风能约为2.74×109MW,其中可利用的风能约为2×107MW,比地球上可开发利用的水能总量要大10倍。全世界每年燃烧煤炭得到的能量,还不到风力在同一时间内提供给地球能量的1%。
(2)来源丰富,取之不尽,用之不竭。风是周而复始的自然循环造成的,在地球上分布广泛。
(3)没有污染,清洁无害。风能本身属清洁能源,目前成熟的风能利用和转化技术也环保无污染。
(4)能量密度低。这是风能的一个重要缺陷,由于风能来源于空气的流动,而空气的密度是很小的,因此风力的能量密度也很小。从表4-2中可以看出,在各种能源中,风能的能源密度是极低的,给其利用带来的一定的困难。
(5)不稳定。气流变化频繁,风的脉动、日变化、季节变化等都十分明显,其波动很大,具有季节性、随机性等特点。
(6)地区差异大。因地形变化,风力的地区差异非常明显,邻近区域、有利地形下的风力,可能是不利地形下的几倍甚至几十倍。
表4-2 各种能源的能流密度
二、中国的风能资源分布
我国幅员辽阔,陆疆总长达2万多千米,还有1.8万多千米的海岸线,边缘海中有岛屿5000多个,风能资源丰富。我国现有风电场场址的年平均风速均达到6m/s以上。一般认为,可将风电场风况分为三类:年平均风速6m/s以上时为较好,7m/s以上为好,8m/s以上为很好。可按风速频率曲线和机组功率曲线,估算国际标准大气状态下该机组的年发电量。我国相当于6m/s以上的地区,在全国范围内仅仅限于较少数几个地带。就内陆而言,大约仅占全国总面积的1/100,主要分布在长江到南澳岛之间的东南沿海及其岛屿,这些地区是我国最大的风能资源区以及风能资源丰富区,包括山东、辽东半岛、黄海之滨,南澳岛以西的南海沿海、海南岛和南海诸岛,内蒙古从阴山山脉以北到大兴安岭以北、新疆达坂城、阿拉山口、河西走廊、松花江下游、张家口北部等地区以及分布各地的高山山口和山顶。
三、风能的利用
从原理上讲,只要是在风的流动中能产生不对称力的物体,都能产生转动、平动或振动,从而获得风能。最早的风能利用是风帆,目前风能主要利用于以下几个方面。
(一)风力提水
风力提水作为风能利用的主要方式有着悠久的历史,千百年来它在解决我国农业灌排、牧区人畜饮水以及池塘养鱼、沿海滩涂制盐等方面都不失为一种简单实用的技术,特别是在许多电网不及的边远地区和沿海岛屿的推广应用对于节省常规能源、改善生态环境、促进当地经济社会的可持续发展都有重要的现实意义。早在明代我国方以智著的《物理小识》就记载到:“用风帆六幅,车水灌田,淮阳海皆为之”,描述了当时人们利用风帆驱动水车提水灌田的情景(刘惠敏等,2011)。
根据扬程和流量的不同,可将现代风力提水机组可分为三类(表4-3):一类是高扬程小流量型,这类机组的风轮直径一般都在6m以下,扬程为20~100m,主要用于提取深井地下水,它是通过曲柄连杆机构把风轮轴的旋转运动变为活塞泵的往复直线运动进行提水作业的;第二类是中扬程大流量型,这类提水机组的风轮直径一般为5~8m,扬程10~20m,流量15~25m3/h,主要用于提取地下水,这类风力提水机一般为现代流线型桨叶,效率较高、性能先进、适用性强,但其造价高于传统式风力提水机;最后一类是低扬程大流量型,这类机组的扬程一般为0.5~3m,流量为50~100m3/h,机组的风轮直径为5~7m,它可以提取河水、湖水或海水等地表水,用于农田排灌、盐场制盐、水产养殖。风轮轴动力是通过锥齿轮传递给水车或螺旋泵的,一般都采用自动迎风机构调节风轮对风方向,用侧翼—配重调速机构进行自动调速。
表4-3 目前我国常用的几种风力提水机及其性能表(据刘惠敏等,2011)
(二)风帆助航
人类很早就有了利用风能作为船舶推进动力的行为。公元前,古埃及与古巴比伦已经出现了风帆,而我国远在秦汉时也有了风帆船的记载。早在15世纪初,著名的明代郑和船队便是大型的帆船船队,到16世纪后期,欧洲以帆为动力的商船和战船的大型化已经很普遍,直到利用螺旋桨为推进器,蒸汽机为发动机出现,古代帆船便逐渐退出历史舞台。
现代风帆和古代风帆有着截然不同的使用原理,首先,古代风帆是以风帆为主要推进动力进行辅助推进,而现代风帆则是以发动机为主要推进动力,以风帆为助推手段进行推进,这样既能利用风帆节能环保的特点,又可以使环境对风帆的限制降到最少。目前,万吨级别的货船上采用电脑控制的风帆助航,节油率达15%。
(三)风力制热
近年来,人民生活水平日益提高,家庭用能中热能的需要越来越大,尤其是在一些高纬度地区,如欧洲、北美等取暖煮水都耗能较高。为了解决家庭以及低品位工业热能的需要,风力制热有了较大的发展。
所谓风力制热,就是将风能转换成热能。用风力制热有以下三种方式:一是风力机发电,再通过电阻丝将电能转换成热能。虽然电能转换成热能的效率是100%,但是风能转换成电能的效率却很低,因此从能量利用的角度来看,这种方法是不可取的;二是用风力机将风能转换成空气压缩能,再转换成热能,即由风力机带动离心压缩机,对空气进行绝热压缩而放出热能;三是用风力机将风能直接转换成热能(王熙等,2015)。显然第三种方式制热效率最高,因而应用也最为广泛。用风力机将风能直接转换成热能的方式很多,最简单实用的就是搅拌液体制热,即风力机带动搅拌器转动,从而使液体变热。除此之外,还有固体摩擦制热和涡电流法制热等。
(四)风力发电
近年来,风力发电已经逐步成为风能利用的主要形式,各国对风力发电都给予了高度的重视,发展速度极快。
1.风力发电的原理
风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电(图4-4)。依据目前的风车技术,大约是3m/s的微风速度,便可以开始发电。风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料,也不会产生辐射或者空气污染。
图4-4 风力发电机
2.风力发电的形式
1)离网应用
风力发电机的离网应用种类繁多,主要分为以下几类:
(1)为蓄电池充电:这种应用大多是指哪些供单一家庭住宅使用的小型风力发电机。转子直径为3m(功率范围为40~1000W)的风力涡轮机属于此类。
(2)为边远地区提供可靠电力:包括小型、无人值守的风力发电机。风力发电机通常与蓄电池相连,而且也可以与光电电池或柴油发电机等其他电源联机。典型的用途包括为海上导航设备和远距离通信设备供电。
(3)给水加热:这种系统多用于私宅。典型用法是将风力发电机直接与浸没式加热器或电辐射加热器相连。
(4)边远地区的其他使用:包括为乡村供电、为小型电网系统供电,以及为商业性冷藏系统和海水(或苦咸水)淡化设备供电。
在离网式发电机的应用中,占主导地位的是利用风力发电机为蓄电池充电。这类风力发电机的转子直径通常小于5m,而且其额定功率低于1000W。
2)联网应用
(1)单个风力发电机:这些发电机可为居民、商业、工业或农业提供电能。其电负荷接近风力发电机的能力,并且也可以与电网相链接。多数情况下风力发电机安装在一个农场或一组住宅房舍附近。这些风力发电机的功率一般为10~100kW。
(2)风田:它是将多个风力发电机集中安装、均匀分布并由控制中心集中管理,所发出的电力主要是通过电网输送,而不是专门服务于一个地区。这些风力发电机的功率一般为50~500kW。
这种分散的联网风力发电机市场受国家能源政策的左右。荷兰、美国、丹麦和德国一直允许个人将私有风力发电机与电网联网,并允许将多余的电力卖给当地电力部门,现在有向大型化发展的趋势。
3.国内外风力发电的发展现状
我国是世界上风力资源占用率最高的国家,也是世界上最早利用风能的国家之一。据资料统计,我国10m高度层风能资源总量为3226GW,其中陆上可开采风能总量为253GW,加上海上风力资源,我国可利用风力资源近1000GW,如果风力资源开发率达到60%,仅风能发电一项就可支撑我国目前的全部电力需求。
但我国利用风力发电起步较晚。和世界上风能发电发达国家(如德国、美国、西班牙等)相比还有很大差距。至今,我国已经在河北张家口、内蒙古、山东荣成、辽宁营口、黑龙江富锦、新疆达坂城、广东南澳和海南等地建成了多个大型风力发电场,并且计划在江苏南通、灌云及盐城等地兴建十亿瓦特级风电场。据有关资料显示,到2003年底,全球风能发电装机容量已突破4000×104kW,风能发电占全球电力供应的0.5%。到2013年底,全球电累计装机容量达到3.18×105MW,在2009-2013年间全球风电市场规模扩大了几乎2×105MW。然而,2013年新增风电装机3.55×104MW,比2012年的增量下降了约104MW。2014年4月,全球风电累计装机容量已达到3.654×105MW,同比增长14.9%。新增装机容量4.73×104MW,新增装机增长率达到34%(朱晓,2014)。
据2003年底的资料显示,欧洲是当时全世界风力发电发展速度最快,同时也是风电装机最多的地区。2003年底欧洲地区累计风电装机容量为2.93×104MW,约占全球风电总装机容量的73%。美洲地区至2003年底风电装机容量达690×104kW,占全球风电总装机的17%。而在2003年的时候,亚洲地区风力发电与美欧相比还比较缓慢,除印度一枝独秀以外,其他国家风电装机容量均很小。当时风电累计装机容量居前五位(到2003年底)的国家依次是德国(14612MW)、西班牙(6420MW)、美国(6361MW)、丹麦(3076MW)和印度(2120MW)。
这种局面到2013年底发生了一定的变化,据有关资料显示,2013年年底,中国(不包括台湾地区)新增装机容量16088.7MW,同比增长24.1%,累计装机容量9142.4×104kW,同比增长21.4%。新增装机和累计装机两项数据均居世界第一。我国风电事业虽起步较晚,但是基于国家政策和资金的支持,风力发电得到了快速的发展。美洲地区的风电发展稳步向前,而欧洲地区陆上风电装机渐入瓶颈,海上风电逐渐成为新的增长点。在亚洲,除了风能发电迅速发展的中国以外,印度的风电发展也是不容小觑的。到2013年底,风电累计装机容量居前五位的国家依次变为了中国(91424MW)、美国(61091MW)、德国(34250MW)、西班牙(22959MW)、印度(20150MW)(朱晓,2014)。
4.海上风力发电
在风能发电技术不断发展的过程中,世界各国明显存在着从陆上风能发电到海上风能发电的转变(图4-5)。与陆上风能发电相比,海上风能资源较大,同高度风速海上一般比陆上大20%,发电量高70%,而且海上少有风平浪静,风电机组利用效率较高。目前,海上风电机组的平均单机容量在3MW左右,最大已达6MW。同时,海水表面粗糙度低,海平面摩擦力小,因而风切变即风速随高度的变化小,不需要很高的塔架,可降低风电机组成本。海上风的湍流强度低,海面与海上的空气温差比陆地表面与陆上的空气温差小,并且没有复杂地形对气流的影响,因此作用在风电机组上的疲劳负荷减少,可延长其使用寿命。陆上风电机组一般设计寿命为20年,海上风电机组设计寿命可达25年或以上。同时,海上风电不占用陆上土地,对于人口比较集中,陆地面积相对较小、濒临海洋的国家或地区较适合。海上发电的开发利用不会造成大气污染和产生有害物质,可减少温室效应气体的排放,对环境及景观负面影响小。另外,海上风电机组受噪声制约小,转速一般比陆上高10%,风力发电机利用效率相应提高5%~6%。然而,海上风能发电的开发也存在其不足之处,如建设施工和维修技术难度较大,建设成本高、电力远距离输送和并网相对困难等。总之,海上具有丰富的风能资源,结合当今技术的可行性,海上风力发电将成为风力发电的新方向(张鸿洋,2016)。
图4-5 海上风力发电示意图
5.风力发电面临的机遇与挑战
根据我国风电发展预测,到2020年底全国总装机规模将达到1.2×105MW,到2050年底,全国风电总装机规模将达到5×105MW,风电规模化发展,使各项技术经济指标进一步增强。风电企业的竞争能力和盈利能力明显增强。2020年以后化石燃料资源减少,火电成本增加,风电具备市场竞争能力,发展更快。2030年水电资源也大部分开发完,海上风电进入大规模开发时期,很可能形成东电西送的局面。风电以其良好的环境效益和逐步降低的发电成本,必将成为21世纪中国的重要电源。但是我国风力发电的商业化成本仍然较高,如何提高风力发电技术、降低商业开发成本是风力发电面临的重要挑战。
四、风能利用的发展
(一)风能利用存在的弊端
风能虽然是一种可再生的清洁能源,但仍然存在一些不可否认的弊端。
1.污染排放
风力发电机在建造和运行过程中会产生一些污染问题,同时也存在间接排放问题。不同能源系统在燃料提取、系统建造和运行期间的二氧化碳排放量的大小不同。在整个运行期间风力发电所排放的二氧化碳总量是极少的,大约仅为燃煤发电系统的1%。
2.噪声问题
风力发电噪声包括机械噪声和空气动力学噪声,其中空气动力学噪声是风速的函数。分析结果表明,转子直径小于20m的风力发电机,产生的噪声主要是机械噪声;转子直径更大的风力发电机,产生的噪声主要是空气动力学噪声。噪声问题会影响一些潜在的风力发电机安装区的利用,噪声问题在人口稠密地区显得尤为突出。
3.伤害鸟类
风力发电机的运转对鸟类会造成一定的伤害,当鸟撞击到塔架或者翼片时会导致鸟类死亡,同时风力发电机的运转也妨碍附近鸟类的繁殖和栖居。所以,鸟类迁徙飞行路线上的区域应限制风能的利用。
4.干扰通信
风力发电机会成为一种妨碍电磁波传播的障碍物。由于风力发电机的影响,电磁波可被反射、散射和衍射,这就意味着风力发电机会干扰无线电通信。
5.安全问题
尽管风力发电机很少发生安全事故,但是偶尔还是会发生。这些事故大部分发生在技术人员打算使涡轮机停止运行的时候。从运行观点上来看,不应该存在这样的事故。
6.影响美观
尽管美观问题不属于重要的问题,但是也是一种制约因素,对那些风景秀丽的地区和人口稠密的地区更是如此。公众对风力发电机越来越多的风景区感到失望和厌倦。所以,若想要人们在视觉方面接受风力发电机,不仅可以使用对风力发电机进行整齐排列的方法,而且还可以采用统一尺寸和设计来增加美观程度。
(二)风能的发展前景
当前我国的风电装机容量较大,但在全国电源装机总容量中所占的比例依然很小,风电利用在我国依然有相当大的发展前景。主要有以下四个方面原因。
1.丰富的自然风能和工业风能资源
根据相关调查研究,目前我国可以加以利用的低空(即10m以内)自然风能资源(包括陆上风能资源和海上风能资源)非常丰富,大约有10×108kW左右。高空风能资源更为丰富,能够达到20×108kW。同时,工业风能也有很好的利用前景,工业风能利用较为便捷,在为电力事业做出贡献的同时也能增加企业的效益。
2.社会对清洁能源的需求不断增大
一方面,时代的进步使环境保护观念逐渐深入人心,在能源利用上更加注重清洁性、节能性和可持续性等,对于风电事业的关注越来越多,并开始倾向于使用新型的清洁能源。另一方面,社会经济的快速发展也带来了用电需求的增大,利用风能发电能够有效缓解电力资源紧张的情况。
3.我国有较好的电网实施条件
东部沿海地区经济较为发达,而且目前已经装有较为完善的高压输电网,在风电建设上难度相对较小,实施较为合理。针对内陆一些风力资源丰富但经济发展相对落后的地区,国家会加大对风电建设的资金投入和政策支持,大大减小建设难度。
4.风电制造业良好的发展基础
目前,我国在风电建设方面的投入不断加大,风电制造业也得到了很大的发展,能够为风电建设提供相应的建设设备和技术支持。我国已能够大规模地生产2MW和1.5MW的风电机组,还将不断投入生产3MW和5MW以及更大功率的发电机组。
国际风电产业日益向着一体化、国际化、大型化方向发展,技术上要求很高,风力发电机组要求可靠、寿命周期长,因此零部件的精度、功能要求高。随着风力发电技术的发展,风电机组的原理和结构也在发生变化,未来的风电机组在向结构简单化、体积减小的方向发展。在风力发电系统中两个主要部件是风力机和发电机。风力机向着变桨距调节技术发展、发电机向着变速恒频发电技术发展,这是风力发电技术发展的趋势,也是当今风力发电的核心技术。
今后我国大力发展大型风电机组的重点是:努力掌握大型风力发电机组核心关键技术,包括总体设计、总装技术及关键部件的设计制造技术等,整机技术路线将以目前欧洲国家流行的变桨变速的双馈异步发电型、低速永磁同步发电型为主。目前,我国生产最多的还有齿轮箱风力发电机组,属于欧洲2000年左右研发的风力发电机。少数企业虽然初步掌握了直驱永磁技术,但在整个产业链中还没有普及。从长远利益来看,直驱永磁风力发电机组转换效率高、维护量低、变速范围大,取消了沉重的增速齿轮箱,发电机轴直接连接到风力发电机轴上,转子的转速随风速而改变,其交流电的频率也随之变化,经置于地面的大功率电力电子变换器,将频率不定的交流电整直流电,再逆变成与电网同频率的交流电输出,是未来风电技术的发展方向。
随着煤炭、石油、天然气等常规能源的日益枯竭,环境恶化、全球气候变暖,加之低碳理念的深入人心,风能正以破竹之势发展起来。未来的几十年甚至几百年间,我国应完善风能利用技术,围绕风能利用技术着力培养创新型人才,加快风能的发展步伐,让“大风车”给我们带来更多的希望与惊喜!