未来的几种新能源有哪些???
1.波能
即海洋波浪能。这是一种取之不尽、用之不竭的无污染可再生能源。据推测,地球上海洋波浪蕴藏的电能高达9x104TW。在各国的新能源开发计划中,波能的利用已占有一席之地。尽管波能发电成本较高,需要进一步完善,但进展已表明了这种新能源潜在的商业化年,电厂的发电成本虽高于其他发电方式,但对于边远岛屿来说,可节省电力传输等投资费用。美、英、印度等国家已建成几十座波能发电站,且均运行良好。
2.可燃冰(图1 -4)
可燃冰是一种甲烷与水结合在一起的固体化合物,它的外型与冰相似,故称“可燃冰”。可燃冰在低温高压下呈稳定状态,冰融化所释放的可燃气体相当于原来固体化合物体积的100倍。据测算,可燃冰的蕴藏量比地球上的煤、石油和天然气的总和还多。
3煤层气
煤在形成过程中由于温度及压力增加,在产生变质作用的同时也释放出可燃性气体。从泥炭到揭煤、每吨煤产生8m%:从泥笑到肥煤,每吨煤产生10m气:从泥发炎到无烟煤每的吨煤产00。科学家估计,地球上煤层气可达200m。
台海网 (微博)4月30日讯 (海峡导报记者 刘强)最近一段时间,反核运动在台湾开展得如火如荼,执政党被迫做出“核四停工”承诺,但反核者仍坚持“核电归零”的终极诉求,这场斗争远未止息。
不少反核人士高声呼吁用再生能源取代核能发电,对执政者对核电的“偏好”表示质疑。不少人在问,除了核电之外,台湾到底还有哪些发电方法?核电到底是不是无法割舍的能源类型?
水力发电 仅占全部电力的1.4%
台湾目前可用于发电的再生能源,包括水力、风力、太阳能、地热及海洋能等多种类型。在这当中,水力发电是技术最成熟的一种。但从已披露的数据来看,岛内水力发电容量虽然占总容量的6.4%,但实际发电量却仅占全部电力的1.4%。
台“国策基金会”助理研究员唐慧琳分析指出,水力发电是典型的“靠天吃饭”,像2013年春季降雨量少到几乎连民生用水都不够,河川遇到枯水期,川流式水力电厂的发电量就会大幅降低甚至无法发电。
至于水库式发电厂,则受限于岛内河流短促、地质脆弱、优良水库有限等因素,民众也对兴建水库造成的生态破坏疑虑多多,要建新水库往往引发强烈的社会抗争。即使是已建成的水库,也面临淤积严重、蓄水量低等问题,无法提供足够的发电能量。而且岛内水库并不能以发电为最优先考量,而主要是配合民生用水、公共给水等水资源调节政策,水力电厂常年有2/3的容量被迫停摆,因此水力发电常常只作为用电高峰时的调节角色。
风力发电 民众讽“杀人风车”
风力发电,是另一种较为成熟的发电方式。台当局2012年曾提出“千架海陆风力机目标”,希望在2030年前在离岸设置600架风力发电机,陆域风力机则希望能从314座增加到450座。
遗憾的是,风电是更典型的“靠天吃饭”。唐慧琳说,风太小时发不了电,台风来了则要停止运转,否则会造成设备毁损。夏季是岛内用电的尖峰时期,但却是全年风力最小的时候,目前风力发电机组利用率仅约1/3。风力发电的时有时无特性,对于讲究产需平衡性的电力调度也是一种极大考验。
此外,巨大的风机也是一个问题。以一座2000千瓦的风机为例,叶片直径就达80米,两台风力机之间还需保持320米的空间。被叫停的核四厂每年发电量可达193亿度,若以风力发电来计算,约需要投资4584亿元(新台币,下同),建设3496座风机,需要约6个台北市大小的土地。目前全台真正用于发电的风机并不多,但因噪音太大、影响风水等,被附近居民视为“杀人风车”不断抗议。
中国已成为新能源和可再生能源第一大国。
近年来,我国采取一系列强有力的措施,支持新能源发展,积极的行动已经取得了显著成果。中国已成为世界节能和利用新能源、可再生能源的第一大国。
目前,我国拥有全球最大的新能源装机,太阳能光伏电池组生产能力处于世界首位,水电装机量占据世界总装机量的四分之一,并拥有最大的风电市场。
清洁能源的快速发展,带动的是我国单位GDP碳排放大幅下降。数据显示,2014年我国国内生产总值二氧化碳排放同比下降了6.1%,比2010年累计下降了15.8%。
未来的几种新能源
波能:即海洋波浪能。这是一种取之不尽,用之不竭的无污染可再生能源。据推测,地球上海洋波浪蕴藏的电能高达9×104TW。在各国的新能源开发计划中,波能的利用已占有一席之地。尽管波能发电成本较高,需要进一步完善,但进展已表明了这种新能源潜在的商业价值。
日本的一座海洋波能发电厂已运行8年,电厂的发电成本虽高于其它发电方式,但对于边远岛屿来说,可节省电力传输等投资费用。美、英、印度等国家已建成几十座波能发电站,且均运行良好。
微生物:世界上有不少国家盛产甘蔗、甜菜、木薯等,利用微生物发酵,可制成酒精,酒精具有燃烧完全、效率高、无污染等特点,用其稀释汽油可得到“乙醇汽油”,而且制作酒精的原料丰富,成本低廉。据报道,巴西已改装“乙醇汽油”或酒精为燃料的汽车达几十万辆,减轻了大气污染。此外,利用微生物可制取氢气,以开辟能源的新途径。
第四代核能源:正反物质的原子在相遇的瞬间湮灭,此时,会产生高当量的冲击波以及光辐射能。这种强大的光辐射能可转化为热能,如果能够控制正反物质的核反应强度,来作为人类的新型能源,那将是人类能源史上的一场伟大的能源革命。
太阳照射地球
太阳照射地球,我们生活的地方是地球,是距离太阳的第三颗行星,唯一孕育生命的星球,而且除了太阳系意外还有更深的宇宙奥秘,我们每天照射的太阳距离我们有多远,太阳照射地球。
太阳照射地球1太阳直射点是地球表面太阳光入射角度(即太阳高度角 )为90度的地点,是地心与日心连线和地球球面的交点。 太阳直射点所在的经线的地方时为正午12时。 活动规律为:春分(3月21日前后) ,太阳直射点在赤道(0°),此后向北移动。夏至(6月22日前后) ,太阳直射点在北回归线(23°26′N)上,此后向南移。秋分(9月23日前后) ,太阳直射点在赤道上(0°),此后继续南移。冬至(12月22日前后),太阳直射点在南回归线(23°26′S)上,在此之后向北移动。
地理意义:
太阳直射点的移动引起全球热量分布变化。
太阳直射点的季节移动带动行星系的南北偏移。
太阳直射点的季节移动引起昼夜长短和正午太阳高度的变化。
活动规律
太阳直射点每时都在向西移动,每小时移过15度经度。在地理题的计算中可粗略取每分移动0.25度纬度。
春分,太阳直射点在赤道,此后北移,直至6月22日(即夏至)到北回归线。 夏至,太阳直射点在北回归线上,此后南移,直至9月23日(即秋分)到赤道。 秋分,太阳直射点在赤道,此后继续南移,直至12月22日(即冬至)到南回归线。 冬至,太阳直射点在南回归线上,此后北移,又在3月21日(即春分)回到赤道。 如此周而复始回归运动,周期为365日5时48分46秒,也约是365.2422天,称为一个回归年。 [1]
根据开普勒定律,地球是在椭圆轨道上绕太阳公转的,太阳在椭圆的一个焦点上,这样就出现了近日点和远日点。以太阳为焦点,地球运动单位时间扫过的面积相等。
7月初地球离太阳最远,北半球昼长夜短,而南半球相反。1月以后是近日点,北半球昼短夜长。
1月初 近日点 日地距离1.471亿千米 角速度61分/天 线速度30.3千米/秒
7月初 远日点 日地距离1.521亿千米 角速度57分/天 线速度29.3千米/秒
近日点快 远日点慢昼夜长短
每年3月21日前後 春分日 昼夜等长
每年6月22日前後 夏至日 昼长夜短(北半球)
每年9月23日前後 秋分日 昼夜等长
每年12月22日前後 冬至日昼短夜长(北半球)
赤道全年昼夜等长
太阳照射地球2为什么太阳光照射到地球后变热了
太阳是一颗巨大的恒星,它给地球带来了光和热,而地球生命和人类的诞生也离不开太阳给地球带来的适宜温度,可以说太阳是地球生命的母亲一点也不为过。
在人类没有走进科技发展的道路之前,先知的一些人们已经认知到太空的存在,知道地球之外是一个无比浩瀚的宇宙,而太阳是太阳系的中心,可是那个时候,人们对太空基本一无所知,更不知道太空的温度到底是什么样的。
可能在很多古人的眼里,地球因为太阳的照射都能够有如此的温度,那么在太阳生存的太空中,那温度应该更高吧。可是随着人类走进科技发展的道路,走出地球之后,才知道太空可不是一个温暖的空间,那里的温度非常低,可以说是无比寒冷。
这个时候,很多人心中就产生了一个疑问:太阳和地球之间的太空无比寒冷,为什么太阳光照射到地球后却变热了,这是什么道理?其实要弄明白这个问题,首先要对温度的发热有一个清晰的认知才行。我们能够感受到物体的温度,也能够感受到太阳光照射到地球后不断升高的温度。
为什么物体的温度会有变化,到底是什么因素决定着物体的温度?过去人们很难从宏观的层面去理解温度的变化,直到人类开始研究微观领域,走进微观世界后才真正弄明白了温度的变化之谜。原来温度的本质就是分子热运动的剧烈程度。
当分子的运动越来越剧烈的时候,物体的温度也在不断升高,反之温度会不断降低,之所以温度有绝对零度这个下限值,就是因为分子的极限运动就是静止,只要它完全静止不动,也就没有了分子运动,温度自然也就降到了最低。
了解完分子的运动和温度的关系,我们明白了,温度想要升高必须要有分子的运动才行,而分子是组成物质的基本单位,也就是说温度的体现需要一个载体,这个载体从微观领域来看,那就是各种分子,从宏观来分析,那就是各种气体,尘埃等物质。
看完这个,我们再回到太空中,我们都知道太空其实是一个真空状态,当然这种真空并不是说太空毫无物质,太空其实并不空,其中充斥着大量高能粒子,可是这些高能粒子看上去很多,可是分散在浩瀚的宇宙当中,它的密度就非常低了。比如,每立方厘米的星际空间中,约只有0.26个原子,而在海平面处,每立方厘米的空气约有5.37x10^19个原子。从这个简单的比例中就可以看出,这个“太空”还真是太空。
在如此稀薄物质的太阳和地球的空间中,没有大量温度的载体物质的存在,因此绝大部分光子将畅通无阻通过太空到达了大气层以及海洋和地表,接下来就是地球整个大气、水以及岩石圈的整个范围。太空虽然非常空,粒子的密度小到可以忽略不计。
可是一旦进入地球后,情况就完全不同了,地球可是一个物质世界,从最外层的大气层一直到地底世界,都是由物质组成,这些都可以充当温度的载体,所以当太阳光进入地球大气层之后,就可以加剧大气层,尘埃,岩石等物质中的分子运动,所以大气,尘埃,岩石的物质就会不断上升,从而让整个地球的温度上升。
当然,不同的载体物质对温度的传导程度也是不同的,有的物质载体对温度的传导作用很小,可有的物质能力则非常强,比如二氧化碳。二氧化碳作为温度载体,它允许太阳光照射进来,却不允许波段较低的红外辐射散出去,它非常霸道地将进入大气层的温度保护起来,不让它们逃脱。
对于一颗星球来说,想要保持一个不错的温度,必须要有二氧化碳的参与,它是这方面的权威。可是任何事物都有物极必反,二氧化碳的浓度太高了,对于一颗星球来说可就不是好事了,比如金星表面的温度达400多度,按道理来说,金星是地球的邻居,处在宜居带内,它表面的温度应该和地球差不多才对。
可是由于金星大气层96%以上的物质都是二氧化碳,导致金星的温室效应特别严重,温度也越来越高,这样的星球很难诞生生命,如果金星大气中的二氧化碳浓度在合理的范围,有可能金星也会是一颗美丽的生命星球,而不是现在这样的炼狱星球。
事实上,地球近年来的温度也在不断上升,原因就是工业污染带来的.温室气体,让大气中的二氧化碳浓度一年比一年高,温室效应越来越明显,全球气温也是一年比一年高。如果人类再不好好保护地球,不注重温室气体的排放,有可能在未来地球也会变成像金星那样的炼狱星球。
太阳照射地球3地球一秒钟接收太阳的能量是多少?
太阳距地球的距离是1.5亿千米,在地球大气层表面单位时间测量的太阳能量为1368瓦/平方米。通过单位面积的功率×总面积(4πR^2),可以求得太阳单位时间内(每秒)发射的能量为4*10^25焦耳。
太阳每秒钟向外辐射约28600亿亿兆瓦的能量,2007年世界一次能源消费总量为111亿吨油当量地球每年经光合作用产生的生物质有2200亿吨,其中蕴含的能量相当于全世界能源消耗总量的10倍,但目前的利用率不到3%。
太阳是人类能源之母。尽管太阳辐射到地球大气层的能量仅为其总辐射能量的22亿分之一.但已高达173.000TW.也就是说太阳每秒钟照射到地球上的能量相当于500万t煤产生的能量。
地球每秒接收的太阳能量相当于3367颗“小男孩”核弹的威力。
扩展资料:
原理
太阳能是太阳内部或者表面的黑子连续不断的核聚变反应过程产生的能量。地球轨道上的平均太阳辐射强度为1367w/㎡。地球赤道的周长为40000km,从而可计算出,地球获得能量173000TW。
在海平面上的标准峰值强度为1kw/m2,地球表面某一点24h的年平均辐射强度为0.20kw/㎡,相当于有102000TW 的能量,人类依赖这些能量维持生存,其中包括所有其他形式的可再生能源(地热能资源除外)。
虽然太阳能资源总量相当于现在人类所利用的能源的一万多倍,但太阳能的能量密度低,而且它因地而异,因时而变,这是开发利用太阳能面临的主要问题。太阳能的这些特点会使它在整个综合能源体系中的作用受到一定的限制。
尽管太阳辐射到地球大气层的能量仅为其总辐射能量的22亿分之一,但已高达173,000TW,也就是说太阳每秒钟照射
到地球上的能量就相当于500万吨煤。地球上的风能、水能、海洋温差能、波浪能和生物质能以及部分潮汐能都是来源于太阳;即使是地球上的化石燃料(如煤、石油、天然气等)从根本上说也是远古以来贮存下来的太阳能。
所以广义的太阳能所包括的范围非常大,狭义的太阳能则限于太阳辐射能的光热、光电和光化学的直接转换。
太阳能既是一次能源,又是可再生能源。它资源丰富,既可免费使用,又无需运输,对环境无任何污染。为人类创造了一种新的生活形态,使社会及人类进入一个节约能源减少污染的时代。
根据各地接受太阳总辐射量的多少,可将全国划分为三类地区。
一类地区
为我国太阳能资源最丰富的地区,年太阳辐射总量6680~8400 MJ/㎡,相当于日辐射量5.1~6.4KWh/㎡。
这些地区包括宁夏北部、甘肃北部、新疆东部、青海西部和西藏西部等地。尤以西藏西部最为丰富,最高达2333 KWh/㎡(日辐射量6.4KWh/㎡),居世界第二位,仅次于撒哈拉大沙漠。
二类地区
为我国太阳能资源较丰富地区,年太阳辐射总量为5850-6680 MJ/m2,相当于日辐射量4.5~5.1KWh/㎡。这些地区包括河北西北部、山西北部、内蒙古南部、宁夏南部、甘肃中部、青海东部、西藏东南部和新疆南部等地。
三类地区
为我国太阳能资源中等类型地区,年太阳辐射总量为5000-5850 MJ/m2,相当于日辐射量3.8~4.5KWh/㎡。主要包括山东、河南、河北东南部、山西南部、新疆北部、吉林、辽宁、云南、陕西北部、甘肃东南部、广东南部、福建南部、苏北、皖北、台湾西南部等地。
参考资料http://bbs.chinagb.net/?fromuid=69687
[编辑本段]分类
新能源的各种形式都是直接或者间接地来自于太阳或地球内部伸出所产生的热能。包括了太阳能、风能、生物质能、地热能、水能和海洋能以及由可再生能源衍生出来的生物燃料和氢所产生的能量。也可以说,新能源包括各种可再生能源和核能。相对于传统能源,新能源普遍具有污染少、储量大的特点,对于解决当今世界严重的环境污染问题和资源(特别是化石能源)枯竭问题具有重要意义。同时,由于很多新能源分布均匀,对于解决由能源引发的战争也有着重要意义。
据世界断言,石油,煤矿等资源将加速减少。核能、太阳能即将成为主要能源。
联合国开发计划署(UNDP)把新能源分为以下三大类:大中型水电;新可再生能源,包括小水电、太阳能、风能、现代生物质能、地热能、海洋能(潮汐能);穿透生物质能。
一般地说,常规能源是指技术上比较成熟且已被大规模利用的能源,而新能源通常是指尚未大规模利用、正在积极研究开发的能源。因此,煤、石油、天然气以及大中型水电都被看作常规能源,而把太阳能、风能、现代生物质能、地热能、海洋能以及核能、氢能等作为新能源。随着技术的进步和可持续发展观念的树立,过去一直被是做垃圾的工业与生活有机废弃物被重新认识,作为一种能源资源化利用的物质而受到深入的研究和开发利用,因此,废弃物的资源化利用也可看作是新能源技术的一种形式。
新近才被人类开发利用、有待于进一步研究发展的能量资源称为新能源,相对于常规能源而言,在不同的历史时期和科技水平情况下,新能源有不同的内容。当今社会,新能源通常指核能、太阳能、风能、地热能、氢气等。
按类别可分为:太阳能 风力发电 生物质能 生物柴油 燃料乙醇 新能源汽车 燃料电池 氢能 垃圾发电 建筑节能 地热能 二甲醚 可燃冰等
[编辑本段]新能源概况
据估算,每年辐射到地球上的太阳能为17.8亿千瓦,其中可开发利用500~1000亿度。但因其分布很分散,目前能利用的甚微。地热能资源指陆地下5000米深度内的岩石和水体的总含热量。其中全球陆地部分3公里深度内、150℃以上的高温地热能资源为140万吨标准煤,目前一些国家已着手商业开发利用。世界风能的潜力约3500亿千瓦,因风力断续分散,难以经济地利用,今后输能储能技术如有重大改进,风力利用将会增加。海洋能包括潮汐能、波浪能、海水温差能等,理论储量十分可观。限于技术水平,现尚处于小规模研究阶段。当前由于新能源的利用技术尚不成熟,故只占世界所需总能量的很小部分,今后有很大发展前途。
[编辑本段]常见新能源形式概述
(具体内容详见各能源形式所对应的词条)
太阳能
太阳能一般指太阳光的辐射能量。太阳能的主要利用形式有太阳能的光热转换、光电转换以及光化学转换三种主要方式
广义上的太阳能是地球上许多能量的来源,如风能,化学能,水的势能等由太阳能导致或转化成的能量形式。
利用太阳能的方法主要有:太阳电能池,通过光电转换把太阳光中包含的能量转化为电能;太阳能热水器,利用太阳光的热量加热水,并利用热水发电等。
太阳能可分为2种:
1.太阳能光伏 光伏板组件是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成。由于没有活动的部分,故可以长时间操作而不会导致任何损耗。简单的光伏电池可为手表及计算机提供能源,较复杂的光伏系统可为房屋照明,并为电网供电。 光伏板组件可以制成不同形状,而组件又可连接,以产生更多电力。近年,天台及建筑物表面均会使用光伏板组件,甚至被用作窗户、天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统。
2.太阳热能 现代的太阳热能科技将阳光聚合,并运用其能量产生热水、蒸气和电力。除了运用适当的科技来收集太阳能外,建筑物亦可利用太阳的光和热能,方法是在设计时加入合适的装备,例如巨型的向南窗户或使用能吸收及慢慢释放太阳热力的建筑材料。
核能
核能是通过转化其质量从原子核释放的能量,符合阿尔伯特·爱因斯坦的方程E=mc^2,其中E=能量,m=质量,c=光速常量。核能的释放主要有三种形式:
A.核裂变能
所谓核裂变能是通过一些重原子核(如铀-235、铀-238、钚-239等)的裂变释放出的能量
B.核聚变能
由两个或两个以上氢原子核(如氢的同位素—氘和氚)结合成一个较重的原子核,同时发生质量亏损释放出巨大能量的反应叫做核聚变反应,其释放出的能量称为核聚变能。
C.核衰变
核衰变是一种自然的慢得多的裂变形式,因其能量释放缓慢而难以加以利用
核能的利用存在的主要问题:
(1)资源利用率低
(2)反应后产生的核废料成为危害生物圈的潜在因素,其最终处理技术尚未完全解决
(3)反应堆的安全问题尚需不断监控及改进
(4)核不扩散要求的约束,即核电站反应堆中生成的钚-239受控制
(5)核电建设投资费用仍然比常规能源发电高,投资风险较大
海洋能
海洋能指蕴藏于海水中的各种可再生能源,包括潮汐能、波浪能、海流能、海水温差能、海水盐度差能等。这些能源都具有可再生性和不污染环境等优点,是一项亟待开发利用的具有战略意义的新能源。
波浪发电,据科学家推算,地球上波浪蕴藏的电能高达90万亿度。目前,海上导航浮标和灯塔已经用上了波浪发电机发出的电来照明。大型波浪发电机组也已问世。我国在也对波浪发电进行研究和试验,并制成了供航标灯使用的发电装置。
潮汐发电,据世界动力会议估计,到2020年,全世界潮汐发电量将达到1000-3000亿千瓦。世界上最大的潮汐发电站是法国北部英吉利海峡上的朗斯河口电站,发电能力24万千瓦,已经工作了30多年。我国在浙江省建造了江厦潮汐电站,总容量达到3000千瓦。
风能
风能是太阳辐射下流动所形成的。风能与其他能源相比,具有明显的优势,它蕴藏量大,是水能的10倍,分布广泛,永不枯竭,对交通不便、远离主干电网的岛屿及边远地区尤为重要。
风力发电,是当代人利用风能最常见的形式,自19世纪末,丹麦研制成风力发电机以来,人们认识到石油等能源会枯竭,才重视风能的发展,利用风来做其它的事情。
1977年,联邦德国在著名的风谷--石勒苏益格-荷尔斯泰因州的布隆坡特尔建造了一个世界上最大的发电风车。该风车高150米,每个浆叶长40米,重18吨,用玻璃钢制成。到1994年,全世界的风力发电机装机容量已达到300万千瓦左右,每年发电约50亿千瓦时。
生物质能
生物质能来源于生物质,也是太阳能以化学能形式贮存于生物中的一种能量形式,它直接或间接地来源于植物的光合作用。生物质能是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态或气态的燃料。地球上的生物质能资源较为丰富,而且是一种无害的能源。地球每年经光合作用产生的物质有1730亿吨,其中蕴含的能量相当于全世界能源消耗总量的10-20倍,但目前的利用率不到3%。
地热能
地球内部热源可来自重力分异、潮汐摩擦、化学反应和放射性元素衰变释放的能量等。放射性热能是地球主要热源。我国地热资源丰富,分布广泛,已有5500处地热点,地热田45个,地热资源总量约320万兆瓦。
氢能
在众多新能源中,氢能以其重量轻、无污染、热值高、应用面广等独特优点脱颖而出,将成为21世纪的理想能源。氢能可以作飞机、汽车的燃料,可以用作推动火箭动力。
海洋渗透能
能源世界有最全面的资料免费下载
参考资料http://bbs.chinagb.net/?fromuid=69687
如果有两种盐溶液,一种溶液中盐的浓度高,一种溶液的浓度低,那么把两种溶液放在一起并用一种渗透膜隔离后,会产生渗透压,水会从浓度低的溶液流向浓度高的溶液。江河里流动的是淡水,而海洋中存在的是咸水,两者也存在一定的浓度差。在江河的入海口,淡水的水压比海水的水压高,如果在入海口放置一个涡轮发电机,淡水和海水之间的渗透压就可以推动涡轮机来发电。
海洋渗透能是一种十分环保的绿色能源,它既不产生垃圾,也没有二氧化碳的排放,更不依赖天气的状况,可以说是取之不尽,用之不竭。而在盐分浓度更大的水域里,渗透发电厂的发电效能会更好,比如地中海、死海、我国盐城市的大盐湖、美国的大盐湖。当然发电厂附近必须有淡水的供给。据挪威能源集团的负责人巴德·米克尔森估计,利用海洋渗透能发电,全球范围内年度发电量可以达到16000亿度。
水能
水能是一种可再生能源,是清洁能源,是指水体的动能、势能和压力能等能量资源。广义的水能资源包括河流水能、潮汐水能、波浪能、海流能等能量资源;狭义的水能资源指河流的水能资源。是常规能源,一次能源。水不仅可以直接被人类利用,它还是能量的载体。太阳能驱动地球上水循环,使之持续进行。地表水的流动是重要的一环,在落差大、流量大的地区,水能资源丰富。随着矿物燃料的日渐减少,水能是非常重要且前景广阔的替代资源。目前世界上水力发电还处于起步阶段。河流、潮汐、波浪以及涌浪等水运动均可以用来发电。
[编辑本段]新能源的发展现状和趋势
部分可再生能源利用技术已经取得了长足的发展,并在世界各地形成了一定的规模。目前,生物质能、太阳能、风能以及水力发电、地热能等的利用技术已经得到了应用。
国际能源署(IEA)对2000~2030年国际电力的需求进行了研究,研究表明,来自可再生能源的发电总量年平均增长速度将最快。IEA的研究认为,在未来30年内非水利的可再生能源发电将比其他任何燃料的发电都要增长得快,年增长速度近6%在2000~2030年间其总发电量将增加5倍,到2030年,它将提供世界总电力的4.4%,其中生物质能将占其中的80%。
目前可再生能源在一次能源中的比例总体上偏低,一方面是与不同国家的重视程度与政策有关,另一方面与可再生能源技术的成本偏高有关,尤其是技术含量较高的太阳能、生物质能、风能等据IEA的预测研究,在未来30年可再生能源发电的成本将大幅度下降,从而增加它的竞争力。可再生能源利用的成本与多种因素有关,因而成本预测的结果具有一定的不确定性。但这些预测结果表明了可再生能源利用技术成本将呈不断下降的趋势。
我国政府高度重视可再生能源的研究与开发。国家经贸委制定了新能源和可再生能源产业发展的“十五”规划,并制定颁布了《中华人民共和国可再生能源法》,重点发展太阳能光热利用、风力发电、生物质能高效利用和地热能的利用。近年来在国家的大力扶持下,我国在风力发电、海洋能潮汐发电以及太阳能利用等领域已经取得了很大的进展。
新能源(或称可再生能源更贴切)主要有:太阳能、风能、地热能、生物质能等。生物质能在经过了几十年的探索后,国内外许多专家都表示这种能源方式不能大力发展,它不但会抢夺人类赖以生存的土地资源,更将会导致社会不健康发展;地热能的开发和空调的使用具有同样特性,如大规模开发必将导致区域地面表层土壤环境遭到破坏,必将引起再一次生态环境变化;而风能和太阳能对于地球来讲是取之不尽、用之不竭的健康能源,他们必将成为今后替代能源主流。
太阳能发电具有布置简便以及维护方便等特点,应用面较广,现在全球装机总容量已经开始追赶传统风力发电,在德国甚至接近全国发电总量的5%-8%,随之而来的问题令我们意想不到,太阳能发电的时间局限性导致了对电网的冲击,如何解决这一问题成为能源界的一大困惑。
风力发电在19世纪末就开始登上历史的舞台,在一百多年的发展中,一直是新能源领域的独孤求败,由于它造价相对低廉,成了各个国家争相发展的新能源首选,然而,随着大型风电场的不断增多,占用的土地也日益扩大,产生的社会矛盾日益突出,如何解决这一难题,成了我们又一困惑。
早在2001年,MUCE就为了开拓稳定的海岛通信电源而开展一项研究,经过六年多研究和实践,终于将一种成熟的新型应用方式MUCE风光互补系统向社会推广,这种系统采用了我国自主研制的新型垂直轴风力发电机(H型)和太阳能发电进行10:3地结合,形成了相对稳定的电力输出。在建筑上、野外、通信基站、路灯、海岛均进行了实际应用,获得了大量可靠的使用数据。这一系统的研究成果将为我国乃至世界的新能源发展带来了新的动力。
新型垂直轴风力发电机(H型)突破了传统的水平轴风力发电机启动风速高、噪音大、抗风能力差、受风向影响等缺点,采取了完全不同的设计理论,采用了新型结构和材料,达到微风启动、无噪音、抗12级以上台风、不受风向影响等性能,可大量用于别墅、多层及高层建筑、路灯等中小型应用场合。以它为主建立的风光互补发电系统,具有电力输出稳定、经济性高、对环境影响小等优点,也解决了太阳能发展中对电网冲击等影响。
随着能源危机日益临近,新能源已经成为今后世界上的主要能源之一。其中太阳能已经逐渐走入我们寻常的生活,风力发电偶尔可以看到或听到,可是它们作为新能源如何在实际中去应用?新能源的发展究竟会是怎样的格局?这些问题将是我们在今后很长时间里需要探索的。
[编辑本段]新能源的环境意义和能源安全战略意义
我国能源需求的急剧增长打破了我国长期以来自给自足的能源供应格局,自1993年起我国成为石油净进口国,且石油进口量逐年增加,使得我国接入世界能源市场的竞争。由于我国化石能源尤其是石油和天然气生产量的相对不足,未来我国能源供给对国际市场的依赖程度将越来越高。
国际贸易存在着很多的不确定因素,国际能源价格有可能随着国际和平环境的改善而趋于稳定,但也有可能随着国际局势的动荡而波动。今后国际石油市场的不稳定以及油价波动都将严重影响我国的石油供给,对经济社会造成很大的冲击。大力发展可再生能源可相对减少我国能源需求中化石能源的比例和对进口能源的以来程度,提高我国能源、经济安全。
此外,可再生能源与化石能源相比最直接的好处就是其环境污染少。
新的能源是什么
1
新能源,包括太阳能、风能、地热能、海洋能、生物质能和其他可再生能源。合理的开发利用新能源,可以改善和优化能源结构,保护环境,提高人民生活质量,促进国民经济和社会可持续发展。
新能源开发利用主要包括新能源技术和产品的科研、实验、推广、应用及其生产、经营活动。新能源的开发利用,应当与经济发展相结合,遵循因地制宜、多能互补、综合利用、讲求效益和开发与节约并举的原则,宣传群众,典型示范,效益引导,实现能源效益、环境效益、经济效益和社会效益的统一。
2
随着科学技术和社会生产力的不断发展,能源的问题显得越来越重要。目前,全世界的能源仍以煤、石油和天然气等化石燃料为主。这些化石燃料储量有限,同时它们又是极其宝贵的化工原料,可以从中提炼和加工出各种化学纤维、塑料、橡胶和化肥等化工产品。将这样重要的化工原料作为能源来使用实在可惜。随着社会生产力的发展和人类生活水平的提高,世界能源的消耗量愈来愈大。据估计,全世界石油、天然气和煤的储量最多只能供给人类使用一、二百年。因此,摆在人类面前的一项紧迫的战略任务就是探索新能源。目前研究开发的新能源主要有以下几种:
1.地热能与潮汐能
可利用的地热资源是地下热水、地热蒸气和热岩层。地下热水层一般在地下两千多米深处,温度80℃左右。将地下热水降低压力使之变成蒸气(在47.34 kPa时水80℃沸腾),可推动汽轮发电机发电。
潮汐能利用的是海水涨落造成的水位差。此种能量可以作为动力来推动水轮机发电。地球上潮汐涨落中蕴藏的能量是巨大的,但建造大规模的潮汐电站技术上有很多困难,成本也较高。
2.太阳能
太阳每年辐射到地球表面的能量约为5×10^22J,相当于目前世界能量消耗的1.3万倍,可以说太阳能是取之不尽用之不竭的无污染的理想能源。因此,太阳能的收集利用是当代科学家十分感兴趣的问题。
目前太阳能利用主要有三种形式。一种是直接利用太阳辐射热,建成太阳灶、太阳能热水器,太阳房(用于采暖)和塑料大棚等,或利用太阳能来发电。太阳能电站是利用集热器吸收太阳辐射的热量,其蓄热材料(液态金属)温度可高达1000℃左右。所吸收的热量通过热交换器将水变成水蒸气推动汽轮机发电。这种转换方式称之为光-热转换。第二种是光-电转换,即利用太阳能电池将太阳能直接转换成电能。太阳能电池种类较多,主要有单晶硅电池、砷化镓电池、磷化铟电池和多晶硅电池等。目前太阳能电池效率还比较低,成本也比较高。它主要用于人造卫星等宇宙飞行器作为各种仪器设备的动力。第三种是光-化学转换,即将太阳辐射直接转换成化学能。绿色植物的光合作用就是光-化学转换,但它还不能完全受人控制。因此,研究各种完全可控的光-化学转换方法也是当今世界重大的研究课题之一。近年来发现,太阳能辐射到某一光化学反应体系后,能形成动力学上稳定的光产物,使光能转化为化学能而储存起来。另外,在催化剂存在时,由太阳光直接分解水而制得氢和氧的方法也是太阳能利用较有发展前途的一条途径。发展氢能具有独特的优越性。首先,氢的原料是水,资源丰富。另外氢燃烧后的热值较高,1g 氢燃烧后可放出143 kJ的热量,而1g煤燃烧只有31~32kJ,1g汽油燃烧也只有48kJ。还有氢燃烧生成水,它来源于水又还原于水,是顺应自然的一种循环,不会打乱自然界的平衡。又因燃烧产物无烟尘以及其它污染物,所以氢能又是无污染的清洁能源。
虽然,地球接受太阳的总能量很大,但是由于其能量密度很低,取得单位能量的一次投资大,能量转换效率有待提高。
3.核能
原子核裂变和聚变时都放出巨大的能量。原子核能是一种比较理想的能源。
(1)核裂变能
裂变是较重的原子核在足够能量的中子轰击下分裂成较轻原子核的过程。当235U原子核发生裂变时,分裂成两个不相等的碎片和若干个中子。裂变过程相当复杂,已经发现裂变产物有35种元素,放射性核素有200种以上。下面是235U裂变中的一种方式:
[编辑本段]未来的几种新能源
波能:即海洋波浪能。这是一种取之不尽,用之不竭的无污染可再生能源。据推测,地球上海洋波浪蕴藏的电能高达9×104TW。近年来,在各国的新能源开发计划中,波能的利用已占有一席之地。尽管波能发电成本较高,需要进一步完善,但目前的进展已表明了这种新能源潜在的商业价值。日本的一座海洋波能发电厂已运行8年,电厂的发电成本虽高于其它发电方式,但对于边远岛屿来说,可节省电力传输等投资费用。目前,美、英、印度等国家已建成几十座波能发电站,且均运行良好。
可燃冰:这是一种与水结合在一起的固体化合物,它的外型与冰相似,故称“可燃冰”。可燃冰在低温高压下呈稳定状态,冰融化所释放的可燃气体相当于原来固体化合物体积的100倍。据测算,可燃冰的蕴藏量比地球上的煤、石油和天然气的总和还多。
煤层气:煤在形成过程中由于温度及压力增加,在产生变质作用的同时也释放出可燃性气体。从泥炭到褐煤,每吨煤产生68m3气;从泥炭到肥煤,每吨煤产生130m3气;从泥炭到无烟煤每吨煤产生400m3气。科学家估计,地球上煤层气可达2000Tm3。
微生物:世界上有不少国家盛产甘蔗、甜菜、木薯等,利用微生物发酵,可制成酒精,酒精具有燃烧完全、效率高、无污染等特点,用其稀释汽油可得到“乙醇汽油”,而且制作酒精的原料丰富,成本低廉。据报道,巴西已改装“乙醇汽油”或酒精为燃料的汽车达几十万辆,减轻了大气污染。此外,利用微生物可制取氢气,以开辟能源的新途径。
能源世界有最全面的资料免费下载
参考资料http://bbs.chinagb.net/?fromuid=69687
参考资料:http://bbs.chinagb.net/?fromuid=69687
新能源作为中国加快培育和发展的战略性新兴产业之一,将为开发新能源大规模开发利用提供坚实的技术支撑和产业基础。
开发新能源的好处:
1、风能无论是总装机容量还是新增装机容量,全球都保持着较快的发展速度,风能将迎来发展高峰。风电上网电价高于火电,期待价格理顺促进发展。
2、生物质能有望在农业资源丰富的热带和亚热带普及,主要问题是降低制造成本,生物乙醇、生物柴油以及二甲醚燃料应用值得期待。
3、太阳能随着中国国内光伏产业规模逐步扩大、技术逐步提升,光伏发电成本会逐步下降,未来中国国内光伏容量将大幅增加。
4、汽车新能源环境污染、能源紧张与汽车行业的发展紧密相联,国家大力推广混合动力汽车,汽车新能源战略开始进入加速实施阶段,开源节流齐头并进。
开发新能源的市场现状:
2015年3月16日,国家发改委、财政部、科技部等23个部委召开了针对战略性新兴产业发展的部际联席会议。节能环保产业、新一代信息技术产业、生物产业、高端装备制造产业、新能源产业、新材料产业、新能源汽车产业等七大产业已成为我国重点培育的战略新兴产业。
2014年在新兴产业领域的18个重点行业中,规模以上企业主营业务收入达15.9万亿元,实现利润总额近1.2万亿元,同比分别增长13.5%和17.6%。2013年同期,规模以上工业企业主营业务收入仅增长3.3%,利润额增长1.6%,明显低于新兴产业。
在全社会规模以上工业企业中,战略性新兴产业利润总额占比接近19%,主营业务收入占比接近15%。到2020年,战略性新兴产业增加值占国内生产总值的比重力争达到15%左右。
以上内容参考百度百科-新能源
太阳能
太阳是一个巨大、久远、无尽的能源,同时也是许多能源的来源。尽管太阳辐射到地球大气层的能量仅为其总辐射能量(约?3.75×1026W)的22亿分之一,但已高达173,000TW,也就是说太阳每秒钟照射到地球上的能量就相当於500万吨煤。 地球上的风能、水能、海洋温差能、波浪能和生物质能以及部分潮汐能都是来源於太阳;即使是地球上的化石燃料(如煤、石油、天然气等)从根本上说也是远古以来贮存下来的太阳能,所以广义的太阳能所包括的范围非常大,狭义的太阳能则限於太阳辐射能的光热、光电和光化学的%
太阳能
太阳是一个巨大、久远、无尽的能源,同时也是许多能源的来源。尽管太阳辐射到地球大气层的能量仅为其总辐射能量(约?3.75×1026W)的22亿分之一,但已高达173,000TW,也就是说太阳每秒钟照射到地球上的能量就相当於500万吨煤。 地球上的风能、水能、海洋温差能、波浪能和生物质能以及部分潮汐能都是来源於太阳;即使是地球上的化石燃料(如煤、石油、天然气等)从根本上说也是远古以来贮存下来的太阳能,所以广义的太阳能所包括的范围非常大,狭义的太阳能则限於太阳辐射能的光热、光电和光化学的直接转换。 太阳能既是一次能源,又是可再生能源。它的资源丰富,既可免费使用,又无需运输,对环境没有任何污染。但太阳能也有两个主要缺点:一是能流密度低;二是其强度受各种因素(季节、地点、气候等)的影响不能维持常量。这两大缺点大大限制了太阳能的有效利用。
地热能
地热能是来自地球深处的可再生热能,它起源於地球的熔融岩浆和放射性物质的衰变,其利用可分成地热发电和直接利用两大类。 地热能的储量比目前人们所利用的总量多很多倍,而且集中分布在构造板块边缘一带、该区域也是火山和地震多发区。如果热量提取的速度不超过补充的速度,那麼地热能便是可再生的。地热能在世界很多地区应用相当广泛,据估计,每年从地球内部传到地面的热能相当於100PW·h。 不过,地热能的分布相对来说比较分散,开发难度较大。
海洋能
大海,不仅为人类提供航运、水源和丰富的矿藏,而且还蕴藏著巨大的能量,它将太阳能以及派生的风能等以热能、机械能等形式蓄在海水裏,不像在陆地和空中那样容易散失。
海洋能指依附在海水中的可再生能源,海洋通过各种物理过程接收、储存和散发能量,这些能量以潮汐、波浪、温度差、盐度梯度、海流等形式存在於海洋之中,分述如下:
潮汐与潮流能来源於月球、太阳引力,其他海洋能均来源於太阳辐射,海洋面积占地球总面积的71%,太阳到达地球的能量,大部分落在海洋上空和海水中,部分转化成各种形式的海洋能。
海水温差能是热能,低纬度的海面水温较高,与深层冷水存在温度差,而储存著温差热能,其能量与温差的大小和水量成正比。
潮汐、潮流,海流、波浪能都是机械能,潮汐能是地球旋转所产生的能量通过太阳和月亮的引力作用而传递给海洋的,并由长周期波储存的能量,潮汐的能量与潮差大小和潮量成正比;潮流、海流的能量与流速平方和通流量成正比;波浪能是一种在风的作用下产生的,并以位能和动能的形式由短周期波储存的机械能,波浪的能量与波高的平方和波动水域面积成正比。
河口水域的海水盐度差能是化学能,入海径流的淡水与海洋盐水间有盐度差,若隔以半透膜,淡水向海水一侧渗透可生渗透压力,其能量与压力差和渗透流量成正比。因此各种能量涉及的物理过程开发技术及开发利用程度等方面存在很大的差异。
生物能
生物质是指由光合作用而产生的各种有机体,生物能是太阳能以化学能形式贮存在生物中的一种能量形式,一种以生物质为载体的能量,它直接或间接地来源於植物的光合作用。在各种可再生能源中,生物质是独特的,它是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态和气态燃料。
据估计地球上每年植物光合作用固定的碳达2x1011t,含能量达3x1021J,因此每年通过光合作用贮存在植物的枝、茎、叶中的太阳能,相当於全世界每年耗能量的10倍。生物能是第四大能源,生物质遍布世界各地,其蕴藏量极大。世界上生物质资源数量庞大,形式繁多,其中包括薪柴,农林作物,尤其是为了生产能源而种植的能源作物,农业和林业残剩物,食品加工和林?品加工的下脚料,城市固体废弃物,生活污水和水生植物等等。
氢能
氢能是一种二次能源,因为它是通过一定的方法利用其他能源制取的,而不像煤、石油和天然气等可以直接从地下开采,这种能源总有枯竭的一天,而氢能若能从中生产,则可望能抒解能源危机的警戒。
在自然界中,氢已和氧结合成水,必须用热分解或电分解的方法把氢从水中分离出来。燃料电池即是将氢与氧直接通过电化学反应产生电与水,一个步骤就可发电,发电较传统方式有效率。商品化后,这样的发电系统不但适合一般家庭使用,其副产品所产生的热水,大约在摄氏40到60度间,相当适合家庭洗澡与厨房利用,一举两得。
如果用煤、石油和天然气等燃烧所产生的热或所转换成的电支分解水制氢,那显然是划不来的。现在看来,高效率的制氢的基本途径,是利用太阳能。如果能用太阳能来制氢,那就等於把无穷无尽的、分散的太阳能转变成了高度集中的乾净能源了,其意义十分重大。