建材秒知道
登录
建材号 > 煤炭 > 正文

煤炭地下气化的发展前景

健壮的冬天
乐观的滑板
2023-01-01 14:46:26

煤炭地下气化的发展前景

最佳答案
懦弱的咖啡
繁荣的睫毛
2025-08-25 09:53:45

综合利用前景广阔

根据煤气成分和应用条件,地下气化煤气可用于联合循环发电、提取纯H2,以及用作化工原料气、工业燃料气、城市民用煤气等。

煤气化是煤炭转化的重要形式之一,它在各类生产过程中起着承前启后的作用。煤制化工合成原料气在煤化工中有着重要的地位。国内外正在把煤化工发展成为以煤炭气化为基础的c1化学工业,使煤化工由能源型转向化工型。煤气化制得的合成气(c0+H2)作为化学工业的基本原料,在与石油化工的竞争中不断发展和提高。但煤化工要与石油化工和以天然气为原料的化工合成相竞争,必须有能耗低、投资小的气化技术为基础。而煤炭地下气化技术正是具有这样的特点,通过煤炭地下气化生产合成气,可以充分发挥煤炭地下气化的技术优势,为煤化工的发展提供新的扩展空间。

环境效益

煤炭地下气化燃烧后的灰渣留在地下,采用充填技术,大大减少了地表下沉,无固体物质排放,因此煤炭地下气化减少了地面环境的破坏,这是其他洁净煤技术无法比拟的。地下气化煤气可以集中净化,脱除焦油、硫和粉尘等其他有害物质,甚至可降CO经地面变换后,采用分离技术将CO2分离出来储存或作其他用途,从而得到洁净煤气,因此,地下气化技术有利于解决大气污染问题。

地下气化煤气中H2含量在40%以上,分离后得到各种纯度的H2。H2是当今人类最理想的洁净能源,H2可储、可输性好,不仅是高能燃料,又可作为中间载能体使用,它转变灵活、使用方便、清洁卫生,在自然界中形成水-氢-水自然循环,所以氢能使一种可再生能源,符合人类可持续发展的需要。

煤炭资源的利用率

煤炭是我国国民经济发展的基础产业,但受传统井工开采技术水平的限制,随着开采强度的逐渐增大,大量的矿井报废或行将报废。据统计1953——1989年有报废矿井297处,1990年——2020年还有244处将报废,遗弃资源储量到目前为止已有300亿吨以上。利用煤炭地下气化技术,可使我国遗弃煤炭资源50%左右得到利用。煤炭地下气化技术还可以用于开采井工难以开采或开采经济性、安全性较差的薄煤层、深部煤层、“三下”压煤和高硫、高灰、高瓦斯煤层。因此,地下气化大大提高了煤炭资源的利用率。

最新回答
醉熏的棒球
耍酷的西装
2025-08-25 09:53:45

1 很难控制气化过程中在地下产生的种种反应,合成气成分波动过大。

2 受煤层和地质影响大,容易造成井井之间相互漏水、通气等情况。

3 气化后出来的气体成分不稳定,有待改善气化剂种类与含量。

4 地下燃烧、气化情况不好控制,应加大地下气化过程的监控力度。

5 在该技术方面,大部分研究只注重化学工艺,很少关注行业发展动态。

煤炭地下气化作为清洁能源技术的主要研究方向和符合可持续发展战略的环境友好绿色技术,得到了国家领导人和著名科学家的关心和支持。

中国矿业大学 ( 北京校区 ) 煤炭工业地下气化工程研究中心,在国家高技术研究发展计划( 863 计划)项目——“煤炭地下气化稳定控制技术的研究”的支持下,建成了具有世界先进水平的煤炭地下气化过程综合试验台,可完成不同煤种及不同煤层赋存条件下煤炭地下气化过程发展规律及工艺参数的模型试验研究。

1987 年完成了江苏省“七五”重点攻关项目——徐州马庄矿煤炭地下气化现场试验,获江苏省科技进步三等奖; 1994 年完成了国家“八五”重点科技攻关项目——徐州新河二号井煤炭地下气化半工业试验,首创“长通道、大断面、两阶段”新工艺,被评为国家“八五”重大科技成果。

获“矿井长通道、大断面煤炭地下气化工艺”,“两阶段煤炭地下气化工艺”,“推进供风式煤炭地下气化炉”三项国家专利。

1996 完成了河北省重点科技项目—— “唐山刘庄煤矿煤炭地下气化工业性试验” ; 2000 年 9 月完成了“新汶孙村煤矿煤炭地下气化技术研究与应用”项目,并进行了民用及内燃机发电,获山东省科技进步一等奖和煤炭工业十大科技成果奖。

2005年,中国矿业大学在重庆中梁山北矿进行的煤炭地下气化试验首次实现了在高瓦斯矿井进行地下多煤层联合气化,所产煤气作为当地户居民和蒸汽锅炉燃气,这一试验的成功对今后煤炭开采过程的碳排放量控制具有重要意义。

2007年1月,新奥集团投资2亿多元组建乌兰察布新奥气化采煤技术有限公司,与中国矿业大学共同开展“无井式煤炭地下气化试验项目”研究,得到了内蒙古科技厅、乌兰察布市科技局的大力支持。同年10月24日,我国首套日产15万方煤气的无井式煤炭地下气化试验系统和生产系统一次点火成功。到目前为止,现场试验运行400多天,具备了供热、发电、生产化工原料的能力,取得了一批创新性研究成果,申报了9项专利。

2010年5月至11月,中国矿业大学王作棠教授煤炭地下气化团队与华亭煤业集团有限责任公司合作开发了“难采煤有井式综合导控法地下气化及低碳发电工业性试验项目”。项目于当年11月通过甘肃省科技厅的鉴定,鉴定委员会专家一致认为,该项目创新点突出,在地下煤层燃烧高效稳态蔓延导引控制技术达到国际领先水平,同意通过科技成果鉴定。项目主要技术点采用新型的窄条带虚底炉与多炉协同作业、地面导控注气与充填减沉固污、高氢燃气发电等多项产业技术集群,克服了常规地下气化存在煤气燃值低、稳定性弱、规模小、测控难等问题,所产煤气发热量大于9.0MJ/Nm3,可用于生产煤基天然气和低碳燃气发电,实现了燃烧过程可导可控、产气优质稳定、生产过程安全清洁、污染物近零排放。项目立足资源枯竭矿井中由于地质条件复杂和回采工艺限制而滞留的难采煤资源开发利用的重大技术难题进行研究攻关和工业性试验,为延长矿区服务年限,提高煤炭资源回收率,推动煤炭企业可持续发展提供了有力的技术支撑,为华亭矿区大规模物理开采过程中遗留的近6亿吨边角、零散煤炭资源的气化开采提供了实践依据。 1,目前我国的地下气化技术仍处于工业试验阶段,有很多问题需要去研究和探索。 因此国家和有关部门应给予大力支持,制定相应的政策,提供一定的措施和资金,推动这方 面的研究工作。并应组织协调,做好攻关工作,以期在较短的时间内,使地下气化技术真正 用于生产和应用。?

2,煤炭地下气化的目的在于应用和产业化。当前为了寻找煤炭的新出路,加强煤炭 综合利用的研究,很多企业都看好煤炭地下气化技术,但应在开展项目之前要落实用户,否 则将得不到应有的效果。

3,提高热值和生产适合于用户的气体组分是气化技术的关键。目前地下气化生产的 空气煤气热值偏低,因此使应用范围受到限制。为了提高煤气热值和稳定气体组分,在过 去 的试验中采用生产半水煤气、水煤气和富氧煤气等工艺,但目前这些工艺在技术装备上,尚 需要进一步开展研究。

4,对地下气化炉燃烧和运行进行有效的控制,是煤炭地下气化稳定产气和得到相对 稳定 的气体组分的保证手段。目前控制系统仍然比较简单,研究单位应进一步开展攻关,为地下 气化炉建立起1套行之有效的测控系统,并应重点放在燃烧位置和燃烧速度的控制技术上, 其中可靠的传感元器件是很重要的。?

5,地下气化炉和地面设施的安全技术是搞好地下气化的保障。要采取充分和必要的 措施,防止泄漏。还应做好防爆和防火工作,并制定严格的规程,确保安全产气。?

6,开展燃烧后地下气化炉体结构变化及地面沉降状况的研究,适时解剖1~2台气 化 炉,了解燃烧后炉体内的状况和地面的塌陷规律,这对于提高对煤炭地下气化技术认识,修 改炉型设计和改进运行规律的控制将起到很大作用。

7,建立煤炭地下气化试验研究基地,选择1~2个有代表性的煤种(烟煤、无烟煤等) ,煤层(厚度、倾角等)和用户(民用燃料、发电、化工原料)作为试验基地,开展多项技术攻 关与研究,在成功的基础上进行推广应用。(中国煤炭市场网发表于2002年4月29日)

阳光的狗
儒雅的路人
2025-08-25 09:53:45
地下煤炭气化的设想,最早由俄国著名化学家门捷列夫于1888年提出,他认为,“采煤的目的应当说是提取煤中含能的成分,而不是采煤本身”,并指出了实现煤炭气化工业化的基本途径。 自上世纪30年代以来,美国、德国、原苏联等主要产煤国均大力投入这一领域的技术研究,取得了大量的科研成果,储备了煤炭地下气化的一些关键性技术。我国自1958年以来开始进行自然条件下煤炭地下气化试验,1980年以后,先后在徐州、唐山、山东新汶等十余个矿区进行了试验,初步实现了地下气化从试验到应用的突破。 煤炭地下气化是将处于地下的煤炭进行有控制地燃烧,通过对煤的热作用及化学作用产生可燃气体的过程,集建井、采煤、气化工艺为一体的多学科开发洁净能源与化工原料的新技术,其实质是只提取煤中含能组分,变物理采煤为化学采煤,因而具有安全性好、投资少、效率高、污染少等优点,被誉为第二代采煤方法。 煤炭地下气化技术不仅可以回收矿井遗弃的煤炭资源,而且还可以用于开采井工难以开采或开采经济性、安全性较差的薄煤层 、深部煤层、“三下”压煤和高硫、高灰、高瓦斯煤层。地下气化煤气不仅可作为燃气直接民用和发电,而且还可以用于提取纯氢或作为合成油、二甲醚、氨、甲醇的原料气。因此,煤炭地下气化技术具有较好的经济效益和环境效益,大大提高了煤炭资源的利用率和利用水平,是我国洁净煤技术的重要研究和发展方向。

虚幻的豆芽
犹豫的奇异果
2025-08-25 09:53:45
煤炭气化是指煤在特定的设备内,在一定温度及压力下使煤中有机质与气化剂(如蒸汽/空气或氧气等)发生一系列化学反应,将固体煤转化为含有CO、H2、CH4等可燃气体和CO2、N2等非可燃气体的过程。煤炭气化时,必须具备三个条件,即气化炉、气化剂、供给热量,三者缺一不可。

如图:

气化过程发生的反应包括煤的热解、气化和燃烧反应。煤的热解是指煤从固相变为气、固、液三相产物的过程。煤的气化和燃烧反应则包括两种反应类型,即非均相气-固反应和均相的气相反应。

不同的气化工艺对原料的性质要求不同,因此在选择煤气化工艺时,考虑气化用煤的特性及其影响极为重要。气化用煤的性质主要包括煤的反应性、粘结性、结渣性、热稳定性、机械强度、粒度组成以及水分、灰分和硫分含量等。

煤炭气化工艺可按压力、气化剂、气化过程供热方式等分类,常用的是按气化炉内煤料与气化剂的接触方式区分,主要有:

1) 固定床气化:在气化过程中,煤由气化炉顶部加入,气化剂由气化炉底部加入,煤料与气化剂逆流接触,相对于气体的上升速度而言,煤料下降速度很慢,甚至可视为固定不动,因此称之为固定床气化;而实际上,煤料在气化过程中是以很慢的速度向下移动的,比较准确的称其为移动床气化。

2) 流化床气化:它是以粒度为0-10mm的小颗粒煤为气化原料,在气化炉内使其悬浮分散在垂直上升的气流中,煤粒在沸腾状态进行气化反应,从而使得煤料层内温度均一,易于控制,提高气化效率。

3) 气流床气化。它是一种并流气化,用气化剂将粒度为100um以下的煤粉带入气化炉内,也可将煤粉先制成水煤浆,然后用泵打入气化炉内。煤料在高于其灰熔点的温度下与气化剂发生燃烧反应和气化反应,灰渣以液态形式排出气化炉。

4) 熔浴床气化。它是将粉煤和气化剂以切线方向高速喷入一温度较高且高度稳定的熔池内,把一部分动能传给熔渣,使池内熔融物做螺旋状的旋转运动并气化。目前此气化工艺已不再发展。

以上均为地面气化,还有地下气化工艺。

煤炭气化技术广泛应用于下列领域:

1)作为工业燃气 一般热值为1100-1350大卡热的煤气,采用常压固定床气化炉、流化床气化炉均可制得。主要用于钢铁、机械、卫生、建材、轻纺、食品等部门,用以加热各种炉、窑,或直接加热产品或半成品。

2)作为民用煤气 一般热值在3000-3500大卡,要求CO小于10%,除焦炉煤气外,用直接气化也可得到,采用鲁奇炉较为适用。与直接燃煤相比,民用煤气不仅可以明显提高用煤效率和减轻环境污染,而且能够极大地方便人民生活,具有良好的社会效益与环境效益。出于安全、环保及经济等因素的考虑,要求民用煤气中的H2、CH4、及其它烃类可燃气体含量应尽量高,以提高煤气的热值;而CO有毒其含量应尽量低。

3)作为化工合成和燃料油合成原料气 早在第二次世界大战时,德国等就采用费托工艺(Fischer-Tropsch)合成航空燃料油。随着合成气化工和碳-化学技术的发展,以煤气化制取合成气,进而直接合成各种化学品的路线已经成为现代煤化工的基础,主要包括合成氨、合成甲烷、合成甲醇、醋酐、二甲醚以及合成液体燃料等。

化工合成气对热值要求不高,主要对煤气中的CO、H2等成分有要求,一般德士古气化炉、Shell气化炉较为合适。目前我国合成氨的甲醇产量的50%以上来自煤炭气化合成工艺。

4)作为冶金还原气 煤气中的CO和H2具有很强的还原作用。在冶金工业中,利用还原气可直接将铁矿石还原成海棉铁;在有色金属工业中,镍、铜、钨、镁等金属氧化物也可用还原气来冶炼。因此,冶金还原气对煤气中的CO含量有要求。

5)作为联合循环发电燃气 整体煤气化联合循环发电(简称IGCC)是指煤在加压下气化,产生的煤气经净化后燃烧,高温烟气驱动燃气轮机发电,再利用烟气余热产生高压过热蒸汽驱动蒸汽轮机发电。用于IGCC的煤气,对热值要求不高,但对煤气净化度-如粉尘及硫化物含量的要求很高。与IGCC配套的煤气化一般采用固定床加压气化(鲁奇炉)、气流床气化(德士古)、加压气流(Shell气化炉)广东省 加压流化床气化工艺,煤气热值2200-2500大卡左右。

6)作煤炭气化燃料电池 燃料电池是由H2、天然气或煤气等燃料(化学能)通过电化学反应直接转化为电的化学发电技术。目前主要由磷酸盐型(PAFC)、熔融碳酸盐型(MCFC)、固体氧化物型(SOFC)等。它们与高效煤气化结合的发电技术就是IG-MCFC和IG-SOFC,其发电效率可达53%。

7)煤炭气化制氢 氢气广泛的用于电子、冶金、玻璃生产、化工合成、航空航天、煤炭直接液化及氢能电池等领域,目前世界上96%的氢气来源于化石燃料转化。而煤炭气化制氢起着很重要的作用,一般是将煤炭转化成CO和H2,然后通过变换反应将CO转换成H2和H2O,将富氢气体经过低温分离或变压吸附及膜分离技术,即可获得氢气。

8)煤炭液化的气源 不论煤炭直接液化和间接氧化,都离不开煤炭气化。煤炭液化需要煤炭气化制氢,而可选的煤炭气化工艺同样包括固定床加压Lurgi气化、加压流化床气化和加压气流床气化工艺。

典雅的自行车
开心的巨人
2025-08-25 09:53:45
这个满意回答实在是... ..无语!

“长通道、大断面、两阶段”气化工艺是中国矿业大学博士生导师、我国煤炭地下气化技术奠基人余力教授提出的,“长通道”是指气化通道长度尽量大,“大断面”是指气化通道断面面积尽量大,其目的都是为了增大还原反应区的面积,以利于高效产气(这点我完全同意楼上realbighead的评论),而“两阶段”是采用空气、蒸汽交替形式鼓入地下气化炉,第一阶段鼓入空气是为了大量蓄热,产生空气煤气(热值低,一般通过放散系统直接焚毁),鼓入一定时间后停止鼓空气;第二阶段,改鼓入蒸汽,利用第一阶段煤层中积蓄的热能供第二阶段反应,从而产生具有高热值、富氢等特点的水煤气。“长通道、大断面、两阶段”气化工艺是我国第一代气化技术,也是中国矿业大学特有的气化技术!

危机的枕头
缓慢的夏天
2025-08-25 09:53:45

煤炭气化工艺可按压力、气化剂、气化过程供热方式等分类,常用的是按气化炉内煤料与气化剂的接触方式区分,主要有:

1) 固定床气化:在气化过程中,煤由气化炉顶部加入,气化剂由气化炉底部加入,煤料与气化剂逆流接触,相对于气体的上升速度而言,煤料下降速度很慢,甚至可视为固定不动,因此称之为固定床气化;而实际上,煤料在气化过程中是以很慢的速度向下移动的,比较准确的称其为移动床气化。

2) 流化床气化:它是以粒度为0-10mm的小颗粒煤为气化原料,在气化炉内使其悬浮分散在垂直上升的气流中,煤粒在沸腾状态进行气化反应,从而使得煤料层内温度均一,易于控制,提高气化效率。

3) 气流床气化。它是一种并流气化,用气化剂将粒度为100um以下的煤粉带入气化炉内,也可将煤粉先制成水煤浆,然后用泵打入气化炉内。煤料在高于其灰熔点的温度下与气化剂发生燃烧反应和气化反应,灰渣以液态形式排出气化炉。

4) 熔浴床气化。它是将粉煤和气化剂以切线方向高速喷入一温度较高且高度稳定的熔池内,把一部分动能传给熔渣,使池内熔融物做螺旋状的旋转运动并气化。此气化工艺已不再发展。

以上均为地面气化,还有地下气化工艺。

兴奋的悟空
无奈的耳机
2025-08-25 09:53:45

1.2.2.1 井工开采主要特点分析

我国近90%的煤炭是通过井工开采生产的。井工煤矿开采必须从地面向地下开掘一系列井巷(图1-2),其生产过程是地下作业,自然条件复杂。开采的主要特点是需要进行矿井通风,存在瓦斯、煤尘、顶板、火、水五大灾害。[1,2]

图1-2 煤炭井工开采

(1)矿井通风。因为井工煤矿生产是地下作业,地面空气在进入井下并流经各作业场所的过程中,将掺入有害气体和矿尘,成分逐渐发生变化。同时,由于地热作用,人体和机械散热,水分的蒸发等,井下空气的温度和湿度都会显著增高,造成不良的气候条件,因此,要对矿井进行通风。

(2)瓦斯、矿尘灾害。在开采煤炭的过程中,要产生瓦斯和矿尘。瓦斯和矿尘在一定条件下会发生爆炸,造成人员伤亡和财产损失矿尘还能使矿工患煤、矽肺病,给矿工带来痛苦。

(3)顶板灾害。在地下采掘过程中,由于矿山压力的作用,顶板会垮落。如果顶板管理工作出现漏洞,则会发生顶板事故。

(4)矿井火灾。矿井火灾也是煤矿生产中的主要灾害之一,一旦发生矿井火灾,不但会造成煤炭资源的损失,打乱各项工作的布置,还往往会造成瓦斯、煤尘爆炸,使灾害程度和范围扩大。

(5)矿井水灾。矿井在建设和生产过程中,地面水和地下水会通过各种通道涌入矿井。为保证矿井正常建设与生产,必须采取各种措施防止水进入矿井,或者将进入矿井的水排至地面,但当矿井涌水超过正常排水能力,或在采掘工作时挖透老塘积水或岩溶水等地下水体时,就会造成水害。

1.2.2.2 井工开采主要作业内容

(1)井工开采方法与工艺

采煤方法与工艺的不断完善是采矿发展的主题,采煤工艺的发展带动了煤炭开采各环节的变革。由于长壁开采是一种最经济的井工采煤方法,目前壁式采煤法在全球井工开采中普遍应用,占据着核心地位。

长壁采煤工艺中,针对缓倾斜、倾斜煤层,目前采用的采煤方法与工艺有缓倾斜薄、中厚煤层单一长壁综采,缓倾斜厚煤层倾斜分层长壁综采,缓倾斜厚煤层一次采全高长壁综采,缓倾斜厚煤层放顶煤长壁综采等。

目前长壁工作面向集中、高效方向发展,工作面长度不断增大。世界上第二条采高达7m的综采工作面已经于2010年12月在上湾煤矿建成。7m大采高重型综采工作面长319m,比神华神东煤炭集团公司补连塔煤矿第一个7m大采高工作面长18m,走向长度4231m,是目前世界上最长的大采高工作面。正常情况上每刀可割煤2700t,较6.3m采高综采工作面单刀多产300t,资源回收率提高14%,较6.3m采高工作面多采出煤炭100万t,资源回收率提高8%以上2011年创造了126.5万t世界综采月单产纪录,综采年单产达到1400万t水平。

神华集团神东公司大柳塔矿,工作面走向长度2000~6200m,平均4100m,工作面长度240m,2002年综采工作面年产量达到874万t,超过了美国20英里矿保持的综采工作面年产649.43万t的世界先进水平兖矿集团兴隆庄矿,综放一队产量达639.92万t,刷新综放工作面年产新纪录,薄煤层刨煤工作面单产已突破百万t大关。

针对厚及中厚急倾斜煤层,目前普遍采用伪倾斜柔性掩护支架采煤法针对急倾斜特厚煤层,采用水平分段放顶煤采煤法。倒台阶采煤法、巷道短壁小阶段采煤法在急倾斜煤层开采中也较多采用。新疆乌鲁木齐矿业集团碱沟矿开采84°急倾斜煤层,使用水平分层放顶煤工艺,工作面年产达45.9万t,刷新我国急倾斜工作面生产纪录。

我国是世界上应用水力采煤最早的国家之一,产量据世界前列,在倾角10°以上、煤层中厚以上、顶底板稳定的低瓦斯矿井有较好的应用前景,特别是在煤层厚度、倾角变化较大的不规则煤层中应用更能发挥其能力。

(2)技术装备

井工开采技术装备总体趋势是根据煤炭开采条件,以高产高效、减人增效、安全可靠为目的,向大型化、集约化、自动控制、无人工作面发展。

综采工作面:主要设备均实现机电一体化,具有自诊断功能和通讯功能,为工作面生产自动化,提高系统的开机率,保障系统的安全可靠运行及全矿井的自动控制及信息化管理奠定了基础。应用辅巷多通道快速搬家技术,从旧工作面采通,挂网,重型综采设备的回撤、搬迁,到新工作面的设备安装调试并达到试生产条件最快仅需7d时间,真正实现了快速、安全、优质、高效。许多工作面使用高电压(3300V或4160V)。

无人工作面:我国引进德国采矿技术公司(DBT)全自动化刨煤机综采系统(刨煤机、输送机及计算机远程控制技术),其余配套设备均由国内各生产厂家协助制造。可适应35°以下薄及中厚煤层,工作面经济长度210m以上,生产能力900t/h,电机功率630kW,目前正在国内铁法煤业(集团)公司等矿山应用。

采煤机械:我国大柳塔矿引进的6LS 5型采煤机,装机总功率为1500kW,生产能力达2800t/h,电牵引调速微机控制,采用先进的信息处理和传感技术,对采煤机的运行工况及各种技术参数进行采集、处理、显示、存储和传输,并通过编程对采煤机进行全面控制、监控和保护,以及实现采煤机电气系统的自动调节,截割电机功率自动平衡和机械故障自动查寻诊断等功能。螺旋钻机无人采煤技术在我国也较为成熟,在薄煤层开采中的发展前景十分广阔。日前,一种新型三钻螺旋钻式采煤机已在我国研制成功。该采煤机应用于薄煤层中,对提高煤层资源回收率效果明显。该机的一次采宽为1.9m,采深可达85m,适用于煤层厚度为0.5~0.9m,煤层倾角-15°~+15°,煤层走向倾角小于8°的各种硬度的薄煤层,其日产量可达250~350t。

液压支架:多采用大采高强力两柱掩护式支架,工作阻力达6000kN以上,最高达9800kN。

刮板输送机:要求大运量、长运距、大功率、长寿命、高可靠性,几乎所有的刮板机都使用双中链,刮板机功率达1790kW,小时输送能力可达2500t以上。

胶带输送机:要求长距离、大运量、大功率,以保证大煤流的运输畅通,有的工作面可以伸缩带式输送机的铺设长度已达5000m,运输能力为2000~3000t/h,带速达5m/s,装机总功率1125kW。桥式转载机输送能力达2500t/h,长度27m,电机功率315kW。

(3)采场围岩控制技术

国内大型煤矿采场多采用重型液压支架支护,巷道支护则以锚杆支护为主。中、小型煤矿回采面多采用单体液压支柱、金属支柱支护,巷道支护多以锚杆为主,砌碹、金属支架为辅。

针对坚硬顶板、破碎顶板、急倾斜、大采高、大采深采场等不同条件的支护技术和材料不断推出。耐炮崩、轻型化单体液压支柱和厚煤层巷道锚索、可伸缩锚杆陆续生产。

监测仪表趋于直观、轻便、小型化。

1.2.2.3 井工开采存在问题剖析

(1)采煤技术水平较低,技术装备较差,煤机制造技术落后[3]

与国外同行业相比,在机电一体化、智能化、自动化的控制技术,产品可靠性技术,数字集成技术与计算机辅助设计技术方面,仍然存在较大差距。

中、小型矿井落煤方式还以炮采为主,工作面走向长度偏短采煤方法多为长壁工作面开采,全部陷落法管理顶板,因而对上覆岩层和地表的破坏较为严重。

在采煤机械化系统中,运输系统、采场围岩控制系统、巷道准备系统和辅助运输系统技术装备较差,功率及生产能力较小,机械化程度和工效普遍不高。

引进消化国外先进设备方面不够。在井下自救系统中,避灾系统、个人防护装备水平仍然很低,对瓦斯等重大灾害预测预报的仪器、仪表还不能完全达到要求,对安全事故的防治技术及装备不能充分有效防治灾害或最大限度减轻灾害。

(2)重大科技攻关课题难以实现,重大安全技术问题难以解决

目前,我国煤矿在“一通三防”(矿井通风,防治瓦斯、防治煤尘、防灭火)及防治水、矿井深部地压、冲击地压、高温害和支护等方面存在许多技术难题,严重威胁着煤矿安全生产,这些涉及行业技术发展共性的基础性和前瞻性重大科技工作课题,国家支持范围和力度与过去相比大大减少。重点煤炭企业下放后,受单个企业和科研院所经济实力限制,难以开展技术攻关。

煤炭地下气化技术和煤炭地下浆化(液化)技术,受经济成本等因素影响未能有效推广应用。

(3)专业技术人才面临青黄不接的状况

国有煤矿中,大专以上程度的技术人员仅占职工总数的3%,而个体煤矿相应技术人员的比例更低,该比例在发达国家则占60%以上。在近40个年产500万t以上的大中型煤炭企业中,工程技术人员不足2000人。由于煤炭行业安全的特殊性,地矿类专业学生比例逐年减少,据9所原煤炭高校的不完全统计,毕业生到煤炭行业就业的不到10%。某矿业集团近10年流失人才900多人,其中技术人才270人,10年内未进1名大学生。技术人员匮乏和层次低,使技术措施不到位,制约煤矿生产安全技术和管理水平的提高。