建材秒知道
登录
建材号 > 动力工程 > 正文

能源与动力工程 专业要学哪些科目

忧虑的网络
喜悦的项链
2023-01-01 17:26:31

能源与动力工程 专业要学哪些科目

最佳答案
典雅的蜡烛
香蕉小虾米
2025-08-29 07:51:47

高级语言程序设计(C) 计算机文化基础A 高级语言程序设计(C)上机计算机文化基础上机工科化学 企业管理 大学英语(一) 大学英语(二) 大学英语(三) 大学英语(四) 大学物理A(一)大学物理A(二) 大学物理实验A

概率论高等数学A(一) 高等数学A(二) 马克思主义基本原理 中国近现代史纲要 民族理论与政策 思想道德修养与法律基础

毛泽东思想和中国特色社会主义理论概论 100111109 形势与政策 考试 0.25 4.0 学位课 Y 及格

100111209 形势与政策 考查 0.25 4.0 学位课 Y 无成绩

100111309 形势与政策 考试 0.25 4.0 学位课 Y 无成绩

100111409 形势与政策 考试 0.25 4.0 学位课 Y 无成绩

100111509 形势与政策 考试 0.25 4.0 学位课 Y 无成绩

100111609 形势与政策 考试 0.25 4.0 学位课 Y 无成绩

100111709 形势与政策 考试 0.25 4.0 学位课 Y 无成绩

100111809 形势与政策 考试 0.25 4.0 学位课 Y 无成绩

100411001 大学语文 考试 2.0 32.0 学位课 Y 无成绩

160111001 体育(一) 考试 1.0 30.0 学位课 Y 及格

160111002 体育(二) 考试 1.0 30.0 学位课 Y 无成绩

160111003 体育(三) 考试 1.0 30.0 学位课 Y 无成绩

160111004 体育(四) 考试 1.0 30.0 学位课 Y 无成绩

200011001 军事理论 考试 2.0 32.0 学位课 Y 无成绩

280111002 大学生职业生涯发展与规划 考查 1.0 18.0 学位课 Y 无成绩

分类 选课(组)要求 毕业要求

分类名称 说明 学分 门数 是否达到要求

实践教学 必修 34.0 12 未通过

课程编号 课程名称 考核

方式 学分 学时 课程

类别 开课学期 是否及格

1秋

2009 1春

2010 1夏

2010 2秋

2010 2春

2011 2夏

2011 3秋

2011 3春

2012 3夏

2012 4秋

2012 4春

2013 4夏

2013

010517004 机械设计基础(二)课程设计 考查 2.0 2.0周 学位课 Y 无成绩

030117004 锅炉原理课程设计 考查 2.0 2.0周 学位课 Y 无成绩

030117020 热能动力装置综合设计 考查 2.0 2.0周 学位课 Y 无成绩

030118014 科研训练 考查 1.0 1.0周 学位课 Y 无成绩

030118016 认识实习 考查 2.0 2.0周 学位课 Y 无成绩

030118017 生产实习 考查 2.0 2.0周 学位课 Y 无成绩

030118018 毕业实习 考查 2.0 2.0周 学位课 Y 无成绩

030119019 毕业设计(论文) 考查 13.0 13.0 学位课 Y 无成绩

190118001 文献检索实践 考查 1.0 1.0周 学位课 Y 无成绩

200018002 军事训练 考查 2.0 2.0周 学位课 Y 无成绩

300118002 工程训练B 考查 3.0 3.0周 学位课 Y 无成绩

300118006 电工电子实习A 考查 2.0 2.0周 学位课 Y 无成绩

分类 选课(组)要求 毕业要求

分类名称 说明 学分 门数 是否达到要求

学科基础课程 必修 53.5 16 未通过

课程编号 课程名称 考核

方式 学分 学时 课程

类别 开课学期 是否及格

1秋

2009 1春

2010 1夏

2010 2秋

2010 2春

2011 2夏

2011 3秋

2011 3春

2012 3夏

2012 4秋

2012 4春

2013 4夏

2013

010213001 互换性与技术测量 考查 2.0 32.0 学位课 Y 无成绩

010511003 机械设计基础(一) 考试 3.0 48.0 学位课 Y 无成绩

010511004 机械设计基础(二) 考试 3.0 48.0 学位课 Y 无成绩

010513006 机械制图A(一) 考试 3.5 56.0 学位课 Y 及格

010513007 机械制图A(二) 考试 3.5 56.0 学位课 Y 无成绩

010513010 计算机辅助设计 考查 3.0 56.0 学位课 Y 无成绩

020411004 微机原理及应用 考试 4.0 64.0 学位课 Y 无成绩

020511112 电工学B 考试 4.0 64.0 学位课 Y 无成绩

030113001 测试技术 考试 2.5 40.0 学位课 Y 无成绩

030113007 动力机械制造工艺学 考查 2.0 32.0 学位课 Y 无成绩

030413002 工程流体力学 考试 4.5 72.0 学位课 Y 无成绩

030413007 工程热力学A 考试 4.5 72.0 学位课 Y 无成绩

030413009 传热学A 考试 4.0 64.0 学位课 Y 无成绩

040213014 机械制造基础 考试 2.5 40.0 学位课 Y 无成绩

040213106 工程材料B 考试 2.5 40.0 学位课 Y 无成绩

090211007 工程力学 考试 5.0 80.0 学位课 Y 无成绩

分类 选课(组)要求 毕业要求

分类名称 说明 学分 门数 是否达到要求

专业课 必修 15.0 5 未通过

课程编号 课程名称 考核

方式 学分 学时 课程

类别 开课学期 是否及格

1秋

2009 1春

2010 1夏

2010 2秋

2010 2春

2011 2夏

2011 3秋

2011 3春

2012 3夏

2012 4秋

2012 4春

2013 4夏

2013

030114003 内燃机构造与原理 考试 4.5 70.0 学位课 Y 无成绩

030114004 锅炉原理 考试 3.5 56.0 学位课 Y 无成绩

030114015 热交换器原理及设计 考试 2.5 40.0 学位课 Y 无成绩

030114016 制冷与低温技术 考试 2.5 40.0 学位课 Y 无成绩

030114035 泵与风机 考查 2.0 32.0 学位课 Y 无成绩

分类 选课(组)要求 毕业要求

分类名称 说明 学分 门数 是否达到要求

专业选修课 限选 12.0 6 未通过

课程编号 课程名称 考核

方式 学分 学时 课程

类别 开课学期 是否及格

1秋

2009 1春

2010 1夏

2010 2秋

2010 2春

2011 2夏

2011 3秋

2011 3春

2012 3夏

2012 4秋

2012 4春

2013 4夏

2013

030115005 专业外语(英) 考查 2.0 32.0 学位课 Y 无成绩

030115006 汽轮机原理 考查 2.5 40.0 学位课 Y 无成绩

030115010 燃烧学概论 考查 2.5 40.0 学位课 Y 无成绩

030115011 热力发电厂 考查 2.0 32.0 学位课 Y 无成绩

030115021 风力机原理与设计 考查 2.5 40.0 学位课 Y 无成绩

030115022 风力机组检测与控制 考试 2.0 32.0 学位课 Y 无成绩

030115023 生物质能利用原理与技术 考查 2.0 32.0 学位课 Y 无成绩

030115024 太阳能热利用原理与技术 考查 3.0 48.0 学位课 Y 无成绩

030115029 太阳能光伏发电系统工程 考查 2.0 32.0 学位课 Y 无成绩

030115031 内燃机设计 考查 2.0 32.0 学位课 Y 无成绩

030115032 内燃机代用燃料 考查 2.0 32.0 学位课 Y 无成绩

030115036 单元机组集控运行 考查 2.0 32.0 学位课 Y 无成绩

030115040 能源概论 考查 2.0 32.0 学位课 Y 无成绩

030115045 振动与噪声 考查 2.0 32.0 学位课 Y 无成绩

030115046 能源清洁利用 考查 1.5 24.0 学位课 Y 无成绩

030115047 前沿专题讲座 考查 1.5 24.0 学位课 Y 无成绩

030115048 压缩机 考查 2.0 32.0 学位课 Y 无成绩

最新回答
无语的小丸子
稳重的棉花糖
2025-08-29 07:51:47

业务培养目标

考虑学生在宽厚基础上的专业发展,将热能与动力工程专业分成以下四个专业方向: (1)以热能转换与利用系统为主的热能动力工程及控制方向(含能源环境工程、新能源开发和研究方向); (2)以内燃机及其驱动系统为主的热力发动机及汽车工程,船舶动力方向; (3)以电能转换为机械功为主的流体机械与制冷低温工程方向; (4)以机械功转换为电能为主的火力火电和水利水电动力工程方向。 即工程热物理过程及其自动控制、动力机械及其自动化、流体机械及其自动控制、电厂热能工程及其自动化四个二级学科 业务培养要求

本专业学生主要学习动力工程及工程热物理的基础理论,学习各种能量转换及有效利用的理论和技术,受到现代动力工程师的基本训练;具有进行动力机械与热工设备设计、运行、实验研究的基本能力。  

毕业生应获得以下几方面的知识和能力:

1.具有较扎实的自然科学基础,较好的人文、艺术和社会科学基础及正确运用本国语言、文字的表达能力; 2.较系统地掌握本专业领域宽广的技术理论基础知识,主要包括工程力学、机械学、工程热物理、流体力学、电工与电子学、控制理论、市场经济及企业管理等基础知识; 3.获得本专业领域的工程实践训练,具有较强的计算机和外语应用能力; 4.具有本专业领域内某个专业方向所必要的专业知识,了解其科学前沿及发展趋势; 5.具有较强的自学能力、创新意识和较高的综合素质。

培养目标

本专业主要培养能源转换与利用和热力环境保护领域具有扎实的理论基础,较强的实践、适应和创新能力,较高的道德素质和文化素质的高级人才,以满足社会对该能源动力学科领域的科研、设计、教学、工程技术、经营管理等各方面的人才需求。学生应具备宽广的自然科学、人文和社会科学知识,热学、力学、电学、机械、自动控制、系统工程等宽厚理论基础、热能动力工程专业知识和实践能力,掌握计算机应用与自动控制技术方面的知识。毕业生能从事能源与动力工程及相关方面的研究、教学、开发、制造、安装、检修、策划、管理和营销等工作。也可在本专业或其它相关专业继续深造,攻读硕士、博士学位。

主干学科

动力工程与工程热物理、机械工程

主要课程

工程力学、机械设计基础、机械制图、电工与电子技术、工程热力学、流体力学、传热学、控制理论、测试技术等 主要实践性教学环节:包括军训、金工、电工、电子实习、认识实习、生产实习、社会实践、课程设计、毕业设计(论文)等,一般应安排40周以上。 授予学位:工学学士 硕士

主要专业实验

传热学实验、工程热力学实验、动力工程测试技术实验等

知识结构要求

工具性知识 比较系统地掌握一门外语,掌握外文科技写作知识。掌握计算机软、硬件技术的基本知识,具有在本专业与相关领域的计算机应用与开发能力;掌握通过网络获取信息的知识、方法与工具。能够进行中外文文献检索。 自然科学知识 掌握高等数学、大学物理、工程化学、生命科学、环境科学等方面的知识。 学科技术基础知识 掌握工程制图、工程数学、理论力学、材料力学、机械设计基础、金属工艺学、电工学、电子技术基础、工程流体力学、工程热力学、传热学、计算机原理与应用、自动控制原理等方面的知识(对水利水电动力工程方向,工程热力学、传热学知识要求可适当降低)。  

 专业知识 根据本专业人才培养目标和培养规格,因专业方向的不同而有所差别。 (1)热能动力及控制工程方向(含能源环境工程方向) 主要掌握热能与动力测试技术、锅炉原理、汽轮机原理、燃烧污染与环境、动力机械设计、热力发电厂、热工自动控制、传热传质数值计算、流体机械等知识。 (2)热力发动机及汽车工程方向 掌握内燃机(或透平机)原理、结构、设计、测试、燃料和燃烧,热力发动机排放与环境工程,能源工程概论,内燃机电子控制,热力发动机传热和热负荷,汽车工程概论等方面的知识。 (3)制冷低温工程与流体机械方向 掌握制冷、低温原理、人工环境自动化、暖通空调系统、低温技术学、热工过程自动化、流体机械原理、流体机械系统仿真与控制等方面的知识。使学生掌握该方向所涉及的制冷空调系统、低温系统,制冷空调与低温各种设备和装置,各种轴流式、离心式压缩机和各种容积式压缩机的基本理论和知识。 (4)水利水电动力工程方向 掌握水轮机、水轮机安装检修与运行、水力机组辅助设备、水轮机调节、现代控制理论、发电厂自动化、电机学、发电厂电气设备、继电保护原理等方面的知识,以及水电厂计算机监控和水电厂现代测试技术方面的知识。

也就是说,本专业学生应具有如下知识和能力,并根据培养规格的不同而有所侧重: (1)具有较扎实的自然科学基础,熟练掌握高等数学、工程数学、大学物理、工程化学等基础性课程的基本理论和应用方法;具有较好的人文、艺术和社会科学基础及正确应用本国语言、文字的表达能力。 (2)掌握一门外国语,具有较好的听、说、读、写能力,能较顺利地阅读本专业的外文书籍和资料。若外语为英语应达到国家四级以上水平(含四级)。 (3)系统地掌握本专业必需的技术基础理论,主要包括力学理论(理论力学、材料力学、流体力学),热学理论(热力学、传热学等),机械设计基本理论,电工与电子基本理论,自动控制理论,能源动力工程基础理论等。 (4)熟悉本专业领域内1~2个专业方向或有关方面的专业知识,了解其学科前沿和发展趋势。 (5)具有本专业必需的制图、计算、测试、调研、查阅文献和基本工艺、操作、运行等基本技能。 (6)具有一定计算机相关知识和较强的计算机应用能力,较熟练使用计算机工具,解决工程中的有关问题。 (7)具有较强的自学能力、分析能力和创新意识。

就业方向

毕业生可在大型企业、相关公司以及相关的研究所、设计院、高等院校和管理部门从事热能工程方面的研究与设计、产品开发、制造、试验、管理、教学等工作。主要就业方向为发电厂、内燃机厂、汽车制造厂、物流调控、锅炉厂、大型机械厂、造船厂等等

开心的玫瑰
英勇的星月
2025-08-29 07:51:47
热能与动力工程是以工程热物理学科为主要理论基础,以内燃机和正在发展中的其它新型动力机械及系统为研究对象,运用工程力学、机械工程学、自动控制、计算机、环境科学、微电子技术等学科的知识和内容,研究如何把燃料的化学能和液体的动能安全、高效、低(或无)污染地转换成动力的基本规律和过程,研究转换过程中的系统和设备的自动控制技术。随着常规能源的日渐短缺,人类环境保护意识的不断增强,节能、高效、降低或消除污染排放物、发展新能源及其它可再生能源成为本学科的重要任务,在能源、交通运输、汽车、船舶、电力、航空宇航工程、农业工程和环境科学等诸多领域获得越来越广泛的应用,在国民经济各部门发挥着越来越重要的作用。

这方面人才在加强学生基础理论和综合素质教育的同时,加强计算机及自动控制技术的应用,强化专业实践教学,注重全能训练,全面提高自己的实践动手能力和科学研究潜力.

我国能源动力类专业形成于20世纪50年代。以交通大学为例,1952年院系调整时,当时设在机械系中的动力组就单独成立了动力机械系。由于受当时苏联教育体制的影响,在该学科的发展过程中,专业面曾一度越分越细。50年代初期只有锅炉、气轮机、内燃机等专业,以后又先后办起制冷专业与风机专业,制冷专业又细分出压缩机,制冷及低温专业。在50年代末又创办了核能专业,在60~70年代有些学校先后设立了工程热物理专业。这样能源动力学科中的专业就先后包括有锅炉、涡轮机、电厂热能、风机、压缩机、制冷、低温、内燃机、工程热物理,水力机械以及核能工程等11个专业,形成了明显的以产品带教学的基本格局。

热能与动力工程专业中包含的水利水电动力工程专业的前身为水电站动力装置专业。该专业形成于20世纪50年代。新中国成立以后,随着国家对水患的治理和经济建设的发展,国家设立了华东水利学院、武汉水利水电学院、华北水利水电学院等一些专门的水利院校,1958年起在这些院校和西安交通大学水利系(西安理工大学水电学院的前身)设立了水电站动力装置专业,以满足国家对水电建设人才的迫切需求。1977年恢复高考招生后,该专业更名为水电站动力设备专业。1984年该专业更名为水利水电动力工程专业,涵盖了原水能动力工程、水电站动力装置、水电站动力设备、水能动力及其自动化、机电排灌工程、水能动力与提水工程等专业,昆明工业学院、成都科技大学等一些院校都设置了该专业。1998年,按照国家教育部颁布的新的专业目录,水利水电动力工程专业并入热能与动力工程专业,新的热能与动力工程专业包含了原来的热力发动机、流体机械及流体工程、热能工程与动力机械、热能工程、制冷与低温技术、能源工程、工程热物理、水利水电动力、工程冷冻冷藏工程等9个专业。

客观上说,这种专业划分与当时我国计划经济的体制以及工业发展的实际情况,在一定程度上是相适应的。过窄的专业面,但却培养了专业工作能力较强的学生。因此,在当时对我国经济的发展和工业体系的重建,曾经起到过积极的作用。但随着社会经济向现代化方向的发展和高新科学技术的进步,特别是我国改革开放以后,国外先进科技、管理体系的大量引进,学科的交叉融合不断产生新的经济增长点,当时实际存在的过细过窄的工科专业设置,总体上已不能适应新的形势和发展对人才的需要,必须进行专业调整。因此,在1993年原国家教委进行的专业目录调整中,将能源动力学科的上述前10个专业压缩为4个专业,即热能工程,热力发动机,制冷与低温工程,流体机械与流体工程,核工程与核技术保留。1998年,教育部颁布了新的专业目录,将上述前4个专业进一步合并为热能与动力工程专业,核工程与核技术专业单独设立,而在引导性的专业目录中,则建议将热能工程与核能工程合并。但当时我国大多数学校还是采用了热能工程与核能工程单独设专业的方案。因此,在2000年教育部设立的新一轮教学指导委员中,在能源动力学科教学指导委员会下分设了三个委员会:热能动力工程,核工程与核技术以及热工基础课程教学指导分委员会。

能源动力工业是我国国民经济与国防建设的重要基础和支柱型产业,同时也是涉及多个领域高新技术的集成产业,在国家经济建设与社会发展中一直起着极其重要的作用。近年来,随着我国各个方面改革的深化发展,包括市场经济的逐步建立,国有大中型企业机制的转换,加入WTO后面临的挑战,以及能源动力领域技术的发展,并考虑到我国核科技工业“十一五”以及到2020年发展所面临的形势与任务,我国能源动力类以及核相关专业人才的培养面临着严峻的挑战。

能源动力及环境是目前世界各国所面临的头等重大的社会问题,我国能源工业面临着经济增长、环境保护和社会发展的重大压力。我国是世界上最大的煤炭生产和消费国,煤炭占商品能源消费的76%,已成为我国大气污染的主要来源。已经探明的常规能源剩余储量(煤炭、石油、天然气等)及可开采年限十分有限,2000年的统计资料表明,我国化石能源剩余可储采比煤炭为92年,石油20.5年,仅为世界储采比的一半;天然气为63年,优质能源十分匮乏。我国已成为世界第二大石油进口国,对国际石油市场的依赖度逐年提高,能源安全面临挑战,存在着十分危险的潜在危机,比世界总的能源形势更加严峻。现在,能源资源的国际间竞争愈演愈烈,从伊拉克战争及战后重建,到中日双方在俄罗斯输油管线走向上的角逐等一系列国际问题,无不是国家间能源战略利益冲突、斗争的具体反映。因此开发利用可再生能源、实现能源工业的可持续发展具有应该说更加迫切、更具重大意义。我们应该清楚地认识到:我国的能源资源是有限的,我国现有能源开发利用程度与效率很低,在清洁能源开发、能源综合高效利用和环境保护领域内,与发达国家存在着较大的差距:我国水能资源理论蕴藏量(未包括台湾省)为6.76亿KW,可开发容量3.78亿KW,相应年发电量19200亿KWh,均居世界第一;至2003年底水电装机容量达到9139万KW,年电量2710亿KWh,开发率按电量算只有14%,按装机容量算只有24.2%,远远落后于美国、加拿大、西欧等发达国家,也落后于巴西、埃及、印度等发展中国家。高耗能产品能源单耗比发达国家平均水平高40%左右,单位产值能耗是世界平均水平的2.3倍。同时,实施可持续发展战略对能源发展提出了更高的要求。长期以来,粗放型的增长方式使能源发展与保护环境、资源之间的矛盾日益尖锐。未来能源发展中,如何充分利用天然气、水电、核电等清洁能源,加快新能源与可再生能源开发,推广应用洁净煤技术,逐步降低用于终端消费煤炭的比重,实现能源、经济、环境的可持续发展将是"十五"以及中长期能源发展面临的重要选择。特别地,我国核科技工业是国家的战略行业。完善的核科技工业体系是确立一个国家核大国地位的基本条件。它既是国家战略威慑力量和国防科技工业的重要组成部分,是国家政治、国防安全的重要保障和外交利益所在,同时又是国民经济的重要产业。核军工、核能、核燃料和核应用技术产业,是我国核科技工业的主要组成部分。与此相适应,如何培养适应上述21世纪社会需要的能源动力类以及核相关专业人才,是每个大学相关专业以及每位从事能源动力类专业教育的工作者需要解决的重要问题。

常规化石能源的使用是能源动力学科专业教学的主要内容之一,而常规化石能源的使用与环境问题密切相关。目前,煤炭、石油、天然气等化石能源仍在整个能源构成中占据主导地位,而且估计在今后几十年地时间内这一局面还不会改变。这些常规化石能源主要直接应用于火力发电,这会带来一系列严重的环境问题,比如硫氧化物、氮氧化物等的大气污染、固体废物、水污染和热污染等。据最近的报载,当前我国每年火力发电的煤炭耗量超过8亿吨,电厂的烟尘排放量约为350万吨,占全国烟尘排放量的35%。其中微细粒子(小于10微米)排放量超过250万吨,是影响大城市大气质量和能见度的主要因数,并严重危害人体健康。因此,对能源动力生产过程中的这些环境问题必须进行妥善处理和控制,实现其环境友好化,才能保证人类的生存和社会经济的可持续发展。环境问题已经成为能源动力技术研究中的重要组成部分,也必须在专业课程的教学中有相应的体现。也正是基于这一原因,浙江大学已经将原来的热能与动力工程专业改名为能源与环境系统工程专业。核能发电虽然没有上述火力发电那样的问题,但有其独特的问题,如辐射防护与保健、核废料的处置与处理等均与环境保护有关。迫于环境方面对能源开发与利用的巨大压力,作为常规能源的水能由于具有清洁与可再生的特点,其开发与利用越来越得到重视,在我国能源发展战略占有十分重要的地位。

微笑的大船
受伤的小笼包
2025-08-29 07:51:47

能源与动力工程致力于传统能源的利用及新能源的开发,和如何更高效的利用能源。能源既包括水、煤、石油等传统能源,也包括核能、风能、生物能等新能源,以及未来将广泛应用的氢能。动力方面则包括内燃机、锅炉、航空发动机、制冷及相关测试技术。2012年教育部新版高校本科专业目录中调整热能与动力工程为能源与动力工程。

1培养目标

考虑学生在宽厚基础上的专业发展,将 热能与动力工程专业分成以下四个专业方向:

(1)以热能转换与利用系统为主的热能动力工程及控制方向(含能源环境工程、新能源开发和研究方向);

(2)以内燃机及其驱动系统为主的热力发动机及汽车工程,船舶动力方向;

(3)以电能转换为机械功为主的流体机械与制冷低温工程方向;

(4)以机械功转换为电能为主的火力火电和水利水电动力工程方向。

即 工程热物理过程及其自动控制、 动力机械及其自动化、流体机械及其自动控制、电厂热能工程及其自动化四个二级学科。

2培养要求

本专业学生主要学习动力工程及工程热物理的基础理论,学习各种能量转换及有效利用的理论和技术,受到现代动力工程师的基本训练,具有进行动力机械与 热工设备设计、运行、实验研究的基本能力。

毕业生应获得以下几方面的知识和能力:

1.具有较扎实的 自然科学基础,较好的人文、艺术和 社会科学基础及正确运用本国语言、文字的表达能力;

2.较系统地掌握本专业领域宽广的技术理论基础知识,主要包括工程力学、机械学、工程热物理、流体力学、电工与电子学、控制理论、市场经济及企业管理等基础知识;

3.获得本专业领域的工程实践训练,具有较强的计算机和外语应用能力;

4.具有本专业领域内某个专业方向所必要的专业知识,了解其科学前沿及发展趋势;

5.具有较强的自学能力、创新意识和较高的综合素质。

3人才目标

本专业主要培养能源转换与利用和热力环境保护领域具有扎实的理论基础,较强的实践、适应和创新能力,较高的道德素质和文化素质的高级人才,以满足社会对该能源动力学科领域的科研、设计、教学、工程技术、经营管理等各方面的人才需求。学生应具备宽广的自然科学、人文和社会科学知识,热学、力学、电学、机械、自动控制、系统工程等宽厚理论基础、热能动力工程专业知识和实践能力,掌握计算机应用与 自动控制技术方面的知识。毕业生能从事 能源与动力工程及相关方面的研究、教学、开发、制造、安装、检修、策划、管理和营销等工作。也可在本专业或其它相关专业继续深造,攻读硕士、博士学位。

4主干学科

动力工程与工程热物理、机械工程、流体力学

5主要课程

工程力学、 机械设计基础、机械制图、 电工与电子技术、工程热力学、流体力学、 传热学、控制理论、测试技术、燃烧学 等

主要实践性教学环节:包括军训、金工、电工、电子实习、认识实习、生产实习、社会实践、课程设计、毕业设计(论文)等,一般应安排40周以上。

授予学位:工学学士 硕士 博士

6专业实验

传热学实验、工程热力学实验、动力工程测试技术实验、流体力学实验 等

7知识结构

工具性知识

比较系统地掌握一门外语,掌握外文科技写作知识。掌握计算机软、硬件技术的基本知识,具有在本专业与相关领域的计算机应用与开发能力;掌握通过网络获取信息的知识、方法与工具。能够进行中外文文献检索。

自然科学知识

掌握 高等数学、大学物理、工程化学、生命科学、环境科学等方面的知识。

学科技术基础知识

掌握工程制图、工程数学、理论力学、材料力学、机械设计基础、金属工艺学、电工学、电子技术基础、 工程流体力学、工程热力学、传热学、计算机原理与应用、 自动控制原理等方面的知识(对水利水电动力工程方向,工程热力学、传热学知识要求可适当降低)。

专业知识

根据本专业人才培养目标和培养规格,因专业方向的不同而有所差别。

(1)热能动力及控制工程方向(含能源环境工程方向)

主要掌握热能与动力测试技术、锅炉原理、汽轮机原理、燃烧污染与环境、动力机械设计、热力发电厂、热工自动控制、传热传质数值计算、流体机械等知识。

(2)热力发动机及汽车工程方向

掌握内燃机(或透平机)原理、结构、设计、测试、燃料和燃烧,热力发动机排放与环境工程, 能源工程概论,内燃机电子控制,热力发动机传热和热负荷, 汽车工程概论等方面的知识。

(3)制冷低温工程与流体机械方向

掌握制冷、低温原理、人工环境自动化、暖通空调系统、低温技术学、热工过程自动化、流体机械原理、流体 机械系统仿真与控制等方面的知识。使学生掌握该方向所涉及的制冷空调系统、低温系统,制冷空调与低温各种设备和装置,各种轴流式、离心式压缩机和各种 容积式压缩机的基本理论和知识。

(4)水利水电动力工程方向

掌握水轮机、水轮机安装检修与运行、 水力机组辅助设备、水轮机调节、 现代控制理论、发电厂自动化、电机学、发电厂电气设备、继电保护原理等方面的知识,以及水电厂计算机监控和水电厂 现代测试技术方面的知识。

也就是说,本专业学生应具有如下知识和能力,并根据培养规格的不同而有所侧重:

(1)具有较扎实的自然科学基础,熟练掌握高等数学、工程数学、大学物理、工程化学等基础性课程的基本理论和应用方法;具有较好的人文、艺术和社会科学基础及正确应用本国语言、文字的表达能力。

(2)掌握一门外国语,具有较好的听、说、读、写能力,能较顺利地阅读本专业的外文书籍和资料。若外语为英语应达到国家四级以上水平(含四级)。

(3)系统地掌握本专业必需的技术基础理论,主要包括力学理论(理论力学、材料力学、流体力学),热学理论(热力学、传热学等),机械设计基本理论,电工与电子基本理论, 自动控制理论,能源动力工程基础理论等。

(4)熟悉本专业领域内1~2个专业方向或有关方面的专业知识,了解其学科前沿和发展趋势。

(5)具有本专业必需的制图、计算、测试、调研、查阅文献和基本工艺、操作、运行等基本技能。

(6)具有一定计算机相关知识和较强的计算机应用能力,较熟练使用计算机工具,解决工程中的有关问题。

(7)具有较强的自学能力、分析能力和创新意识。

8就业方向

根据专业方向不同,毕业生可在大型企业、相关公司以及相关的研究所、设计院、高等院校和管理部门从事热能工程、动力工程、制冷工程方面的研究与设计、产品开发、制造、试验、管理、教学等工作。主要就业方向为发电厂、内燃机厂、汽车制造厂、物流调控、锅炉厂、大型机械厂、造船厂、空调厂、制冷设备厂、暖通工程等等!

9修业年限

四年开设院校( 非按排名排列)

中原工学院 郑州轻工业学院 河南科技大学 河南农业大学 河南理工大学 华北水利水电大学

郑州大学 北京工业大学 哈尔滨工业大学 河北工业大学 西北工业大学 长安大学

西北大学 北京交通大学 武汉大学 湖南大学 中南大学 湘潭大学

北京航空航天大学 西南交通大学 天津大学 合肥工业大学 中国科学技术大学 安徽工业大学

同济大学 新疆大学 南京航空航天大学 天津理工大学 天津商业大学

德州学院 大连海事大学 四川大学 西南财经大学 中山大学 华南理工大学

重庆大学 南昌大学 东南大学 中国矿业大学 天津城市建设学院 广西大学

南京师范大学 南京理工大学 河海大学 苏州大学 中国石油大学(华东) 吉林大学

哈尔滨工程大学 上海交通大学 山东大学 华中科技大学 武汉理工大学 华东理工大学

东北大学 大连理工大学 大连海洋大学 江苏大学 南京工业大学 太原理工大学 北京理工大学

北京科技大学 吉林建筑工程学院 吉林化工学院 中南林业科技大学 邵阳学院 佳木斯大学

南京工程学院 江苏工业学院 江苏科技大学 南京林业大学 扬州大学 景德镇陶瓷学院

重庆理工大学 沈阳航空工业学院 哈尔滨理工大学 长江大学 武汉工程大学 湖北汽车工业学院

哈尔滨商业大学 沈阳化工学院 沈阳理工大学 辽宁科技大学 辽宁石油化工大学

沈阳农业大学 西华大学 中国计量学院 山西大学 中国民用航空飞行学院 中北大学

太原科技大学 广东工业大学 广东海洋大学 广东石油化工学院 上海理工大学 上海工程技术大学

上海海洋大学 上海海事大学 上海应用技术学院 上海电力学院 西安交通大学 西北农林科技大学

昆明理工大学 西安理工大学 西藏大学 陕西理工学院 长沙理工大学 南华大学

东北电力大学 长春工程学院 河南城建学院 集美大学 兰州理工大学 兰州交通大学

青岛大学 内蒙古科技大学 青岛科技大学 内蒙古工业大学 青岛理工大学 山东建筑大学

山东科技大学 山东理工大学 山东农业大学 烟台大学 中国农业大学 中国政法大学

北京石油化工学院 华北电力大学(保定) 河北理工大学 河北农业大学 燕山大学 河北工程大学

河北建筑工程学院 辽宁工程技术大学 华北电力大学(北京) 中国石油大学(北京) 南昌工程学院

江西蓝天学院 平顶山学院 运城学院 贵州大学 仲恺农业技术学院

中国矿业大学(北京) 武汉科技大学 重庆科技学院 重庆交通大学 沈阳工程学院 辽宁科技学院 华中科技大学文华学院 中国矿业大学徐海学院 河南理工大学方科技学院 江苏大学京江学院 南京师范大学泰州学院 南京工业大学浦江学院 中北大学朔州校区

慈祥的麦片
洁净的汽车
2025-08-29 07:51:47
新能源专业即开发利用或正在积极研究、有待推广的能源,如太阳能、地热能、风能、海洋能、生物质能和核聚变能等在各个行业中的应用技术。

目前来看,新能源专业相关学生的毕业方向大致有以下三方面:

第一,工程学(engineering),比如开发新能源技术,这就要选择工程类院校,并且对新能源有一定侧重的;

第二,能源经济学(energy economics),从经济的角度分析各种新能源的可行性,经济类别的学校都可以选择,有没有能源侧重都无所谓,经济原理到哪都适用;

第三,能源政策(energy policy),主要从国家政策的角度研究环境保护政策,以及促进新能源开发政策等,这就要选择国家政策比较好的学校,并且有能源政策或环境政策侧重。

主要分为以下几类:

1. 汽车减排-电子系

传统的电力电子技术将获得很大的发展空间。从去年开始,电子系不太热门的Power方向的招生规模相应扩大。现在的发展方向是:一方面,通过提高电力转化效率减少排放量,另一方面电动力汽车将进一步发展,尤其是新能源汽车电机及控制器的设计、试验及制造,美国政府、中国政府、日本、西欧都投入了大量的资金。美国大学以弗吉尼亚理工大学、俄亥俄州立大学、中佛罗里达大学、威斯康辛麦迪逊大学实力最为雄厚,亚利桑那州立大学和东北大学等也拥有不俗的科研力量。

2. 低碳-化学、化工系

化工是一个特殊的行业,节能环保是化工企业的核心问题。目前,哥本哈根会议的召开,给碳减排的承诺是肯定的。化工行业与碳排放密切相关,是低碳经济的核心行业之一。例如:氟化技术的发展,降低燃油中的含碳量,是减少传统能源污染的非常有潜力的办法。

美国德州很多学校都有实力强劲的化工系,当地有很多的跨国大石油公司和化工公司,就业前景非常好。(比如综合排名不太高的德州理工大学,化工系实力不容小视)

3. 太阳能,风能等新能源---电子系、材料系、物理系

太阳能虽然已经在生活中投入使用,但因为太阳能电池转化效率低、价格昂贵,不能大规模的推广。因此,太阳能的进一步研究也获得了较多的研究经费。其中光电材料、电子光声伏打学为研究领域之一。以Tufts大学为例,电子系就在该领域引入了新的教授。太阳能专业的同学,工作形势不错,尤其是美国中西部太阳能丰富的地区。比如新墨西哥和亚利桑那州,都有很大的太阳能研究中心。风力发电方面,也是一个大的发展趋势。其中以北卡大学实力最为雄厚。德国和丹麦风力发电技术处在世界前列。

4.燃料电池-化学系、化工系、材料系、环境系

燃料电池显然是现在的研究热点。每年美国的物理协会年会、化学协会年会、材料协会年会上,到处可见燃料电池的研究进展。哥本哈根会议以后,必将加大这块领域的技术革新和产业化进程。

5.智能电网-电子系(电力、通讯、控制技术、系统工程)、计算机系。

奥巴马上任后提出了新的能源计划,将着重集中对每年要耗费1200亿美元的电路损耗和故障维修的电网系统进行升级换代,建立美国横跨四个时区的统一电网;发展智能电网产业,最大限度发挥美国国家电网的价值和效率,将逐步实现美国太阳能、风能、地热能的统一入网管理;全面推进分布式能源管理,创造世界上最高的能源使用效率。

6. 微生物燃料电池(microbial fuel cell)-生物系

从生物/微生物中提取电能在20世纪初就被发现,直到20世纪70年代陆续有研究文章发表。因为能源危机的问题,现在MFC的研究表现的越来越热。在这方面做的比较好的是比利时的一个研究组,他们的电池功率目前是最高的。宾夕法尼亚州立大学的Bruce Logan以及麻省大学阿姆赫斯特分校的Dr Lovley是最为著名的。除此以外,密歇根州立大、亚利桑那州立大学、马里兰大学等也有相关的研究中心。

7.传统石油工业:

短期看,靠新能源的发展并不能满足经济发展的需要,所以传统石油工业将继续保持原有实力。今后的发展重心是高效开采和利用的新方法。通过改进工艺,提高原油、成品油的质量,为社会提供清洁的石油产品,并降低成品油使用过程中二氧化碳的排放量。

实力雄厚的美国大学有德克萨斯大学奥斯汀分校、斯坦福大学、德州A&M大学、塔尔萨大学、科罗拉多矿业大学宾州州立大学、俄克拉荷马大学、路易斯安那州立大学、南加州大学、德州理工大学。尤其是德州的各个大学,拥有地理资源优势,几乎全部石油工业上有企业在德州都有工厂。就业前景非常好。加拿大的阿尔贝托大学实力也很雄厚。

新能源相关专业录取没有特殊要求,能源专业只是作为相关传统专业的延伸,因此录取要求也和传统专业基本一致。

明理的花卷
彪壮的板凳
2025-08-29 07:51:47
在高考志愿填报时,很多考生对能源与环境系统工程专业的相关情况很关心。下面是由我为大家整理的“能源与环境系统工程专业学什么 好就业吗”。

能源与环境系统工程专业主要课程

能源与环境系统工程概论、工程热力学、工程流体力学、传热学、电工学、工程力学、工程材料、机械制图、机械设计基础、检测技术与仪表、环境化学、电站锅炉原理、汽轮机原理、泵与风机、热力发电厂、热工控制系统、计算机控制系统、单元机组集控运行、能源动力装置基础、能源动力设备控制等。

能源与环境系统工程专业就业方向

能源与环境系统工程专业毕业生能源的有效利用,能源环境的控制和保护,建筑人工环境领域的研究,设计安装运行管理等防的工作。

从事行业:

毕业后主要在仪器仪表、机械、建筑等行业工作,大致如下:

1、汽车及零配件

2、专业服务(咨询、人力资源、财会)

3、环保

4、其他行业

5、物业管理/商业中心

6、计算机软件

7、采掘业/冶炼

8、仪器仪表/工业自动化。

秀丽的百褶裙
冷静的猫咪
2025-08-29 07:51:47

能源与动力工程致力于传统能源的利用及新能源的开发,和如何更高效的利用能源。能源既包括水、煤、石油等传统能源,也包括核能、风能、生物能等新能源,以及未来将广泛应用的氢能。动力方面则包括内燃机、锅炉、航空发动机、制冷及相关测试技术。2012年教育部新版高校本科专业目录中调整热能与动力工程为能源与动力工程。

1培养目标

考虑学生在宽厚基础上的专业发展,将 热能与动力工程专业分成以下四个专业方向:

(1)以热能转换与利用系统为主的热能动力工程及控制方向(含能源环境工程、新能源开发和研究方向);

(2)以内燃机及其驱动系统为主的热力发动机及汽车工程,船舶动力方向;

(3)以电能转换为机械功为主的流体机械与制冷低温工程方向;

(4)以机械功转换为电能为主的火力火电和水利水电动力工程方向。

即 工程热物理过程及其自动控制、 动力机械及其自动化、流体机械及其自动控制、电厂热能工程及其自动化四个二级学科。

2培养要求

本专业学生主要学习动力工程及工程热物理的基础理论,学习各种能量转换及有效利用的理论和技术,受到现代动力工程师的基本训练,具有进行动力机械与 热工设备设计、运行、实验研究的基本能力。

毕业生应获得以下几方面的知识和能力:

1.具有较扎实的 自然科学基础,较好的人文、艺术和 社会科学基础及正确运用本国语言、文字的表达能力;

2.较系统地掌握本专业领域宽广的技术理论基础知识,主要包括工程力学、机械学、工程热物理、流体力学、电工与电子学、控制理论、市场经济及企业管理等基础知识;

3.获得本专业领域的工程实践训练,具有较强的计算机和外语应用能力;

4.具有本专业领域内某个专业方向所必要的专业知识,了解其科学前沿及发展趋势;

5.具有较强的自学能力、创新意识和较高的综合素质。

3人才目标

本专业主要培养能源转换与利用和热力环境保护领域具有扎实的理论基础,较强的实践、适应和创新能力,较高的道德素质和文化素质的高级人才,以满足社会对该能源动力学科领域的科研、设计、教学、工程技术、经营管理等各方面的人才需求。学生应具备宽广的自然科学、人文和社会科学知识,热学、力学、电学、机械、自动控制、系统工程等宽厚理论基础、热能动力工程专业知识和实践能力,掌握计算机应用与 自动控制技术方面的知识。毕业生能从事 能源与动力工程及相关方面的研究、教学、开发、制造、安装、检修、策划、管理和营销等工作。也可在本专业或其它相关专业继续深造,攻读硕士、博士学位。

4主干学科

动力工程与工程热物理、机械工程、流体力学

5主要课程

工程力学、 机械设计基础、机械制图、 电工与电子技术、工程热力学、流体力学、 传热学、控制理论、测试技术、燃烧学 等

主要实践性教学环节:包括军训、金工、电工、电子实习、认识实习、生产实习、社会实践、课程设计、毕业设计(论文)等,一般应安排40周以上。

授予学位:工学学士 硕士 博士

6专业实验

传热学实验、工程热力学实验、动力工程测试技术实验、流体力学实验 等

7知识结构

工具性知识

比较系统地掌握一门外语,掌握外文科技写作知识。掌握计算机软、硬件技术的基本知识,具有在本专业与相关领域的计算机应用与开发能力;掌握通过网络获取信息的知识、方法与工具。能够进行中外文文献检索。

自然科学知识

掌握 高等数学、大学物理、工程化学、生命科学、环境科学等方面的知识。

学科技术基础知识

掌握工程制图、工程数学、理论力学、材料力学、机械设计基础、金属工艺学、电工学、电子技术基础、 工程流体力学、工程热力学、传热学、计算机原理与应用、 自动控制原理等方面的知识(对水利水电动力工程方向,工程热力学、传热学知识要求可适当降低)。

专业知识

根据本专业人才培养目标和培养规格,因专业方向的不同而有所差别。

(1)热能动力及控制工程方向(含能源环境工程方向)

主要掌握热能与动力测试技术、锅炉原理、汽轮机原理、燃烧污染与环境、动力机械设计、热力发电厂、热工自动控制、传热传质数值计算、流体机械等知识。

(2)热力发动机及汽车工程方向

掌握内燃机(或透平机)原理、结构、设计、测试、燃料和燃烧,热力发动机排放与环境工程, 能源工程概论,内燃机电子控制,热力发动机传热和热负荷, 汽车工程概论等方面的知识。

(3)制冷低温工程与流体机械方向

掌握制冷、低温原理、人工环境自动化、暖通空调系统、低温技术学、热工过程自动化、流体机械原理、流体 机械系统仿真与控制等方面的知识。使学生掌握该方向所涉及的制冷空调系统、低温系统,制冷空调与低温各种设备和装置,各种轴流式、离心式压缩机和各种 容积式压缩机的基本理论和知识。

(4)水利水电动力工程方向

掌握水轮机、水轮机安装检修与运行、 水力机组辅助设备、水轮机调节、 现代控制理论、发电厂自动化、电机学、发电厂电气设备、继电保护原理等方面的知识,以及水电厂计算机监控和水电厂 现代测试技术方面的知识。

也就是说,本专业学生应具有如下知识和能力,并根据培养规格的不同而有所侧重:

(1)具有较扎实的自然科学基础,熟练掌握高等数学、工程数学、大学物理、工程化学等基础性课程的基本理论和应用方法;具有较好的人文、艺术和社会科学基础及正确应用本国语言、文字的表达能力。

(2)掌握一门外国语,具有较好的听、说、读、写能力,能较顺利地阅读本专业的外文书籍和资料。若外语为英语应达到国家四级以上水平(含四级)。

(3)系统地掌握本专业必需的技术基础理论,主要包括力学理论(理论力学、材料力学、流体力学),热学理论(热力学、传热学等),机械设计基本理论,电工与电子基本理论, 自动控制理论,能源动力工程基础理论等。

(4)熟悉本专业领域内1~2个专业方向或有关方面的专业知识,了解其学科前沿和发展趋势。

(5)具有本专业必需的制图、计算、测试、调研、查阅文献和基本工艺、操作、运行等基本技能。

(6)具有一定计算机相关知识和较强的计算机应用能力,较熟练使用计算机工具,解决工程中的有关问题。

(7)具有较强的自学能力、分析能力和创新意识。

8就业方向

根据专业方向不同,毕业生可在大型企业、相关公司以及相关的研究所、设计院、高等院校和管理部门从事热能工程、动力工程、制冷工程方面的研究与设计、产品开发、制造、试验、管理、教学等工作。主要就业方向为发电厂、内燃机厂、汽车制造厂、物流调控、锅炉厂、大型机械厂、造船厂、空调厂、制冷设备厂、暖通工程等等!

9修业年限

四年开设院校( 非按排名排列)

中原工学院 郑州轻工业学院 河南科技大学 河南农业大学 河南理工大学 华北水利水电大学

郑州大学 北京工业大学 哈尔滨工业大学 河北工业大学 西北工业大学 长安大学

西北大学 北京交通大学 武汉大学 湖南大学 中南大学 湘潭大学

北京航空航天大学 西南交通大学 天津大学 合肥工业大学 中国科学技术大学 安徽工业大学

同济大学 新疆大学 南京航空航天大学 天津理工大学 天津商业大学

德州学院 大连海事大学 四川大学 西南财经大学 中山大学 华南理工大学

重庆大学 南昌大学 东南大学 中国矿业大学 天津城市建设学院 广西大学

南京师范大学 南京理工大学 河海大学 苏州大学 中国石油大学(华东) 吉林大学

哈尔滨工程大学 上海交通大学 山东大学 华中科技大学 武汉理工大学 华东理工大学

东北大学 大连理工大学 大连海洋大学 江苏大学 南京工业大学 太原理工大学 北京理工大学

北京科技大学 吉林建筑工程学院 吉林化工学院 中南林业科技大学 邵阳学院 佳木斯大学

南京工程学院 江苏工业学院 江苏科技大学 南京林业大学 扬州大学 景德镇陶瓷学院

重庆理工大学 沈阳航空工业学院 哈尔滨理工大学 长江大学 武汉工程大学 湖北汽车工业学院

哈尔滨商业大学 沈阳化工学院 沈阳理工大学 辽宁科技大学 辽宁石油化工大学

沈阳农业大学 西华大学 中国计量学院 山西大学 中国民用航空飞行学院 中北大学

太原科技大学 广东工业大学 广东海洋大学 广东石油化工学院 上海理工大学 上海工程技术大学

上海海洋大学 上海海事大学 上海应用技术学院 上海电力学院 西安交通大学 西北农林科技大学

昆明理工大学 西安理工大学 西藏大学 陕西理工学院 长沙理工大学 南华大学

东北电力大学 长春工程学院 河南城建学院 集美大学 兰州理工大学 兰州交通大学

青岛大学 内蒙古科技大学 青岛科技大学 内蒙古工业大学 青岛理工大学 山东建筑大学

山东科技大学 山东理工大学 山东农业大学 烟台大学 中国农业大学 中国政法大学

北京石油化工学院 华北电力大学(保定) 河北理工大学 河北农业大学 燕山大学 河北工程大学

河北建筑工程学院 辽宁工程技术大学 华北电力大学(北京) 中国石油大学(北京) 南昌工程学院

江西蓝天学院 平顶山学院 运城学院 贵州大学 仲恺农业技术学院

中国矿业大学(北京) 武汉科技大学 重庆科技学院 重庆交通大学 沈阳工程学院 辽宁科技学院 华中科技大学文华学院 中国矿业大学徐海学院 河南理工大学方科技学院 江苏大学京江学院 南京师范大学泰州学院 南京工业大学浦江学院 中北大学朔州校区