北京冬奥会延庆赛区使用的氢能源大巴,氢能源发展有哪些意义?
首先对中国而言,实现碳达峰和碳中和目标将推动能源结构和产业结构的调整和优化。要不断提高清洁能源利用率,提高太阳能、风能等可再生能源利用率,布局氢能。工业,促进清洁低碳能源结构。作为全球最大的氢能生产国,未来几年中国与德国和欧盟将有很多交流合作的机会,共同探讨和完善与绿色氢能发展相关的技术和国际规范标准。依托丰富的风能、太阳能等可再生能源和水资源,海南应抓住当前能源转型和政策支持的机遇,积极寻求与德国和欧盟国家在氢能技术交流、绿色融资等方面的深度合作和区域氢经济发展。
其次可以完善氢能产业链。氢能产业链的上游是氢的制备,主要技术方法包括传统能源的热化学重整、水电解和水的光解等;中游是氢气的储运环节,主要技术手段有低温液体、高压气体和固体物质储存。氢下游是氢的应用,可以渗透到传统能源的方方面面,包括交通运输、工业燃料、发电等。主要技术是直接燃烧和燃料电池技术。
再者氢燃料电池汽车是最广为人知的氢工业应用之一。大家也一致认为,氢燃料电池汽车和纯电动汽车是相辅相成的关系。而且,氢能是真正的零排放、零污染。氢能电动汽车的发展意义深远。
氢气是一种清洁高效的二次能源载体,应用场景丰富。以氢替代化石燃料的氢经济被广泛认为是未来能源安全和可持续发展的解决方案。常用的制氢方法有以煤、天然气为代表的化石燃料制氢、焦炉煤气制氢和氯碱制氢的工业副产品制氢、水电解制氢等。其中,化石燃料制氢的生产规模最大,技术成熟度最高。目前,全球约95%的氢气产量来自化石燃料。以化石燃料为原料的传统制氢行业在生产过程中会排放大量的二氧化碳。
延庆县划归北京市原因如下:
1、延庆有长城是延庆划归北京的最主要也是最重要原因。
2、其余的次要原因就是些完善首都北京的城市功能结构。
延庆县
1、地处北京市西北部,为北京市郊区县之一。东邻北京怀柔区,南接北京昌平区,西与河北省怀来县接壤,北与河北省赤城县相邻,县城距北京德胜门74公里。平均海拔500米以上,气候独特,冬冷夏凉,素有北京"夏都"之称。
2、2013年9月,延庆以独特的地质遗迹、历史人文和生态环境资源,北京延庆地质公园成功入选联合国教科文组织世界地质公园网络名录,被授予"中国延庆世界地质公园"称号。
3、延庆县是首都生态涵养发展区,始终坚持生态立县理念,全面实施生态文明发展战略,先后获得"全国绿化模范县"、"ISO14000运行国家示范区"、"国家园林县城"、"国家卫生县城"、"北京市可再生能源示范区"、"国家生态县"等荣誉称号。成为"全国控制农村面源污染示范区"、"全国生态文明建设试点县"、"国家水土保持生态文明县"。
4、2015年11月13日,国务院同意撤销延庆县,设立延庆区。
延庆区属于北京市。
延庆区隶属北京市,地处北京市西北部,为北京市郊区之一。东邻北京怀柔区,南接北京昌平区,西与河北省怀来县接壤,北与河北省赤城县相邻,距北京德胜门74公里。地域总面积1993.75平方公里,区人民政府驻儒林街道湖北西路1号,辖3个街道、11个镇、4个乡。截止到2016年12月底:延庆区常住人口32.7万人。
延庆区境内有八达岭长城、龙庆峡、康西草原、国家自然保护区松山森林公园、千古之谜古崖居、国家级湿地保护区野鸭湖等景区、景点,先后获得“全国绿化模范县”、“ISO14000运行国家示范区”、“国家园林县城”、“国家卫生县城”、“北京市可再生能源示范区”、“国家生态县”等荣誉称号。
民国二年(1913)全国废州改县,始称延庆县。
民国时期属察哈尔省,1952年撤销察哈尔省后改属河北省张家口地区。
1958年10月划归北京市,成为首都西北门户。
2015年11月13日,国务院同意撤销延庆县,设立延庆区。
文 智造前研
1934 年,在国际奥委会雅典会议上决定,恢复部分古代奥运会旧制。规定运动会期间,从开幕日期至闭幕式止,在主体场燃烧奥林匹克圣火。火种必须来自奥林匹亚,采取火炬接力方式从奥林匹亚传到主办国。
自此之后,从 1936 年柏林奥运会起,点燃奥林匹克火焰是每届奥运会开幕式不可缺少的仪式之一,延续至今已经经过了 39 届。而在这 39 届奥运会中,奥运火炬从设计、材质以及燃料都发生了巨大的变化,在兼顾美学与实用的平衡中,绿色环保的概念也逐渐渗透在火炬之中,见微知著,奥运火炬变迁的背后是一场能源变革。
柏林奥林匹克 体育 场的主火炬呈三脚架形状,灵感来自古希腊的图案,大约有 2.20 米高。柏林奥运圣火传递为第一次成功举办的圣火传递,媒体、电台和拍摄奥运会官方电影的团队都对此进行了记录和报道。
在第一次奥运火炬传递之前,1928 年阿姆斯特丹奥运会和 1932 年洛杉矶夏季奥运会都有标志性的主火炬点燃仪式。然而,点燃主火炬的火种并非采集自奥林匹亚,也没有通过传递的方式被运送到开幕式现场。
使用火炬传递圣火的想法并不是突发奇想。受到古代方法启发组委会最初的想法是将圣火保存在树茎上,这种树茎取自地中海的一种树,这种树以燃烧缓慢而闻名。但是,从实际出发,最终采用了火炬传递的方式。由于市场上没有符合要求的火炬,组委会决定制作特定火炬。
(图为 1936 年柏林奥运会火炬,银色钢制材质,整个火炬 70 厘米,其中支架 28 厘米,燃料采用镁管、易燃膏。燃烧时间至少为 10 分钟)
现代奥运会火炬传递仪式,经历了三个发展时期 1896 至 1932 年的酝酿萌芽期、1936 至 1980 年的仪式形成期和 1984 年至今的创新发展期。经过 80 余年的发展完善,火炬传递已经形成了完善的仪式。智造前研对过去的 39 届奥运会的火炬细节做了详细的统计。
奥运火炬的传递需路经各种自然环境,冬奥会火炬尤其要注意应对冬季地温、多风、多雨雪的气候条件。历届奥运火炬设计都必须通过极为严苛的环境技术测试,在风雨交加、大雪纷飞的各种恶劣的气候条件下,均需保证火炬熊熊燃烧产生明亮的火焰,且需要考虑手持奔跑的传递姿态下,确保火炬火焰燃烧时火炬手的安全。
此外,对于一些特殊环境,也需针对性的做出技术调整和突破,以使用极端传递环境的严苛挑战。而燃料作为火炬燃烧的核心成分,一直是火炬设计者精心考虑的重要方面,除了受到化学工业发展水平的影响外,节能、环保、燃烧安全及火焰颜色等均是影响火炬燃料选择的因素。
通过上图我们可以看到,早期的奥运会火炬主要是以金属镁作为燃料。镁的熔点为 65.1 摄氏度。在空气中就能点燃燃烧,发出耀眼的白光。但镁十分活泼,同时由于成本较高,燃烧颜色不够美观,后不再采用。
天然树脂松香也曾短暂的出现在奥运会火炬燃料中,但是树脂在燃烧过程中会产生大量有毒气体和烟雾,而且有刺鼻的气味。燃烧中途易熄灭,火焰的焰色也并不美观,因此天然树脂松香也只是昙花一现。
液化石油气出现在了 1972 年慕尼黑奥运会上,但液化石油气是一种易燃物质,空气中含量超标后遇明火即爆炸。同时在燃烧的过程中对附近的观众的身体 健康 和生态环境也造成了不低的危害和污染,之后也淡出了奥运会的火炬之中。
火药、汽油、酒精和特制橄榄油等等也在奥运会的 历史 上短暂的留下了一笔,1996 年亚特兰大夏奥会首次以丙烯作为燃料,丙烯燃烧虽然可以产生清晰显目的火焰,但却会产生污染严重的黑烟。2000 年悉尼夏奥会火炬采了用更为环保的混合燃气,丙烷和丁烷以 35:65 的比例混合燃烧产生的火焰无烟尘且清晰明亮。
此外,丁烷丙烷混合燃料沸点低,在常温常压下易气化的特点大大减轻了燃料罐的重量,且更为经济。在此之后举办的 2004 年雅典夏奥会、2006 年多哈亚运会等,均采用了相似的燃料方案。
近代奥运会的火炬燃料通常采用的是丙烷,价格低廉且温度范围比较宽,常温加压后更易液化,便于贮存在火炬中。丙烷燃烧只形成水蒸气和二氧化碳,没有其他物质,不会对环境造成污染,属于清洁燃料,符合“绿色奥运”的理念。同时丙烷气体燃烧的火焰颜色为亮黄色,这样的颜色便于识别和电视转播、新闻摄影的需要。这也使得丙烷成为了众多奥运会火炬燃料的首选。
2020 年东京奥运会和 2022 年北京冬奥会的火炬燃料都采用了氢气,但两者之间也存在本质上的差别。当时日本计划借助东京奥运势头,大力发展氢能。不仅有丰田车企提供的氢能大巴、作为运动员往返场馆与奥运村之间的工具,同时日本政府还专门在奥运村附近建设了加氢站。但氢能利用涉及“制备、储存、运输、应用”多个环节,对氢能综合利用水平要求很高。最终由于受到氢燃料电池市场空间小,制氢、储氢、运氢等环节仍有技术瓶颈,同时成本层面也面临着很大的压力,再加上疫情控制不力等因素影响,最终奥运氢能源秀只能搁浅。
而北京 2022 年冬奥会却顺利实现了氢能利用的多个场景,开展制、储、运、加氢全供应链建设,氢能发动机已装配在公交、物流等不同车型;试制氢燃料电池发电车作为赛事场馆应急电源备用,配置输出功率为 400kW 氢燃料电池发电系统,可实现无时差供电切换。北京冬奥会将在延庆和张家口赛区投入 789 辆氢燃料大巴车服务赛事,赛后将转换为城市公交。氢能在北京冬奥会的应用,推动了氢能在交通、发电、供能、工业等多领域全场景示范推广应用,带动全产业链技术进步与产业规模化、商业化发展。
(2022 年北京冬奥会火炬设计灵感:北京将是第一个先后举办过夏奥会和冬奥会的“双奥之城”。2022 年北京冬奥会火炬是向中国首都的奥运遗产致敬,设计上和 2008 年北京奥运会主火炬造型相似,看起来像一个大卷轴。)
目前京张尤其是张家口已形成产业链齐全,具备一定发展潜力的氢能产业发展格局。值得一提的是,2 月 4 日,北京冬奥会张家口赛区火炬台创新采用绿氢作为燃料,点亮冬奥史上首支“绿氢”火炬。氢气被认为是最为清洁环保的燃料,其燃烧产物只产生能量和水,是完全的零排放燃料。而根据氢气制备的来源,以煤炭为原料制取的氢气被称作“灰氢”,以天然气为原料制备的氢气被称为“蓝氢”,用可再生能源电解水制备的氢气被称为“绿氢”,是最为环保绿色的氢气。
百年奥运火炬的变迁是全球能源领域大调整、大变革的缩影,全球能源技术创新进入高度活跃期,呈现多点突破、加速应用、影响深远等特点。供给侧的可再生能源、非常规油气已进入大规模应用阶段,需求侧的电动 汽车 和转化环节的智能电网处在市场导入期,可燃冰开发、碳捕获封存等技术有望取得新突破。能源技术革命已经引发了产业革命,将对能源供应结构、生产和利用方式、产业组织、地区格局产生深远影响,并将引领全球进入新一轮工业革命。
在智利最南端的麦哲伦省,立足于当地丰富的风能资源,西门子能源携手多个合作伙伴共同打造了“Haru Oni”项目,创新了绿氢生产与应用的场景,即利用可再生能源生产气候中立的合成燃料,这不仅能为高碳排放的交通运输行业提供清洁燃料,也将为可再生能源丰富的地区提供清洁能源输出提供巨大商机。
西门子能源首席执行官克里斯蒂安·布鲁赫博士(Christian Bruch)表示,“可再生能源将不仅在有市场需求的地方生产。风能、太阳能等自然资源丰富的地区也将成为可再生能源的产地。因此,新的供应链将在世界各地兴起,支持可再生能源在地区间的运输。”
西门子能源股份公司新能源业务全球首席战略官兼新能源亚太区业务负责人赵作智博士在接受采访时表示,重要行业如交通运输、工业等的??深度脱碳离不开绿氢的使用。未来,氢能在储能和运输方面将扮演越来越重要的角色。
可再生能源的全球化分配
氢气作为能源载体,将在全球能源转型中与电力互为补充。电解水制氢被认为是未来制氢的发展方向,尤其是利用可再生能源电解水制氢。
目前传统的制氢模式,不管是“灰氢”还是“蓝氢”,它们的生产还是使用过程,都存在着高碳排的问题。当电解水制氢过程中使用的电力完全来自风能、太阳能、水能或地热发电等可再生能源时,其产生的氢气才能被称为“绿氢”。
数据显示,2020年,全球交通运输行业二氧化碳排放量高达排放量达到88亿吨,仅次于能源、工业成为第三大碳排放源头,尤其是公路运输占比较高。因此,在二氧化碳减排面临挑战的领域,比如交通运输、炼油和钢铁等行业,绿氢将助力其实现深度去碳化。
“Haru Oni”项目依托智利的风能优势,通过电解槽利用风电将水分解为氢气与氧气,然后利用从空气中捕获二氧化碳与绿氢结合,制取合成燃料。在这个过程中,西门子能源灵活高效的质子交换膜(PEM)电解技术,由于其具有的快速启停,在极短时间达到满载运行的优势,能够很好的解决风能的不稳定性问题。
未来,由绿氢制成的合成燃料,将有着广阔的新应用领域。与传统化石燃料相比,合成燃料的碳足迹显著降低,基于合成燃料的绿色产品,将成为运输、交通或供暖部门深度脱碳的有力选择。
据了解,“Haru Oni”试点项目是全球首个工业级综合性合成清洁燃料商业工厂。预计最早在2022年,工厂将完成第一阶段试点,年产约13万升合成清洁燃料。根据项目规划,,将在2024年和2026年分别实现5500万升和5.5亿升的年产量目标。
智利享有风力发电的优越气候条件,且电力成本低,具备面向全球市场生产、出口以及在本地应用绿氢的巨大潜力。“Haru Oni”项目产生的经济效益,不仅可以促进可再生能源丰富的地区经济增长,也能通过清洁能源传输机制,令工业国家受益于更加多元化的绿色能源供应和稳定的能源成本,实现双赢的局面。
2021年5月,西门子能源启动了中东和北非地区首个工业级太阳能驱动的绿色氢能生产设施,利用太阳能园区的日光太阳能,该项目能够在1.25MWe的峰值功率下,每小时生产大约20.5公斤的氢气。
该试点项目展示了从太阳能制绿氢到氢气的存储和再电气化。这套系统可以为可再生能源的生产提供缓冲,既可用于针对需求增加的快速响应,也支持长期存储。在该地区太阳能光伏发电和风力发电成本低廉的背景下,氢气有望成为未来能源组合中的关键燃料,并有可能为拥有丰富可再生能源资源的地区带来能源出口的机会。
根据国际氢能委员会预计,到2050年,氢能将承担全球18%的能源终端需求,创造超过2.5万亿美元的市场价值,燃料电池 汽车 将占据全球车辆的20%~25%,每年为交通运输行业贡献至少三分之一的碳减排。
西门子能源正在通过构建电能多元化转化系统(Power-to-X)的基础设施帮助客户实现其去碳化目标,并为全球范围内的跨行业去碳化做出贡献。西门子能源拥有面向可持续的、零碳排放的能源供应所有核心技术,从可再生能源、高效燃气电厂,到输配电和低碳的能源工业应用关键设备和解决方案,再到高效的电解水制氢解决方案。
在中国实施首个兆瓦级绿色制氢项目
氢能产业在整个能源行业的地位已逐渐提高。截至2021年初,全球已有30多个国家发布氢能产业发展路线图。日本和欧盟均已公布氢能战略,对2030年和2050年的绿氢产量和氢能源 汽车 的普及率提出具体目标。
去年,国务院办公厅及国家能源局等颁布了《新能源 汽车 产业发展规划(2021-2035年)》《关于建立健全清洁能源消纳长效机制的指导意见(征求意见稿)》等支持政策,鼓励推广绿氢、分布式能源、燃料电池等重点技术的研发和商业应用,氢能产业将迈入商业化和规模化发展的新阶段。
推广绿氢使用的一大难点在于如何降低成本。对此,赵作智博士以光伏发电成本下降举例对照,一是技术的创新突破,二是规模化应用的效应。“将需求端培养起来以后,能够有效拉动供给端,规模化效应就起来了。”他认为,绿氢的成本在于电解槽设备和用电成本,其中,可再生能源产生的绿电成本高低,以及设备的利用小时数,是最大的影响因素。
今年4月,BloombergNEF发布的氢能平价更新报告,建模预测了15~28个国家未来的绿氢降本路线,表示到2050年绿氢价格将低于天然气、灰氢和蓝氢,届时,绿氢成本将较现在降低85%,低于1美元/千克。报告同时表示,到2030年,从成本上来讲蓝氢项目的必要性将大大降低了。受益于光伏成本的大幅降低,未来绿氢降本有望提速。
在碳达峰、碳中和目标的推动下,广东、上海、浙江、江苏、山东等30个省份将氢能写入“十四五”发展规划,总产值规模将达近万亿元。此外,北京、河北、四川等省份还纷纷出台了氢能产业发展实施方案。
对于国内氢能市场的发展,赵作智博士表示,“中国是很好的一块土壤,我们有政策、有资本,也有??各行各业,一些领军企业也有意愿去尝试一些新技术,有资金、有人才、有市场,未来,随着技术的进步,绿氢的发展潜力十分巨大。”
据了解,西门子能源专注于三大领域的技术创新,一个是低碳或零碳的发电;第二是低碳环保的输电;第三是针对工业领域的去碳化,尤其是油气、化工、造纸等能源密集型行业。
赵作智博士透露,目前,西门子能源在国内布局,主要是通过和领军企业合作,发挥各自优势降低成本,推进技术应用。在实现双碳目标的背景下,业内遵循着需求拉动供给的规律,以技术解决方案节能降本,推动应用规模化的形成。
2019年9月,西门子与国家电力投资集团(“国家电投”)签署《绿色氢能发展和综合利用合作谅解备忘录》。双方计划进一步拓展绿色氢能项目的合作。
2020年8月,西门子能源与中国电力国际发展有限公司(下称“中国电力”)旗下的北京绿氢 科技 发展有限公司签署协议,为中国电力氢能创新产业园提供一套橇装式质子交换膜(PEM)纯水电解制氢系统“Silyzer 200”。这一项目所在的北京市延庆区是将于2022年举行的大型 体育 赛事的三大赛区之一。西门子能源的绿色制氢解决方案将帮助确保赛事期间和赛后的公共交通运营所需的氢能供应。
据介绍,这是西门子能源在中国实施的首个兆瓦级别绿色制氢项目,设备已经运达现场,在安装调试后将很快投入运营。作为该制氢-加氢一体化能源服务站的核心设备,西门子能源提供的PEM纯水电解制氢系统Silyzer 200能够以高能量密度和运行效率实现工业规模的高品质氢气生产。此外,该制氢系统具有快速响应能力,带压启动至稳定运行时间不超过1分钟,并可直接与可再生能源耦合。
展望未来发展,“绿氢方面,我认为中国会引领整个世界。现在领先的是中国和欧洲,这两个市场有他们自身得天独厚的地方,两边一起来、两家火车头一起拉动,这也符合一个整个中欧合作的一个大框架。”赵作智博士说。
除了首次将可再生能源纳入分区规划之外,《实施意见》还明确了北京城市副中心,北京大兴国际机场及临空经济区等新建区域可再生能源发展目标,到2022年新增热泵供暖利用面积750万平方米左右。在大兴、顺义、昌平、房山等区域,结合新城规划,到2022年,新增热泵供暖利用面积400万平方米左右。此外,还将加强在门头沟、平谷、怀柔、密云、延庆等农村地区推广热泵系统应用,大力支持热泵系统在美丽乡村建设中的应用,进一步提高农村地区清洁供暖水平,到2022年,新增热泵供暖利用面积150万平方米左右。
“我们将加大对热泵项目的政策支持力度,进一步简化审批流程”,据市发改委相关负责人介绍,未来将重点加强建筑、燃煤替代等清洁供热重点领域的资金支持,对新建、改扩建热泵系统、余热热泵系统项目热源和一次管网投资,给予30%的资金支持;既有燃煤、燃油供暖锅炉实施热泵系统改造的项目,以整村实施的农村地区煤改浅层地源热泵项目,以社区统一实施的城镇地区煤改浅层地源热泵项目,按照工程建设投资的50%给予资金支持;对地热能供暖系统热源及一次管网投资给予50%的资金支持。
冬奥会环保理念是绿色环保。
为了实现碳中和,北京冬奥组委采取了多项措施,例如对场馆进行改造、利用节能交通工具以及使用绿色能源。
除了利用可再生能源提供电力外,冬奥会场馆还将遵守中国有关绿色建筑或冰雪运动场馆的新标准。
报道称,根据组织者在冬奥会开幕前发表的一项可持续发展报告,“清洁能源”和节能车辆将占到本届冬奥会全部车辆的八成以上。
北京冬奥会将主要利用北京和张家口的大型造林项目抵消碳排放,同时也利用赞助商捐赠的碳排放权额度。
就在中国希望本届冬奥会能够利用其“绿色”措施铺就一条前进道路的同时,可持续发展已经日益成为奥运会的组成部分。
意义
对于中国而言,环保政策是一项国策。中国在2018年通过的宪法修正案中首次写入了“生态文明”内容,这意味对环保的重视。2020年中国宣布努力争取2060年前实现碳中和。
本届冬奥会一共利用了6个北京2008年奥运会竞赛和非竞赛场馆。开幕式上出现的小小火炬直接成为“冬奥圣火”的一幕,也体现了环保的理念。
在堪称国家秀场的冬奥会上,把环保作为优先考虑,其原因可能有两点。
一是向国际社会展现“负责任大国”的立场。二是在国内增强环保意识。