建材秒知道
登录
建材号 > 太阳能光伏 > 正文

越秀光伏e钱包是骗局吗

优雅的大碗
朴实的指甲油
2023-01-01 19:51:43

越秀光伏e钱包是骗局吗

最佳答案
着急的绿草
彪壮的未来
2025-09-11 00:30:00

越秀光伏e钱包有人赚也有人赔。有农户称这个项目成了他们无本收息的理财利器,但也有农户抱怨“光伏贷”让自己跳入陷阱,悔不当初。有人赚每个月净入好几百,光伏贷成理财帮手。山东聊城的某位网友晒出自己用光伏发电稳定获益的理财故事。申请了20万光伏贷,在家里闲置的一处农村院子建起了光伏电站,目前已经运行一年时间。也有人有人赔,皮包公司卷款跑路,有人大呼上当受骗与此同时,却有不少农户反映落入“光伏贷”的骗局。去年年末,媒体就曾报道福建农户某位网友的遭遇的遭遇。

最新回答
羞涩的凉面
狂野的太阳
2025-09-11 00:30:00

开通工银e钱包必须是通过工商银行的合作方来开开通,在安装光伏e钱包中选择立即开通,上传身份证照片、个人资料等相关信息即可开通;开通成功后,即可充值相应的金额,随后进入e钱包首页的零钱账户,记录卡号;然后在苏宁易购支付界面绑定该卡就可以用来进行支付了。

老实的火龙果
长情的流沙
2025-09-11 00:30:00
1、首先开通工银e钱包必须是通过工商银行的合作方来开开通。

2、其次在安装光伏e钱包中选择立即开通,上传身份证照片、个人资料等相关信息即可开通。

3、最后开通成功后,即可充值相应的金额。

忐忑的小鸭子
朴实的早晨
2025-09-11 00:30:00
按时间的发展顺序,太阳电池发展有关的历史事件汇总如下:

1839年法国科学家E.Becquerel发现液体的光生伏特效应(简称光伏现象)。

1877年W.G.Adams和R.E.Day研究了硒(Se)的光伏效应,并制作第一片硒太阳能电池。

1883年美国发明家charlesFritts描述了第一块硒太阳能电池的原理。

1904年Hallwachs发现铜与氧化亚铜(Cu/Cu2O)结合在一起具有光敏特性德国物理学家爱因斯坦(AlbertEinstein)发表关于光电效应的论文。

1918年波兰科学家Czochralski发展生长单晶硅的提拉法工艺。

1921年德国物理学家爱因斯坦由于1904年提出的解释光电效应的理论获得诺贝尔(Nobel)物理奖。

1930年B.Lang研究氧化亚铜/铜太阳能电池,发表“新型光伏电池”论文W.Schottky发表“新型氧化亚铜光电池”论文。

1932年Audobert和Stora发现硫化镉(CdS)的光伏现象。

1933年L.O.Grondahl发表“铜-氧化亚铜整流器和光电池”论文。

1941年奥尔在硅上发现光伏效应。

1951年生长p-n结,实现制备单晶锗电池。

1953年Wayne州立大学DanTrivich博士完成基于太阳光普的具有不同带隙宽度的各类材料光电转换效率的第一个理论计算。

1954年RCA实验室的P.Rappaport等报道硫化镉的光伏现象,(RCA:RadioCorporationofAmerica,美国无线电公司)。

贝尔(Bell)实验室研究人员D.M.Chapin,C.S.Fuller和G.L.Pearson报道4.5%效率的单晶硅太阳能电池的发现,几个月后效率达到6%。(贝尔实验室三位科学家关于单晶硅太阳电池的研制成功)

1955年西部电工(WesternElectric)开始出售硅光伏技术商业专利,在亚利桑那大学召开国际太阳能会议,Hoffman电子推出效率为2%的商业太阳能电池产品,电池为14mW/片,25美元/片,相当于1785USD/W。

1956年P.Pappaport,J.J.Loferski和E.G.Linder发表“锗和硅p-n结电子电流效应”的文章。

1957年Hoffman电子的单晶硅电池效率达到8%D.M.Chapin,C.S.Fuller和G.L.Pearson获得“太阳能转换器件”专利权。

1958年美国信号部队的T.Mandelkorn制成n/p型单晶硅光伏电池,这种电池抗辐射能力强,这对太空电池很重要Hoffman电子的单晶硅电池效率达到9%第一个光伏电池供电的卫星先锋1号发射,光伏电池100c㎡,0.1W,为一备用的5mW话筒供电。

1959年Hoffman电子实现可商业化单晶硅电池效率达到10%,并通过用网栅电极来显著减少光伏电池串联电阻卫星探险家6号发射,共用9600片太阳能电池列阵,每片2c㎡,共20W。

1960年Hoffman电子实现单晶硅电池效率达到14%。

1962年第一个商业通讯卫星Telstar发射,所用的太阳能电池功率14W。

1962年第一个商业通讯卫星Telstar发射,所用的太阳能电池功率14W。

1962年第一个商业通讯卫星Telstar发射,所用的太阳能电池功率14W。

1963年Sharp公司成功生产光伏电池组件日本在一个灯塔安装242W光伏电池阵列,在当时是世界最大的光伏电池阵列。

1964年宇宙飞船“光轮发射”,安装470W的光伏阵列。

1965年PeterGlaser和A.D.Little提出卫星太阳能电站构思。

1966年带有1000W光伏阵列大轨道天文观察站发射。

1972年法国人在尼日尔一乡村学校安装一个硫化镉光伏系统,用于教育电视供电。

1973年美国特拉华大学建成世界第一个光伏住宅。

1974年日本推出光伏发电的“阳光计划”Tyco实验室生长第一块EFG晶体硅带,25mm宽,457mm长(EFG:EdgedefinedFilmFed-Growth,定边喂膜生长)。

1977年世界光伏电池超过500KWD.E.Carlson和C.R.Wronski在W.E.Spear的1975年控制p-n结的工作基础上制成世界上第一个非晶硅(a-Si)太阳能电池。

1979年世界太阳能电池安装总量达到1MW。

1980年ARCO太阳能公司是世界上第一个年产量达到1MW光伏电池生产厂家三洋电气公司利用非晶硅电池率先制成手持式袖珍计算器,接着完成了非晶硅组件批量生产并进行了户外测试。

1981年名为SolarChallenger的光伏动力飞机飞行成功。

1982年世界太阳能电池年产量超过9.3MW。

1983年世界太阳能电池年产量超过21.3MW名为SolarTrek的1KW光伏动力汽车穿越澳大利亚,20天内行程达到4000Km.

1984年面积为929c㎡的商品化非晶硅太阳能电池组件问世。

1985年单晶硅太阳能电池售价10USD/W澳大利亚新南威尔土大学MartinGreen研制单晶硅的太阳能电池效率达到20%。

1986年6月,ARCOSolar发布G-4000———世界首例商用薄膜电池“动力组件”。

1987年11月,在3100Km穿越澳大利亚的PentaxWorldSolarChallengePV-动力汽车竞赛上,GMSunraycer获胜,平均时速约为71km/h。

1990年世界太阳能电池年产量超过46.5MW。

1991年世界太阳能电池年产量超过55.3MW瑞士Gratzel教授研制的纳米TiO2染料敏化太阳能电池效率达到7%。

1992年世界太阳能电池年产量超过57.9MW。

1993年世界太阳能电池年产量超过60.1MW。

1994年世界太阳能电池年产量超过69.4MW。

1995年世界太阳能电池年产量超过77.7MW光伏电池安装总量达到500MW。

1996年世界太阳能电池年产量超过88.6MW。

1997年世界太阳能电池年产量超过125.8MW。

1998年世界太阳能电池年产量超过151.7MW多晶硅太阳能电池产量首次超过单晶硅太阳能电池。

1999年世界太阳能电池年产量超过201.3MW美国NREL的M.A.Contreras等报道铜铟锡(CIS)太阳能电池效率达到18.8%非晶硅太阳能电池占市场份额12.3%。

2000年世界太阳能电池年产量超过399MWWuX.,DhereR.G.,AibinD.S.等报道碲化镉(CdTe)太阳能电池效率达到16.4%单晶硅太阳能电池售价约为3USD/W。

2002年世界太阳能电池年产量超过540MW多晶硅太阳能电池售价约为2.2USD/W。

2003年世界太阳能电池年产量超过760MW德国FraunhoferISE的LFC(Laserfired-contact)晶体硅太阳能电池效率达到20%。

2004年世界太阳能电池年产量超过1200MW德国FraunhoferISE多晶硅太阳能电池效率达到20.3%非晶硅太阳能电池占市场份额4.4%,降为1999年的1/3,CdTe占1.1%而CIS占0.4%。

2005年世界太阳能电池年产量1759MW。

中国太阳能发电发展历史

中国作为新的世界经济发动机,光伏业业呈现出前所未有的活力。大量光伏企业应运而生,现在光伏产量已经达到世界领先水平。现在OFweek太阳能光伏网带大家来回顾下中国太阳能发展历史:

1958,中国研制出了首块硅单晶

1968年至1969年底,半导体所承担了为“实践1号卫星”研制和生产硅太阳能电池板的任务。在研究中,研究人员发现,P+/N硅单片太阳电池在空间中运行时会遭遇电子辐射,造成电池衰减,使电池无法长时间在空间运行。

1969年,半导体所停止了硅太阳电池研发,随后,天津18所为东方红二号、三号、四号系列地球同步轨道卫星研制生产太阳电池阵。

1975年宁波、开封先后成立太阳电池厂,电池制造工艺模仿早期生产空间电池的工艺,太阳能电池的应用开始从空间降落到地面。

1998年,中国政府开始关注太阳能发电,拟建第一套3MW多晶硅电池及应用系统示范项目。

2001年,无锡尚德建立10MWp(兆瓦)太阳电池生产线获得成功,2002年9月,尚德第一条10MW太阳电池生产线正式投产,产能相当于此前四年全国太阳电池产量的总和,一举将我国与国际光伏产业的差距缩短了15年。

2003到2005年,在欧洲特别是德国市场拉动下,尚德和保定英利持续扩产,其他多家企业纷纷建立太阳电池生产线,使我国太阳电池的生产迅速增长。

2004年,洛阳单晶硅厂与中国有色设计总院共同组建的中硅高科自主研发出了12对棒节能型多晶硅还原炉,以此为基础,2005年,国内第一个300吨多晶硅生产项目建成投产,从而拉开了中国多晶硅大发展的序幕。

2007,中国成为生产太阳电池最多的国家,产量从2006年的400MW一跃达到1088MW。

2008年,中国太阳电池产量达到2600MW。

2009年,中国太阳电池产量达到4000MW。

2006年世界太阳能电池年产量2500MW。

2007年世界太阳能电池年产量4450MW。

2008年世界太阳能电池年产量7900MW。

2009年世界太阳能电池年产量10700MW。

2010年世界太阳能电池年产量将达15200MW。

怕黑的画笔
乐观的汉堡
2025-09-11 00:30:00
所有理财都有风险。

e钱包是专业的理财工具,资金进出是闭环的,也就是原卡进出。

e钱包是易方达基金管理有限公司出品的活期资金管理工具,把钱存入e钱包即购买了易方达天天理财货币A基金,可获得相应的货币基金收益,收益远超活期储蓄,而且用户可以随用随取,存取不收手续费。

多情的啤酒
专注的棉花糖
2025-09-11 00:30:00

一个太阳能电池受到光强为20mW/cm2,波长为700nm的单色光的均匀照射。如果电池材料的禁带宽度为1.4eV,则相应的入射光的光子通量0.70μm,电池所输出的短路电流的上限是1.77eV。具体如下:

解:

那么有:E(ev)=1.24/λ(μm)

即:λ=0.70μm,E=1.77eV。

光伏的技术困境

目前我国光伏企业的自主研发实力普遍不强,主要的半导体原材料和设备均靠进口,技术瓶颈已严重制约我国光伏产业的发展。

在整个光伏产业链中,封装环节技术和资金门槛最低,致使我国短时间内涌现出170多家封装企业,总封装能力不少于200万千瓦。但由于原材料价格暴涨、封装产能过剩,这些企业基本上没有多少利润,产品质量也参差不齐。

以上资料参考 百度百科—光伏

温婉的手链
土豪的毛衣
2025-09-11 00:30:00
PN结(PN junction)0 o. A5 I: B9 a F! R

$ t9 B. X$ S: B&b' M( o/ f采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称PN结。PN结具有单向导电性。P是positive的缩写,N是negative的缩写,表明正荷子与负荷子起作用的特点。

% S2 S! ]) x! X# y6 q2 m&W9 a" q+ f( G% b g( v. ]

一块单晶半导体中 ,一部分掺有受主杂质是P型半导体,另一部分掺有施主杂质是N型半导体时 ,P 型半导体和N型半导体的交界面附近的过渡区称为PN结。PN结有同质结和异质结两种。用同一种半导体材料制成的 PN 结叫同质结 ,由禁带宽度不同的两种半导体材料制成的PN结叫异质结。制造PN结的方法有合金法、扩散法、离子注入法和外延生长法等。制造异质结通常采用外延生长法。

+ Z" a0 r( C2 A0 N5 [) XP型半导体(P指positive,带正电的):由单晶硅通过特殊工艺掺入少量的三价元素组成,会在半导体内部形成带正电的空穴; ) r- |( Y3 x C0 D1 J2 n% D

N型半导体(N指negative,带负电的):由单晶硅通过特殊工艺掺入少量的五价元素组成,会在半导体内部形成带负电的自由电子。

7 _4 B) t2 X+ u$ D" D0 K在 P 型半导体中有许多带正电荷的空穴和带负电荷的电离杂质。在电场的作用下,空穴是可以移动的,而电离杂质(离子)是固定不动的 。N 型半导体中有许多可动的负电子和固定的正离子。当P型和N型半导体接触时,在界面附近空穴从P型半导体向N型半导体扩散,电子从N型半导体向P型半导体扩散。空穴和电子相遇而复合,载流子消失。因此在界面附近的结区中有一段距离缺少载流子,却有分布在空间的带电的固定离子,称为空间电荷区 。P 型半导体一边的空间电荷是负离子 ,N 型半导体一边的空间电荷是正离子。正负离子在界面附近产生电场,这电场阻止载流子进一步扩散 ,达到平衡。

3 r' q4 v, T" ]0 t在PN结上外加一电压 ,如果P型一边接正极 ,N型一边接负极,电流便从P型一边流向N型一边,空穴和电子都向界面运动,使空间电荷区变窄,电流可以顺利通过。如果N型一边接外加电压的正极,P型一边接负极,则空穴和电子都向远离界面的方向运动,使空间电荷区变宽,电流不能流过。这就是PN结的单向导电性。 + k4 t' @" ^$ S

PN结加反向电压时 ,空间电荷区变宽 , 区中电场增强。反向电压增大到一定程度时,反向电流将突然增大。如果外电路不能限制电流,则电流会大到将PN结烧毁。反向电流突然增大时的电压称击穿电压。基本的击穿机构有两种,即隧道击穿(也叫齐纳击穿)和雪崩击穿,前者击穿电压小于6V,有负的温度系数,后者击穿电压大于6V,有正的温度系数。 PN结加反向电压时,空间电荷区中的正负电荷构成一个电容性的器件。它的电容量随外加电压改变。 1 n&j) E+ V% \, R2 I

根据PN结的材料、掺杂分布、几何结构和偏置条件的不同,利用其基本特性可以制造多种功能的晶体二极管。如利用PN结单向导电性可以制作整流二极管、检波二极管和开关二极管,利用击穿特性制作稳压二极管和雪崩二极管;利用高掺杂PN结隧道效应制作隧道二极管;利用结电容随外电压变化效应制作变容二极管。使半导体的光电效应与PN结相结合还可以制作多种光电器件。如利用前向偏置异质结的载流子注入与复合可以制造半导体激光二极管与半导体发光二极管;利用光辐射对PN结反向电流的调制作用可以制成光电探测器;利用光生伏特效应可制成太阳电池。此外,利用两个

/ L* K' F8 Pr: K9 v2 JPN结之间的相互作用可以产生放大,振荡等多种电子功能 。PN结是构成双极型晶体管和场效应晶体管的核心,是现代电子技术的基础。在二级管中广泛应用。 0 b&M+ e0 P, o( M

PN结的平衡态,是指PN结内的温度均匀、稳定,没有外加电场、外加磁场、光照和辐射等外界因素的作用,宏观上达到稳定的平衡状态. PN结的形成 2 X( W1 a: ]9 B5 k

在一块本征半导体的两侧通过扩散不同的杂质,分别形成N型半导体和P型半导体。此时将在N型半导体和P型半导体的结合面上形成如下物理过程:

' s2 c. W3 c1 C% n, K因浓度差 ! @* T% l0 b8 V6 ez# c

: kb) {W! G, J5 ^9 t7 K多子的扩散运动®由杂质离子形成空间电荷区 &f" ^9 g5 K4 ?/ Q0 [

! Z$ E3 K8 aO" n[8 h5 W空间电荷区形成形成内电场 8 M" Y4 Z2 _# j4 R* s

↓ ↓

) h+ V# S2 n0 C* L内电场促使少子漂移 内电场阻止多子扩散

. |7 J$ M5 [+ c+ E' ~. j1 T最后,多子的扩散和少子的漂移达到动态平衡。在P型半导体和N型半导体的结合面两侧,留下离子薄层,这个离子薄层形成的空间电荷区称为PN结。PN结的内电场方向由N区指向P区。在空间电荷区,由于缺少多子,所以也称耗尽层。PN结形成的过程可参阅图01.06。 % n3 ^( L, I. y5 h4 W0 m0 O

图01.06 PN结的形成过程(动画1-3)如打不开点这儿(压缩后的) PN结的单向导电性

. _" I. \&]/ J) {7 m8 D) HPN结具有单向导电性,若外加电压使电流从P区流到N区,PN结呈低阻性,所以电流大;反之是高阻性,电流小。

/ I! A, ^% Z' n, M( H$ z( b如果外加电压使: ) r, H7 |?! W4 C$ F

PN结P区的电位高于N区的电位称为加正向电压,简称正偏;

4 b/ q/ J&p6 y. z% CA) g% g6 hPN结P区的电位低于N区的电位称为加反向电压,简称反偏。 * x&b2 O9 ?. v* O

(1) PN结加正向电压时的导电情况 c: q1 r# B- L( p&f/ N3 f# p

外加的正向电压有一部分降落在PN结区,方向与PN结内电场方向相反,削弱了内电场。于是,内电场对多子扩散运动的阻碍减弱,扩散电流加大。扩散电流远大于漂移电流,可忽略漂移电流的影响,PN结呈现低阻性。

?: j# F* y$ [8 G" K(2) PN结加反向电压时的导电情况

&G- t8 m' O+ ]外加的反向电压有一部分降落在PN结区,方向与PN结内电场方向相同,加强了内电场。内电场对多子扩散运动的阻碍增强,扩散电流大大减小。此时PN结区的少子在内电场作用下形成的漂移电流大于扩散电流,可忽略扩散电流,PN结呈现高阻性。

8 f5 l0 w&c, J. N1 {9 @) _在一定的温度条件下,由本征激发决定的少子浓度是一定的,故少子形成的漂移电流是恒定的,基本上与所加反向电压的大小无关,这个电流也称为反向饱和电流。 ! p. G/ ^8 y7 \' {

PN结加正向电压时,呈现低电阻,具有较大的正向扩散电流;PN结加反向电压时,呈现高电阻,具有很小的反向漂移电流。由此可以得出结论:PN结具有单向导电性。 PN结的电容效应 1 w* T1 y- \! u. U8 Q- A

PN结具有一定的电容效应,它由两方面的因素决定。一是势垒电容CB ,二是扩散电容CD 。 8 c' K- H( V+ A9 D/ s3 \( y

(1) 势垒电容CB 1 {+ E&t2 f&G3 X

势垒电容是由空间电荷区的离子薄层形成的。当外加电压使PN结上压降发生变化时,离子薄层的厚度也相应地随之改变,这相当PN结中存储的电荷量也随之变化,犹如电容的充放电。势垒电容的示意图见图01.09。

) }- M9 K2 G, n- c! {图01.09 势垒电容示意图 F6 b5 d4 C, A1 ^0 L/ m3 V A" C7 I

(2) 扩散电容CD

7 J) Z+ Z( c6 _$ G4 {r扩散电容是由多子扩散后,在PN结的另一侧面积累而形成的。因PN结正偏时,由N区扩散到P区的电子,与外电源提供的空穴相复合,形成正向电流。刚扩散过来的电子就堆积在 P 区内紧靠PN结的附近,形成一定的多子浓度梯度分布曲线。反之,由P区扩散到N区的空穴,在N区内也形成类似的浓度梯度分布曲线。扩散电容的示意图如图01.10所示。

S2 U0 I) W1 G( V3 k$ ?5 JP当外加正向电压不同时,扩散电流即外电路电流的大小也就不同。所以PN结两侧堆积的多子的浓度梯度分布也不同,这就相当电容的充放电过程。势垒电容和扩散电容均是非线性电容。

$ m4 hZ+ {" l4 U/ c) E6 e&O8 fPN结的击穿特性:当反向电压增大到一定值时,PN结的反向电流将随反向电压的增加而急剧增 加,这种现象称为PN结的击穿,反向电流急剧增加时所对应的电压称为反向击穿电压,如上图所示, PN结的反向击穿有雪崩击穿和齐纳击穿两种。 1、雪崩击穿阻挡层中的载流子漂移速度随内部电场的增强而相应加快到一定程度时,其动能足以把束缚在共价键中的价电子碰撞出来,产生自由电 子—空穴对新产生的载流子在强电场作用下,再去碰撞其它中性原子,又产生新的自由电子—空穴对,如此连锁反应,使阻挡层中的载流子数量急 ! ^% D3 L8 i^- F' i* Y4 k0 Q

剧增加,象雪崩一样。雪崩击穿发生在掺杂浓度较低的PN结中,阻挡层宽,碰撞电离的机会较多,雪崩击穿的击穿电压高。 2、齐纳击穿当PN结两边掺杂浓度很高时,阻挡层很薄,不易产生碰撞电离,但当加不大的反向电压时,阻挡层中的电场很强,足以把中性原子中的价电子直接从共价键中拉出来,产生新的自由电子—空穴对,这个过程 称为场致激发。

5 P" u0 h3 b: m+ U [一般击穿电压在6V以下是齐纳击穿,在6V以上是雪崩击穿。 3、击穿电压的温度特性温度升高后,晶格振动加剧,致使载流子运动的平 均自由路程缩短,碰撞前动能减小,必须加大反向电压才能发生雪崩击穿具有正的温度系数,但温度升高,共价键中的价电子能量状态高,从而齐纳击穿电压随温度升高而降低,具有负的温度系数。6V左右两种击穿将会同时发生,击穿电压的温度系数趋于零。 4、稳压二极管PN结一旦击穿后,尽管反向电流急剧变化,但其端电压几 乎不变(近似为V(BR),只要限制它的反向电流,PN结 就不会烧坏,利用这一特性可制成稳压二极管,其电路符号及伏 $ m" z1 S8 E4 ~( m6 {2 k: P

安特性如上图所示:其主要参数有: VZ 、 Izmin 、 Iz 、 Izmax

2 |&F' V# e, \4 @

% G% f D/ I+ M0 ]+ l+ ?5 P8 ~&f6 Q6 ~( c0 ?7 D4 |

PN结的电容特性:PN结除具有非线性电阻特性外,还具有非线性电容特性,主要有势垒电容和扩散电容。 1、势垒电容势垒区类似平板电容器,其交界两侧存储着数值相等极性相反的离子电荷,电荷量随外加电压而变化,称为势垒电容,用CT表示。 ' K: v9 V( s2 M( J@

CT = - dQ/dV 6 d0 C' y3 B7 X7 O

PN结有突变结和缓变结,现考虑突变结情况(缓变结参见《晶体管原 理》),PN结相当于平板电容器,虽然外加电场会使势垒区变宽或变窄 但这个变化比较小可以忽略,

, c6 ]7 ]# e* t- F* c则CT=εS/L,已知动态平衡下阻挡层的宽度L0,代入上式可得:

3 b8 J9 I\) e6 }/ N# m- k

&h&J) N# a l$ Y9 P' _4 P0 R3 A5 m6 \" T T

CT不是恒值,而是随V而变化,利用该特性可制作变容二极管。 2、 扩散电容多子在扩散过程中越过PN结成为另一方的少子, 当PN结处于 平衡状态(无外加电压)时的少子称为平衡少子 可以认为阻挡层以外的区域内平衡少子浓度各处是一样的,当PN结处于正向偏置时,N区的多子自由电子扩散到P区成为 P区的非平衡少子,由于浓度差异还会向P 区深处扩散,距交界面越远,非平衡少子浓度越低,其分布曲线见[PN 结的伏 安特性]。当外加正向电压增大时,浓度分布曲线上移,两边 非平 衡少子浓度增加即电荷量增加,为了维持电中性,中性区内的非平衡多子浓度也相应增加,这就是说,当外加电压增加时,P区和N区各自存储的空穴和自由电子电荷量也增加,这种效应相当于在PN结上并联一个电容,由于它是载流子扩散引起的,故称之为扩散电容CD,由半导体物理推导得 CD=( I + Is)τp/VT 推导过程参见《晶体管原理》。

1 @5 ]. j. ~4 H" ?' K当外加反向电压时 I = Is , CD趋于零。 3、 PN结电容PN结的总电容Cj为CT和CD两者之和Cj = CT+CD ,外加正向电 压CD很大, Cj以扩散电容为主(几十pF到几千pF) ,外加反向电压CD趋于零,Cj以势垒电容为主(几pF到几十pF到)。 4、变容二极管PN结反偏时,反向电流很小,近似开路,因此是一个主要由势垒电容构成的较理想的电容器件,且其增量电容值随外加电压而变化 利用该特性可制作变容二极管,变容二极管在非线性电路中应用较广泛, 如压控振荡器、频率调制

现实的早晨
舒服的纸鹤
2025-09-11 00:30:00
LOF,英文全称是"ListedOpen-EndedFund",汉语称为"上市型开放式基金"。也就是上市型开放式基金发行结束后,投资者既可以在指定网点申购与赎回基金份额,也可以在交易所买卖该基金。不过投资者如果是在指定网点申购的基金份额,想要上网抛出,须办理一定的转托管手续;同样,如果是在交易所网上买进的基金份额,想要在指定网点赎回,也要办理一定的转托管手续。根据深圳证券交易所已经开通的基金场内申购赎回业务,在场内认购的LOF不需办理转托管手续,可直接抛出

什么是ETF?

交易型开放式指数基金——(Exchange Traded Fund,以下简称ETF)属于开放式基金的一种特殊类型,它综合了封闭式基金和开放式基金的优点,投资者既可以向基金管理公司申购或赎回基金份额,同时,又可以像封闭式基金一样在证券市场上按市场价格买卖ETF份额,不过,申购赎回必须以一篮子股票换取基金份额或者以基金份额换回一篮子股票。由于同时存在证券市场交易和申购赎回机制,投资者可以在ETF市场价格与基金单位净值之间存在差价时进行套利交易。套利机制的存在,使得ETF避免了封闭式基金普遍存在的折价问题。

ETF有哪些种类?

根据投资方法的不同:ETF可以分为指数基金和积极管理型基金,国外绝大多数ETF是指数基金。目前国内推出的ETF也是指数基金。

根据投资对象的不同:ETF可以分为股票基金和债券基金,其中以股票基金为主。

根据投资区域的不同:ETF可以分为单一国家(或市场)基金和区域性基金,其中以单一国家基金为主。

根据投资风格的不同:ETF可以分为市场基准指数基金、行业指数基金和风格指数基金(如成长型、价值型、大盘、中盘、小盘)等,其中以市场基准指数基金为主。

ETF适合什么样的投资者?

ETF适合所有的投资者操作,不论您是个人或是机构,是打算做长期投资、短期波段或是套利操作,ETF都能为您带来好处。

投资ETF的获利方式有哪些?

(1)伴随指数上涨而获利:当基金跟踪的目标指数上涨时,ETF的基金单位净值和市场交易价格也会随之上涨,投资者就可以获得其中的增值收益。

(2)股票分红带来基金分红:当目标指数的成份股有现金红利时,基金在符合分红条件的情况下,会将所得股息红利以现金方式分配给投资者。

(3)套利收益:当ETF的市场交易价格与基金单位净值偏离较大时,投资者可以进行套利操作,获得差价收益

一、同跨两级市场

ETF和LOF都同时存在一级市场和二级市场,都可以像开放式基金一样通过基金发起人、管理人、银行及其他代销机构网点进行申购和赎回。同时,也可以像封闭式基金那样通

过交易所的系统买卖。

二、理论上都存在套利机会

由于上述两种交易方式并存,申购和赎回价格取决于基金单位资产净值,而市场交易价格由系统撮合形成,主要由市场供需决定,两者之间很可能存在一定程度的偏离,当这种偏离足以抵消交易成本的时候,就存在理论上的套利机会。投资者采取低买高卖的方式就可以获得差价收益。

三、折溢价幅度小

虽然基金单位的交易价格受到供求关系和当日行情的影响,但它始终是围绕基金单位净值上下波动的。由于上述套利机制的存在,当两者的偏离超过一定的程度,就会引发套利行为,从而使交易价格向净值回归,所以其折溢价水平远低于单纯的封闭式基金。

四、费用低,流动性强

在交易过程中不需申购和赎回费用,只需支付最多0.5%的双边费用。另外由于同时存在一级市场和二级市场,流动性明显强于一般的开放式基金。另外,ETF属于被动式投资,管理费用一般不超过0.5%,远远低于开放式基金的1%-1.5%水平。

LOF和ETF的差异点

一、适用的基金类型不同

ETF主要是基于某一指数的被动性投资基金产品,而LOF虽然也采取了开放式基金在交易所上市的方式,但它不仅可以用于被动投资的基金产品,也可以用于经济投资的基金。

二、申购和赎回的标的不同

在申购和赎回时,ETF与投资者交换的是基金份额和"一揽子"股票,而LOF则是基金份额与投资者交换现金。

三、参与的门槛不同

按照国外的经验和华夏基金上证50ETF的设计方案,其申购赎回的基本单位是100万份基金单位,起点较高,适合机构客户和有实力的个人投资者;而LOF产品的申购和赎回与其他开放式基金一样,申购起点为1000基金单位,更适合中小投资者参与。

四、套利操作方式和成本不同

ETF在套利交易过程中必须通过一揽子股票的买卖,同时涉及到基金和股票两个市场,而对LOF进行套利交易只涉及基金的交易。更突出的区别是,根据上交所关于ETF的设计,为投资者提供了实时套利的机会,可以实现 T+0交易,其交易成本除交易费用外主要是冲击成本;而深交所目前对LOF的交易设计是申购和赎回的基金单位和市场买卖的基金单位分别由中国注册登记系统和中国结算深圳分公司系统托管,跨越申购赎回市场与交易所市场进行交易必须经过系统之间的转托管,需要两个交易日的时间,所以LOF套利还要承担时间上的等待成本,进而增加了套利成本。

LOF和ETF的市场影响

一、LOF影响

LOF的推出为开放式基金的投资者提供了一种新的退出途径和方式,也为投资者投资基金提供了一种方便的交易方式。

随着LOF产品的推出,还很有可能导致目前我国开放式基金申购和赎回费用的下降。因为,对于投资者来说如果二级市场的交易成本与一级申购赎回的费用差距太大,很可能出现发行时认购不利,而在交易所挂牌后交易活跃的局面。

还有LOF可在封闭式基金和开放式基金之间搭建桥梁,提供了良好的技术平台,如果实施顺利可以推广到封闭式基金转开放的问题解决上。

二、ETF影响

ETF完全复制指数的投资策略将会进一步推动指数化投资理念在中国股票市场的运用。ETF基金紧紧跟踪某一有代表性的指数,投资者购买一个基金单位,就等于按权重购买这个指数的所有股票,所以只要这个指数能够充分反映大势的走势情况,投资者就不会出现"赚了指数反而赔钱"的情况,盈亏视大势的走势情况而能够正确地确定。

ETF提供了对标的指数的套利功能,会吸引大量的投资者投资于相应指数的成分股,并时刻紧盯ETF价格与成分股组合价值的偏离,大量进行套利操作直至这种偏离回到无套利空间的范围内。这些频繁大量的套利交易,将会提高标的股票的活跃程度,从而促进标的指数的流动性,并减少指数的波动,保持市场的稳定。

秀丽的秋天
瘦瘦的花卷
2025-09-11 00:30:00
所谓光生伏打效应就是当物体受光照时,物体内的电荷分布状态发生变化而产生电动势和电流的一种效应。当太阳光或其他光照射半导体的 PN 结时,就会在 PN 结的两边出现电压 , 叫做光生电压。这种现象就是著名的光生伏打效应。使 PN 结短路,就会产生电流。

1839年,法国物理学家A.E.贝克勒尔意外地发现,用两片金属浸入溶液构成的伏打电池,受到阳光照射时会产生额外的伏打电势,他把这种现象称为光生伏打效应。1883年,有人在半导体硒和金属接触处发现了固体光伏效应。后来就把能够产生光生伏打效应的器件称为光伏器件。由于半导体PN结器件在阳光下的光电转换效率最高,所以通常把这类光伏器件称为太阳能电池,也称光电池或太阳电池。

定义

是指物体由于吸收光子而产生电动势的现象,是当物体受光照时,物体内的电荷分布状态发生变化而产生电动势和电流的一种效应。

当两种不同材料所形成的结受到光辐照时,结上产生电动势。它的过程先是材料吸收光子的能量,产生数量相等的正﹑负电荷,随后这些电荷分别迁移到结的两侧,形成偶电层。光生伏打效应虽然不是瞬时产生的,但其响应时间是相当短的。

发现者

1839年,法国物理学家A. E. 贝克勒尔意外地发现,用两片金属浸入溶液构成的伏打电池,受到阳光照射时会产生额外的伏打电势,他把这种现象称为光生伏打效应。1883年,有人在半导体硒和金属接触处发现了固体光伏效应。后来就把能够产生光生伏打效应的器件称为光伏器件。

当太阳光或其他光照射半导体的PN结时,就会产生光生伏打效应。光生伏打效应使得PN结两边出现电压,叫做光生电压。使PN结短路,就会产生电流。

超帅的大地
追寻的花卷
2025-09-11 00:30:00
光生伏特效应简称为光伏效应,指光照使不均匀半导体或半导体与金属组合的不同部位之间产生电位差的现象。

产生这种电位差的机理有好几种,主要的一种是由于阻挡层的存在。以下以P-N结为例说明。

热平衡态下的P-N结同质结可用一块半导体经掺杂形成P区和N区。由于杂质的激活能量ΔE很小,在室温下杂质差不多都电离成受主离子NA-和施主离子ND+。在PN区交界面处因存在载流子的浓度差,故彼此要向对方扩散。设想在结形成的一瞬间,在N区的电子为多子,在P区的电子为少子,使电子由N区流入P区,电子与空穴相遇又要发生复合,这样在原来是N区的结面附近电子变得很少,剩下未经中和的施主离子ND+形成正的空间电荷。同样,空穴由P区扩散到 N区后,由不能运动的受主离子NA-形成负的空间电荷。在P区与N区界面两侧产生不能移动的离子区(也称耗尽区、空间电荷区、阻挡层),于是出现空间电偶层,形成内电场(称内建电场)此电场对两区多子的扩散有抵制作用,而对少子的漂移有帮助作用,直到扩散流等于漂移流时达到平衡,在界面两侧建立起稳定的内建电场。

P-N结能带与接触电势差:

在热平衡条件下,结区有统一的EF;在远离结区的部位,EC、EF、Eν之间的关系与结形成前状态相同。

从能带图看,N型、P型半导体单独存在时,EFN与EFP有一定差值。当N型与P型两者紧密接触时,电子要从费米能级高的一方向费米能级低的一方流动,空穴流动的方向相反。同时产生内建电场,内建电场方向为从N区指向P区。在内建电场作用下,EFN将连同整个N区能带一起下移,EFP将连同整个P区能带一起上移,直至将费米能级拉平为EFN=EFP,载流子停止流动为止。在结区这时导带与价带则发生相应的弯曲,形成势垒。势垒高度等于N型、P型半导体单独存在时费米能级之差:

qUD=EFN-EFP

UD=(EFN-EFP)/q

q:电子电量

UD:接触电势差或内建电势

对于在耗尽区以外的状态:

UD=(KT/q)ln(NAND/ni2)

NA、ND、ni:受主、施主、本征载流子浓度。

可见UD与掺杂浓度有关。在一定温度下,P-N结两边掺杂浓度越高,UD越大。

禁带宽的材料,ni较小,故UD也大。

光照下的P-N结

P-N结光电效应:

当P-N结受光照时,样品对光子的本征吸收和非本征吸收都将产生光生载流子。但能引起光伏效应的只能是本征吸收所激发的少数载流子。因P区产生的光生空穴,N区产生的光生电子属多子,都被势垒阻挡而不能过结。只有P区的光生电子和N区的光生空穴和结区的电子空穴对(少子)扩散到结电场附近时能在内建电场作用下漂移过结。光生电子被拉向N区,光生空穴被拉向P区,即电子空穴对被内建电场分离。这导致在N区边界附近有光生电子积累,在P区边界附近有光生空穴积累。它们产生一个与热平衡P-N结的内建电场方向相反的光生电场,其方向由P区指向N区。此电场使势垒降低,其减小量即光生电势差,P端正,N端负。于是有结电流由P区流向N区,其方向与光电流相反。

实际上,并非所产生的全部光生载流子都对光生电流有贡献。设N区中空穴在寿命τp的时间内扩散距离为Lp,P区中电子在寿命τn的时间内扩散距离为Ln。 Ln+Lp=L远大于P-N结本身的宽度。故可以认为在结附近平均扩散距离L内所产生的光生载流子都对光电流有贡献。而产生的位置距离结区超过L的电子空穴对,在扩散过程中将全部复合掉,对P-N结光电效应无贡献。

光照下的P-N结电流方程:

与热平衡时比较,有光照时,P-N结内将产生一个附加电流(光电流)Ip,其方向与P-N结反向饱和电流I0相同,一般Ip≥I0。此时I=I0eqU/KT - (I0+Ip)

令Ip=SE,则

I=I0eqU/KT - (I0+SE)

开路电压Uoc:

光照下的P-N结外电路开路时P端对N端的电压,即上述电流方程中I=0时的U值:

0=I0eqU/KT - (I0+SE)

Uoc=(KT/q)ln(SE+I0)/I0≈(KT/q)ln(SE/I0)

短路电流Isc:

光照下的P-N结,外电路短路时,从P端流出,经过外电路,从N端流入的电流称为短路电流Isc。即上述电流方程中U=0时的I值,得Isc=SE。

Uoc与Isc是光照下P-N结的两个重要参数,在一定温度下,Uoc与光照度E成对数关系,但最大值不超过接触电势差UD。弱光照下,Isc与E有线性关系。

a)无光照时热平衡态,NP型半导体有统一的费米能级,势垒高度为qUD=EFN-EFP。

b)稳定光照下P-N结外电路开路,由于光生载流子积累而出现光生电压Uoc不再有统一费米能级,势垒高度为q(UD-Uoc)。

c)稳定光照下P-N结外电路短路,P-N结两端无光生电压,势垒高度为qUD,光生电子空穴对被内建电场分离后流入外电路形成短路电流。

d)有光照有负载,一部分光电流在负载上建立起电压Uf,另一部分光电流被P-N结因正向偏压引起的正向电流抵消,势垒高度为q(UD-Uf)。