热能与动力工程的英语翻译是什么
热能的英文名称为“Heat”
动力工程的英文名称为“Engineering ”
有一个在线翻译工具非常好用,你不但可以用它来翻译词语,而且还可以进行全文翻译。
能源与动力工程英语是:Energy and Power Engineering
能源与动力工程专业英语是热能与动力工程专业学生的一门重要必修课,其目的是为培养该专业学生的专业阅读与写作能力。
本课程介绍流体、热力学及热的传递、燃料燃烧、制冷空调、锅炉、汽轮机以及新能源等专业英语知识。通过本课程的学习,可以使学生掌握并熟练应用热能与动力工程技术领域中最常用的专业词汇、特有的语法现象、学术论文的写作风格及翻译技巧,从而全面提升学术的专业英语阅读、写作和听说交流能力。
培养学生掌握本专业必需的能源利用、能源工程管理、光伏产品与系统的设计、实施、应用、维护与维修及管理等基本技能;具有一定的新能源产品的分析、监测能力,掌握一般能源产品的生产、制备和检测方法。
能够了解各种新能源的操作环节、各种新能源特性和应用,并具备一定的设备、器件和系统操作技能具有在能源系统工程、能源低碳利用、能源生产过程及其相关各个领域从事科学研究、产品设计及管理工作的能力,了解其学科前沿及发展趋势,并具备创新思维和信息获取处理能力。
主要课程
现代材料科学导论、电子与电工技术、微机原理及接口技术、能源科学技术导论 、单片机原理及应用、自动控制原理、半导体硅材料基础、计算机控制技术、现代分析检测技术、能源工程管理、能源与环境系统工程概论、能源生产过程控制
汽车不是唯一的空气污染。煤炭和石油,用于家庭取暖和工厂,并产生电力,含有少量的硫。当燃料燃烧,二氧化硫,一种有毒气体,就产生了。它是刺激到肺部。一些城市已通过法律,允许煤炭和石油只有在其被烧毁硫含量低。
Most electricity is generated by steam turbines. About half of the sulfur dioxide in the air comes from burning fuel to make steam. Nuclear power plants do not burn fuel, so there is no air pollution of the ordinary kind. But the radioactive materials in these plants could present a danger in an accident. Also, there is a problem in disposing of the radioactive wastes in a way that will not endanger the environment.
大部分电力是由蒸汽涡轮机。关于空气中的二氧化硫,使蒸汽一半来自燃料燃烧。核电厂不烧燃料,所以不存在的那种普通的空气污染。但是,在这些植物的放射性物质可能会提出一个意外的危险。此外,还有一个在放射性废物处置的方式,不会危害环境的问题。
Another type of pollution, called thermal (heat) pollution, is caused by both the fuel-burning and nuclear plants. Both need huge amounts of cold water, which is warmed as it cools the steam. When it is returned to the river, the warm water may stimulate the growth of weeds. It may also kill fish and their eggs, or interfere with their growth.
另一种污染类型,称为热(热)污染,是造成双方的燃料燃烧和核电厂。双方都需要的冷水,这是温暖,因为它大量的蒸汽冷却。当返回到河边,温暖的水会刺激杂草生长。它也可以杀死鱼,它们的卵,或干扰他们的成长。
Physicists are studying new ways of generating electricity that may be less damaging to the environment. In the meantime, many power plants are being modernized to give off less polluting material. Also, engineers try to design and locate new power plants to do minimum damage to the environment.
物理学家们正在研究发电对环境损害较小的新方法。与此同时,许多发电厂也在实现现代化以减少污染物质。此外,工程师们尝试设计并找到对环境的损害最小的新的发电厂。
至于“研究如何把燃料的化学能和液体的动能安全、高效、低(或无)污染地转换成动力的基本规律和过程,研究转换过程中的系统和设备的自动控制技术。”就更离谱了,完全对燃烧学和热力学一点概念都没有
Institute of Engineering Thermophysics grew out of the Power Laboratory of Chinese Academy of Sciences established in 1956 by Professor Wu Chunghua, a world famous scientist and the creator of the theory of three-dimensional flows in turbomachinery. After more than five decades,development, it has become a high-tech institute in both applied science and research development. According to the demands of the development of the branch of learning, economic construction and the high-tech development in energy resources, the institute has succeeded in adjusting its research from aero-engine to energy resources and power engineering, and from energy resources and power engineering to energy resources, power engineering and environment protection. At the same time, the institute has grown stronger and stronger, made great contribution to the development of economy, society as well as the safety and scientific discipline construction of the country. At present, there are 166 staffs in the institute, including two academicians of Chinese Academy of Sciences. The institute has master,s degree and Ph.D degree programs of the first-tier discipline--- Power Engineering and Engineering Thermophysics and master,s degree program of the second tier--- Environment Engineering and also has a mobile station of postdoctoral program
Over the last 20 years, mainly due to the vibration caused by the fatal accidents occurred one after another, inflicting huge economic losses. Furthermore, the vibration is still new to large units shipped impossible grid, the normal operation for the main the crew during normal operations, continuous vibration problems affecting the normal production, Units often reduced load and operation of the sick, and even the unit was forced to stand, these incidents not uncommon. The system based on LabVIEW virtual instrument software platform for turbine vibration signal window read, and spectral analysis and correlation analysis. LabVIEW virtual instrument is a common core of computer hardware platform, defined by the user, with virtual front panel, the test function test software from a computer equipment system. The system completed the turbine vibration signal read, the signal rectangular window Hanning, Hamming window window choice, and then the signal amplitude spectrum, power spectrum and phase spectrum analysis and correlation analysis, and operating with graphics and display interface. The result of running the system proved that the system can accomplish the signal read, and three window function and the dynamic analysis of the various options and graphical display with the results.
专业前景 本专业以工程热物理学科为主要理论基础,以内燃机和正在发展中的其它新型动力机械及系统为研究对象,运用工程力学、机械工程学、自动控制、计算机、环境科学、微电子技术等学科的知识和内容,研究如何把燃料的化学能和液体的动能安全、高效、低(或无)污染地转换成动力的基本规律和过程,研究转换过程中的系统和设备的自动控制技术。随着常规能源的日渐短缺,人类环境保护意识的不断增强,节能、高效、降低或消除污染排放物、发展新能源及其它可再生能源成为本学科的重要任务,在能源、交通运输、汽车、船舶、电力、航空宇航工程、农业工程和环境科学等诸多领域获得越来越广泛的应用,在国民经济各部门发挥着越来越重要的作用。 培养目标 本专业方向培养具备热能与动力工程专业方面的基本理论、基本知识和基本技能,能在国民经济各部门从事热力发动机和其它新型动力机械及设备的设计、制造、管理、教学和科研等方面的高级工程技术人才。 培养特色 本专业在加强学生基础理论和综合素质教育的同时,加强计算机及自动控制技术的应用,强化专业实践教学,注重全能训练,全面提高学生的实践动手能力和科学研究潜力,使毕业生具有较强的择业竞争能力和较宽的就业适应能力。 主干课程 机械制图、机械原理、机械设计、理论力学、材料力学、工程材料、电工技术、电子技术、计算机软件基础、液压技术、液力传动、内燃机构造、内燃机原理、内燃机设计、内燃机试验、发动机电子技术、工程热力学、流体力学、传热学、自动控制理论、现代测试技术等。 就业方向 毕业后可从事能源与动力设备的行政管理、内燃机及新型动力设备的开发研制、内燃机排放控制、新能源利用、汽车工业、兵器工业、环保工业、交通运输业、船舶、电力、航空宇航工业等方面的工作。
The prospect of major works of the major hot in physics as the main theoretical basis to the internal combustion engine and the other is the development of new machinery and power systems for the study, the use of engineering mechanics, mechanical engineering, automation, computers, environmental science, microelectronics technology disciplines, such as content knowledge and to study how the chemical energy of fuel and liquid kinetic energy security, high-performance, low (or none) of pollution to the power into the basic law and the process of research in the conversion process of the automatic control systems and equipment technology . With the growing shortage of conventional energy, human the growing awareness of environmental protection, energy saving, high efficiency, reduce or eliminate polluting emissions, the development of new energy and other renewable sources of energy has become an important task for the subjects in the energy, transportation, automotive, ships, electricity, aviation aerospace engineering, agricultural engineering and environmental science in many fields such as access to more and more widely used, the department in the national economy is playing an increasingly important role. Cultivate cultivate goal with the direction of the major thermal power projects with the major aspects of the basic theory, basic knowledge and basic skills, to engage in various departments in the national economy and other heat engines power the new machinery and equipment design, manufacture, management, teaching and scientific research aspects of advanced engineering and technical personnel. Cultivate major characteristics of the students in strengthening the basic theory and the overall quality of education, to strengthen the computer and automatic control technology, and strengthen the teaching of professional practice, pay attention to all the training, students enhance the practice of comprehensive practical ability and scientific research potential, so that graduates have strong competitiveness and a wide choice of employment adaptability. Mechanical Drawing trunk curriculum, mechanical principles, mechanical design, theoretical mechanics, mechanics of materials, engineering materials, electrical technology, electronics technology, computer software foundation, hydraulic technology, hydraulic transmission, the internal combustion engine structure, the principle of internal combustion engines, internal combustion engine design, the internal combustion engine testing, engine electronic technology, engineering thermodynamics, fluid mechanics, heat transfer, automatic control theory, modern test technology. Employment after graduation can be engaged in the direction of energy and power equipment, administration, internal combustion engines and new development of power equipment, internal combustion engine emission control, new energy use, the auto industry, the weapons industry, industrial environmental protection, transport, shipping, electricity, air space industrial job.
Motor vehicles are not the only air polluters. Coal and oil, used to heat homes and factories and to generate electricity, contain small amounts of sulfur. When the fuels are burned, sulfur dioxide, a poisonous gas, is produced. It is irritating to the lungs. Some cities have passed laws that allow coal and oil to be burned only if their sulfur content is low.
汽车不是唯一的空气污染。煤炭和石油,用于家庭取暖和工厂,并产生电力,含有少量的硫。当燃料燃烧,二氧化硫,一种有毒气体,就产生了。它是刺激到肺部。一些城市已通过法律,允许煤炭和石油只有在其被烧毁硫含量低。
Most electricity is generated by steam turbines. About half of the sulfur dioxide in the air comes from burning fuel to make steam. Nuclear power plants do not burn fuel, so there is no air pollution of the ordinary kind. But the radioactive materials in these plants could present a danger in an accident. Also, there is a problem in disposing of the radioactive wastes in a way that will not endanger the environment.
大部分电力是由蒸汽涡轮机。关于空气中的二氧化硫,使蒸汽一半来自燃料燃烧。核电厂不烧燃料,所以不存在的那种普通的空气污染。但是,在这些植物的放射性物质可能会提出一个意外的危险。此外,还有一个在放射性废物处置的方式,不会危害环境的问题。
Another type of pollution, called thermal (heat) pollution, is caused by both the fuel-burning and nuclear plants. Both need huge amounts of cold water, which is warmed as it cools the steam. When it is returned to the river, the warm water may stimulate the growth of weeds. It may also kill fish and their eggs, or interfere with their growth.
另一种污染类型,称为热(热)污染,是造成双方的燃料燃烧和核电厂。双方都需要的冷水,这是温暖,因为它大量的蒸汽冷却。当返回到河边,温暖的水会刺激杂草生长。它也可以杀死鱼,它们的卵,或干扰他们的成长。
Physicists are studying new ways of generating electricity that may be less damaging to the environment. In the meantime, many power plants are being modernized to give off less polluting material. Also, engineers try to design and locate new power plants to do minimum damage to the environment.
物理学家们正在研究发电对环境损害较小的新方法。与此同时,许多发电厂也在实现现代化以减少污染物质。此外,工程师们尝试设计并找到对环境的损害最小的新的发电厂。
Thermal energy and power engineering
This program is to cultivate both master thermal energy and power engineering professional basic theoretical knowledge, computing skills, but also the ability in various forms of generating power plant, refrigeration and air conditioning, new energy related fields in need of economic management knowledge and ability, can be engaged in the electric power industry related to areas of science and technology application, research, development and management of a senior talents. According to the national construction and talents needs, set up the professional direction includes: thermal power engineering, power plant set control operation, refrigeration and air conditioning engineering, gas power engineering, advanced energy engineering etc.
Major courses: theoretical mechanics, mechanics of materials, engineering thermodynamics, engineering fluid mechanics, heat transfer, turbine principle, boiler principle, thermal power plants, the pump and fan, automatic control theory, motor learning, circuit theory, the control system, unit unit operation principle, thermal process detection technology, engineering graphics, mechanical design basis, electrician technical basis, electronic technology base, refrigeration and cryogenic principle, refrigeration compressor, refrigeration automation and testing technology, gas turbine principle, gas gas-steam combined cycle power plant, gas turbine combined-cyde operation and maintenance, nuclear reactor theoretical basis, nuclear system and the maintenance, the PWR nuclear power plant system and equipment, wind power generation principle, professional class.
Employment place to go: large-scale modernized electric power enterprise, power equipment manufacturing enterprises and energy class enterprise engaged in production, operation and management work, Government departments at all levels and institution engaged in energy, power, energy saving, environmental planning, design, construction, operation, consultation and supervision worketc. Research institutes, universities in energy and power related research and development, teaching, management, etc.
发布日期:2009-5-12 13:32:16 (阅130次)
关键词: 烟气脱硫 脱硫 湿法脱硫
引言
我国目前的酸雨区已超过国土面积的三分之一,2005年的S排放量达到2549万t,超过总量控制指标749万t,加剧了我国的大气污染火电厂是S的主要排放源,我国2004年1月1日实施的GBl3223-2003《火电厂大气污染排放标准》按时段规定了火电厂的大气污染物最高允许排放值,加快了我国火电厂脱硫装置的投入使用,对于单机容量超过20MW的大型燃煤火电机组,国内外目前流行的脱硫工艺是采用湿法脱硫,在完成脱硫要求的同时,可以同时产生副产品石膏,实现脱硫副产品的资源再利用,我国现在运行的许多火电厂在原设计中没有考虑脱硫装置的安装位置,这使运行的火电厂增加脱硫装置带来了困难,未来10年装机容量3×10MW的火电机组均需要安装脱硫'>烟气脱硫装置,因此,我国现在运行的火电厂急需一种既具有高脱硫效率且节省占地面积的湿法脱硫新工艺,母公司为德国鲁尔集团公司(Ruhr AG)的德国斯特雅克集团公司(steag AG)自1969年开始研发以CaO或CaCO为脱硫剂的紧凑式湿法脱硫新工艺,该工艺具有脱硫效率高、占地面积小的独特优点,1977年在德国wilhelmshaven第一套具有商业化使用价值的紧凑式湿法脱硫工业化试验设备对5×10Nm/h的燃煤电厂烟气进行脱硫,相应的汽轮发电机组的电功率为140 MW;1982年第一台工艺脱硫设备在该电厂投入运行,脱硫的烟气量为1.5×10Nm/h,相应的汽轮发电机组的电功率为450 MW,该工艺到2000年已成功应用的火电机组容量超过2×10MW,单台锅炉的最大额定烟气流量为2.29×10Nm/h,单台汽轮发电机组的最大额定电功率为750MW,紧凑式湿法脱硫工艺特别适用于已运行电厂增加脱硫装置的改造方案,对我国大批火电厂的增加脱硫装置的改造方案具有重要的实用价值。
1、燃煤火电厂紧凑式湿法脱硫工艺
紧凑式湿法脱硫工艺的流程图如图1所示,来自电除尘器(1)温度为120~130%的待脱硫的烟气进入回转式烟气加热器(2),把热量放给来自脱硫塔(4)温度为40~45℃的净化烟气,净化后的烟气是经过立式风机(3)使其压力升高来克服回转式烟气加热器的流动阻力,净化后的烟气温度升高到80~90%后排人烟囱(17),以达到烟气进入烟囱的温度要求,放热后的烟气从脱硫塔底部进入脱硫塔向上流动,在脱硫塔内待脱硫的烟气与来自脱硫塔底部经泵(6),升压后从分布在脱硫塔上部的喷嘴(5)喷出的脱硫剂浆液进行混合发生化学反应达到脱硫目的,化学反应产物从脱硫塔上部流向脱硫塔下部,与经风机(8)送人脱硫塔的空气进一步进行化学反应,形成脱硫'>烟气脱硫的副产品石膏的浆液,石膏浆液进入经浆泵(9)送人分离器(10),分离出来的浓石膏浆液进入石膏生产系统(11),产生石膏产品,从石膏生产系统(11)分离出来的废液与分离器(10)分离出来的废液进入混合器(12),流出混合器(12)的浆液分成3部分,一部分进入脱硫剂制浆系统(16),另一部分进入脱硫塔再循环利用,还有一部分经浆泵(13)升压后送人分离器(14),分离出来的废水送入废水处理系统(15)进行净化处理,浆泵(7)将浆液升压后在脱硫塔下部进行搅拌,防止脱硫塔下部浆液沉淀,脱硫所需的工艺用水经水泵送入脱硫塔,随着脱硫剂的不断补充,就可以使脱硫系统连续运行,完成对烟气的连续脱硫。
2、紧凑式湿法脱硫'>烟气脱硫工艺的应用实例
紧凑式湿法脱硫工艺与常见的湿法脱硫工艺相比,主要差别是脱硫净化后的烟气经立式风机升压后送入回转式烟气加热器升温,然后再送人烟囱排入大气中。
紧凑式湿法脱硫工艺已在德国、荷兰、土耳其、印尼、意大利、西班牙、巴西等十几个国家得到推广和应用,脱硫剂分别可以采用CaO、CaO/CaC03、海水,电厂的燃料可以是烟煤、褐煤、石油焦等,长期实际运行的脱硫效率从早期的90%达到目前的95%以上,最高可达98.5%,列出了紧凑式湿法脱硫工艺的部分实例。
德国对电厂排放要求十分严格,燃煤火电厂烟气的排放限定值S为400 mg/Nm脱硫效率要大于85%,NO为200 mg/Nm,烟尘50mg/Nm,这使电力生产中为环保支出的成本十分可观,在德国燃煤火力发电厂电力成本的构成中:燃料成本65%、湿法脱硫及生产石膏15%、脱氮成本9%、除尘成本5%、噪音治理2%、水费3%、厂区生态维护费用1%,德国燃煤电厂实际的烟气排放值优于排放限定值,某电厂脱硫'>烟气脱硫的实际运行记录绘出的烟气SO,出口含量和实际运行的脱硫效率,图中表明,脱硫前烟气中的SO浓度约为11000 mg/Nm,脱硫后烟气中的SO浓度约为33mg/Nm,脱硫效率为99.7%紧凑式湿法脱硫过程产生的石膏产量可由下式计算。
3、紧凑式湿法脱硫工艺应用过程中的改进措施
在紧凑式湿法脱硫工艺的实用过程中,为了进一步提高该脱硫工艺的安全性、经济性和可靠性,主要进行了如下几个方面的技术改进:
3、1提高设备运行的可靠性
采用耐磨材料和螺旋型大口径喷嘴,解决了喷嘴的堵塞和磨损问题,不仅提高了喷嘴的耐磨性能和浆液流场的均匀性,而且使喷嘴的压差由改进前的0.20 MP下降到0.08 MP,实现了喷嘴节能超过30%。
脱硫塔内部采用橡胶内衬结构,不仅节省了钢材,而且提高了脱硫塔的耐腐蚀性能,从而也提高了脱硫塔的使用寿命和运行可靠性。
3、2减少脱硫装置的占地面积和初投资
采用立式风机给进入烟气加热器的净化烟气升压,节省了紧凑式脱硫装置的安装尺寸,节约了烟气管道的长度,不仅可以大幅度降低烟气的流动阻力,而且节约了该脱硫工艺的占地面积和降低了该脱硫工艺的初投资,便于在已运行的燃煤机组上采用此脱硫工艺,如单机容量400 MW燃煤机组的脱硫塔的直径为12.5m,回转式烟气加热器的直径为10m。
3、3优化脱硫工艺的运行方式和参数
为了改善净化后的烟气中液体颗粒的分离效果,使气液分离器采用瓦楞板折返结构,在增加气液分离面积和增加气液分离流程的同时,降低了分离器的高度,从而也达到了降低脱硫塔高度的效果。
在脱硫塔底部采用浆液循环搅拌措施,使脱硫塔底部的浆液的浓度变得十分均匀,提高了脱硫塔底部的容积有效利用率,从而降低了脱硫塔的高度,如930MW燃煤机组的锅炉高度为175m,而紧凑式脱硫塔的高度为48m。
将脱硫塔内的喷嘴层设为6层,每两层喷嘴用一台浆泵供给喷嘴浆液,使喷嘴的流量可以调节,从而保证不同烟气SO浓度时均能达到较高的脱硫效率,以增强该脱硫工艺对燃料的适应性。
经过上述改进措施的实施,使紧凑式湿法脱硫工艺具有改造费用低、节省占地面积、系统的安全性、经济性和可靠性都很高的一种新的湿法脱硫工艺,得到广泛推广和应用,成为运行中的大型燃煤电厂脱硫改造的首选新工艺。
4、结束语
紧凑式湿法脱硫工艺实际长期运行的脱硫效率现在已经超高95%,最高已达到98,5%,脱硫效率可以满足燃煤电厂脱硫效率的要求;
紧凑式湿法脱硫工艺产生的脱硫石膏产品的质量和石膏中微量元素的含量,完全可以满足市场对石膏产品的质量要求,实现了脱硫副产品的资源化再利用;
经过改进的紧凑式湿法脱硫工艺具有改造费用低、节省占地面积、系统的安全性、经济性和可靠性高等独特优点,是已运行的大型燃煤电厂脱硫改造的首选新工艺。
本文来自: 环境技术网(www.cnjlc.com) 详细出处参考:http://www.cnjlc.com/dq/1/2008062190745_2.html
Coal-fired thermal power plant compact wet flue gas desulfurization technology
Release date :2009-5-12 13:32:16 (130 read)
Key words: flue gas desulfurization desulfurization WFGD
Introduction
Acid rain areas in China have more than one-third of the land area in 2005, emissions of S to reach 25.49 million t, the total control of more than 7,490,000 t, exacerbated by air pollution in China's thermal power plant is the main source S, China's January 1, 2004 implementation GBl3223-2003 "thermal power plant air pollution emission standards," according to periods of thermal power plant provides the maximum allowable emissions of air pollutants the value of thermal power plants in China to speed up the desulfurization devices put into use, the stand-alone capacity more than 20MW of large-scale coal-fired thermal power units, both at home and abroad is currently popular is the use of wet FGD desulphurization, desulfurization requirements completed at the same time, it will also produce a by-product gypsum, FGD by-product of the realization of re-use of resources, China is now running a number of thermal power plants In the original design did not consider the installation of desulfurization equipment, which makes the operation of thermal power plant desulfurization devices to increase the difficulties brought about by the next 10 years the 3 × 10MW installed capacity of thermal power units are required to install desulfurization '>flue gas desulfurization devices, therefore, Our country is now in urgent need of running a thermal power plant not only has the high desulfurization efficiency and save the new area of the wet FGD process, the parent group for Germany's Ruhr (Ruhr AG) of Germany斯特雅克Group (steag AG) since R &D in 1969 for CaO or CaCO compact Desulfurizer WFGD new technology, the desulfurization process with high efficiency and small footprint of the unique advantages of wilhelmshaven in Germany in 1977 the first set of commercial value of the compact WFGD type of industrial test equipment 5 × 10Nm / h for coal-fired power plant flue gas desulfurization, the corresponding turbine-generator unit for the electric power 140 MW1982 in the first Taiwan-process desulfurization equipment in the plant put into operation, flue gas desulfurization capacity of 1.5 × 10Nm / h, corresponding turbine-generator unit for the electric power 450 MW, the process that has been successfully applied in 2000 the thermal power unit capacity of more than 2 × 10MW, the largest single boiler flue gas flow rated 2.29 × 10Nm / h, a single turbine-generator unit of the largest electric power for the rated 750MW, compact wet FGD process has been in operation is especially suitable for power plant desulfurization equipment to increase the transformation program, a large number of our thermal power plant desulfurization devices an increase in the transformation of program has an important practical value.
1, coal-fired thermal power plant technology of compact WFGD
Compact wet FGD process flow chart as shown in Figure 1, from electrostatic precipitator (1) temperature of 120 ~ 130% of the flue gas desulfurization to be turning into the flue gas heater (2), the heat released to the from the desulfurization tower (4) temperature of 40 ~ 45 ℃ flue gas purification, after purification of the flue gas is the result of vertical fan (3) to overcome the increased pressure to turn the flow of flue gas heater resistance, purified flue gas temperature to 80 ~ 90% of people behind the chimney (17), in order to achieve the temperature of flue gas entering the chimney request, after the heat from the flue gas desulfurization tower at the bottom of upward mobility into the desulfurization tower, to be in the desulfurization tower Desulfurization of flue gas desulfurization tower from the bottom by the pump (6), step-up from the desulfurization tower located in the upper part of the nozzle (5) out of the mixed slurry desulfurizer chemical reaction to achieve the purpose of desulfurization, chemical reaction products from the desulfurization Tap the bottom of the upper part of the flow of desulfurization tower, with the fan (8) give the air desulfurizer further chemical reaction, the formation of desulfurization '>FGD gypsum by-product of the slurry, gypsum slurry into the pump through (9) give separator (10), separated into the dense slurry gypsum plaster production systems (11), resulting in gypsum products, gypsum production system from (11) separated from the liquid and the separator (10) separated from the liquid into the mixer (12 ), outflow mixer (12) of the slurry into 3 parts into the system desulfurizer Pulp (16), another part of recycling into the desulfurization tower, some by the pump (13) give separator after boost (14), separated from the wastewater into the wastewater treatment system (15) for purification, pump (7) after the slurry desulfurizer boost to stir the bottom, to prevent the lower part of serous desulfurizer precipitation, water desulfurization process required by the pump into the desulfurization tower, with the constant desulfurizer added that allow continuous operation of desulfurization systems, to complete a continuous flue gas desulfurization.
2, compact WFGD '>FGD application process
Compact wet FGD process with common wet FGD process, the main difference is the desulfurization of flue gas purification by following the step-up into the vertical rotary fan flue gas heater to heat up, and then send the person into the air chimney in.
Compact wet FGD process has been in Germany, the Netherlands, Turkey, Indonesia, Italy, Spain, Brazil and other countries has been the promotion and application, respectively, can be used desulfurizer CaO, CaO/CaC03, water, fuel for power plants can be bituminous coal, lignite, petroleum coke, etc., long-term operation of the desulfurization efficiency of 90% from early to reach more than 95% of the current up to 98.5%, are listed in the compact part of wet FGD process instance.
Germany has very strict requirements of power plant emissions, coal-fired thermal power plant flue gas emission limit value of S for the 400 mg / Nm desulfurization efficiency is greater than 85%, NO for the 200 mg / Nm, dust 50mg/Nm, which makes power production the cost of expenditures for environmental protection is very impressive, in Germany the cost of electricity coal-fired power plants in the composition: 65% of fuel costs, the production of gypsum wet FGD and 15%, 9% of the cost of removal, the cost of 5% of dust, noise control 2% , 3 percent water, plant maintenance costs 1% of the ecological, the German coal-fired power plant flue gas emissions from the actual value than the emission limit values, a power plant desulfurization '>FGD drawn record of the actual operation of the flue gas SO, export content and practical operation of the desulfurization efficiency, the figure shows that before the flue gas desulfurization of SO concentration is about 11000 mg / Nm, after the desulfurization of flue gas concentration of SO of about 33mg/Nm, desulfurization efficiency of 99.7 percent of compact wet FGD gypsum produced by the process of production can be calculated.
3, compact wet FGD process applications in the process of improvement measures
In the compact utility wet FGD process, in order to further enhance the desulfurization process of the security, economy and reliability, mainly the following aspects of the technical improvements:
3,1 to improve the reliability of equipment
Wear-resistant materials and the use of large diameter spiral nozzles, nozzle solve the problem of congestion and wear and tear, not only improve the wear resistance and serous nozzle flow field uniformity, but also pressure from the nozzle to improve the pre-fell to 0.20 MP 0.08 MP, achieved more than 30% energy-saving nozzles.
Desulfurizer internal structure of the use of rubber-lined, steel not only saves, but also enhanced the desulfurization tower corrosion resistance, and thus improve the life of the desulfurization tower and operating reliability.
3,2 desulfurization equipment to reduce the footprint and the initial investment
The use of vertical flue gas fan heater to enter the flue gas purification step, saving compact size of the installation of desulfurization equipment, saving the length of the gas pipeline, not only can greatly reduce the flow of flue gas resistance, and to save the Desulfurization of the area and reduce the initial investment in desulfurization technology for the coal-fired units have been in operation for the use of this desulfurization process, such as stand-alone capacity of 400 MW coal-fired units in the desulfurization tower diameter of 12.5m, rotary the diameter of gas-gas heater 10m.
Optimization of 3,3-FGD operation mode and parameters
In order to improve the purification of the flue gas after the separation of liquid particles, so that the use of gas-liquid separator returned to the structure of corrugated board, after an increase in size and increase in gas-liquid separation processes, gas-liquid separator at the same time, reduce the height of the separator, which also reached to reduce the effect of a high degree of desulfurization tower.
Used in the desulfurization tower at the bottom of the cycle slurry mixing measures to desulfurizer the concentration of slurry at the bottom become very uniform, increased volume at the bottom desulfurizer effective utilization, thereby reducing the height of the desulfurization tower, such as coal-fired units of 930MW Boiler height for the 175m, while the compact desulfurization tower height of 48m.
Desulfurization tower will set the nozzle layer 6 layers, each with a two-tier nozzle pump slurry supply nozzle so that the flow of the nozzle can be adjusted to ensure that flue gas SO different concentration can reach the high desulfurization efficiency, in order to enhance the desulfurization process of adaptation of fuel.
After the above-mentioned measures to improve implementation of the compact wet FGD process with a modified low-cost, save area, the system's security, economy and reliability are very high, a new wet FGD process has been widely and applications, to become in the operation of the transformation of large-scale coal-fired power plant of choice for a new desulfurization process.
4, concluding remarks
Compact actual wet desulfurization process of long-term operation of ultra-high desulfurization efficiency of 95 percent now, the maximum has reached 98,5%, the efficiency of desulfurization desulfurization efficiency coal-fired power plants to meet the requirements
Compact Wet FGD gypsum produced by the quality and content of trace elements in gypsum, plaster fully meet the market requirements of product quality to achieve desulfurization by-product of re-use of resources
Compact improved wet FGD process with a modified low-cost, save area, the system's security, economy and the unique advantages of high reliability is already running a large-scale coal-fired power plant desulfurization new technology of choice for transformation.
This article from: Environmental Technology Network (www.cnjlc.com) detailed reference to the source: http://www.cnjlc.com/dq/1/2008062190745_2.html
能源与动力工程致力于传统能源的利用及新能源的开发,和如何更高效的利用能源。能源既包括水、煤、石油等传统能源,也包括核能、风能、生物能等新能源,以及未来将广泛应用的氢能。动力方面则包括内燃机、锅炉、航空发动机、制冷及相关测试技术。2012年教育部新版高校本科专业目录中调整热能与动力工程为能源与动力工程。
1培养目标
考虑学生在宽厚基础上的专业发展,将 热能与动力工程专业分成以下四个专业方向:
(1)以热能转换与利用系统为主的热能动力工程及控制方向(含能源环境工程、新能源开发和研究方向);
(2)以内燃机及其驱动系统为主的热力发动机及汽车工程,船舶动力方向;
(3)以电能转换为机械功为主的流体机械与制冷低温工程方向;
(4)以机械功转换为电能为主的火力火电和水利水电动力工程方向。
即 工程热物理过程及其自动控制、 动力机械及其自动化、流体机械及其自动控制、电厂热能工程及其自动化四个二级学科。
2培养要求
本专业学生主要学习动力工程及工程热物理的基础理论,学习各种能量转换及有效利用的理论和技术,受到现代动力工程师的基本训练,具有进行动力机械与 热工设备设计、运行、实验研究的基本能力。
毕业生应获得以下几方面的知识和能力:
1.具有较扎实的 自然科学基础,较好的人文、艺术和 社会科学基础及正确运用本国语言、文字的表达能力;
2.较系统地掌握本专业领域宽广的技术理论基础知识,主要包括工程力学、机械学、工程热物理、流体力学、电工与电子学、控制理论、市场经济及企业管理等基础知识;
3.获得本专业领域的工程实践训练,具有较强的计算机和外语应用能力;
4.具有本专业领域内某个专业方向所必要的专业知识,了解其科学前沿及发展趋势;
5.具有较强的自学能力、创新意识和较高的综合素质。
3人才目标
本专业主要培养能源转换与利用和热力环境保护领域具有扎实的理论基础,较强的实践、适应和创新能力,较高的道德素质和文化素质的高级人才,以满足社会对该能源动力学科领域的科研、设计、教学、工程技术、经营管理等各方面的人才需求。学生应具备宽广的自然科学、人文和社会科学知识,热学、力学、电学、机械、自动控制、系统工程等宽厚理论基础、热能动力工程专业知识和实践能力,掌握计算机应用与 自动控制技术方面的知识。毕业生能从事 能源与动力工程及相关方面的研究、教学、开发、制造、安装、检修、策划、管理和营销等工作。也可在本专业或其它相关专业继续深造,攻读硕士、博士学位。
4主干学科
动力工程与工程热物理、机械工程、流体力学
5主要课程
工程力学、 机械设计基础、机械制图、 电工与电子技术、工程热力学、流体力学、 传热学、控制理论、测试技术、燃烧学 等
主要实践性教学环节:包括军训、金工、电工、电子实习、认识实习、生产实习、社会实践、课程设计、毕业设计(论文)等,一般应安排40周以上。
授予学位:工学学士 硕士 博士
6专业实验
传热学实验、工程热力学实验、动力工程测试技术实验、流体力学实验 等
7知识结构
工具性知识
比较系统地掌握一门外语,掌握外文科技写作知识。掌握计算机软、硬件技术的基本知识,具有在本专业与相关领域的计算机应用与开发能力;掌握通过网络获取信息的知识、方法与工具。能够进行中外文文献检索。
自然科学知识
掌握 高等数学、大学物理、工程化学、生命科学、环境科学等方面的知识。
学科技术基础知识
掌握工程制图、工程数学、理论力学、材料力学、机械设计基础、金属工艺学、电工学、电子技术基础、 工程流体力学、工程热力学、传热学、计算机原理与应用、 自动控制原理等方面的知识(对水利水电动力工程方向,工程热力学、传热学知识要求可适当降低)。
专业知识
根据本专业人才培养目标和培养规格,因专业方向的不同而有所差别。
(1)热能动力及控制工程方向(含能源环境工程方向)
主要掌握热能与动力测试技术、锅炉原理、汽轮机原理、燃烧污染与环境、动力机械设计、热力发电厂、热工自动控制、传热传质数值计算、流体机械等知识。
(2)热力发动机及汽车工程方向
掌握内燃机(或透平机)原理、结构、设计、测试、燃料和燃烧,热力发动机排放与环境工程, 能源工程概论,内燃机电子控制,热力发动机传热和热负荷, 汽车工程概论等方面的知识。
(3)制冷低温工程与流体机械方向
掌握制冷、低温原理、人工环境自动化、暖通空调系统、低温技术学、热工过程自动化、流体机械原理、流体 机械系统仿真与控制等方面的知识。使学生掌握该方向所涉及的制冷空调系统、低温系统,制冷空调与低温各种设备和装置,各种轴流式、离心式压缩机和各种 容积式压缩机的基本理论和知识。
(4)水利水电动力工程方向
掌握水轮机、水轮机安装检修与运行、 水力机组辅助设备、水轮机调节、 现代控制理论、发电厂自动化、电机学、发电厂电气设备、继电保护原理等方面的知识,以及水电厂计算机监控和水电厂 现代测试技术方面的知识。
也就是说,本专业学生应具有如下知识和能力,并根据培养规格的不同而有所侧重:
(1)具有较扎实的自然科学基础,熟练掌握高等数学、工程数学、大学物理、工程化学等基础性课程的基本理论和应用方法;具有较好的人文、艺术和社会科学基础及正确应用本国语言、文字的表达能力。
(2)掌握一门外国语,具有较好的听、说、读、写能力,能较顺利地阅读本专业的外文书籍和资料。若外语为英语应达到国家四级以上水平(含四级)。
(3)系统地掌握本专业必需的技术基础理论,主要包括力学理论(理论力学、材料力学、流体力学),热学理论(热力学、传热学等),机械设计基本理论,电工与电子基本理论, 自动控制理论,能源动力工程基础理论等。
(4)熟悉本专业领域内1~2个专业方向或有关方面的专业知识,了解其学科前沿和发展趋势。
(5)具有本专业必需的制图、计算、测试、调研、查阅文献和基本工艺、操作、运行等基本技能。
(6)具有一定计算机相关知识和较强的计算机应用能力,较熟练使用计算机工具,解决工程中的有关问题。
(7)具有较强的自学能力、分析能力和创新意识。
8就业方向
根据专业方向不同,毕业生可在大型企业、相关公司以及相关的研究所、设计院、高等院校和管理部门从事热能工程、动力工程、制冷工程方面的研究与设计、产品开发、制造、试验、管理、教学等工作。主要就业方向为发电厂、内燃机厂、汽车制造厂、物流调控、锅炉厂、大型机械厂、造船厂、空调厂、制冷设备厂、暖通工程等等!
9修业年限
四年开设院校( 非按排名排列)
中原工学院 郑州轻工业学院 河南科技大学 河南农业大学 河南理工大学 华北水利水电大学
郑州大学 北京工业大学 哈尔滨工业大学 河北工业大学 西北工业大学 长安大学
西北大学 北京交通大学 武汉大学 湖南大学 中南大学 湘潭大学
北京航空航天大学 西南交通大学 天津大学 合肥工业大学 中国科学技术大学 安徽工业大学
同济大学 新疆大学 南京航空航天大学 天津理工大学 天津商业大学
德州学院 大连海事大学 四川大学 西南财经大学 中山大学 华南理工大学
重庆大学 南昌大学 东南大学 中国矿业大学 天津城市建设学院 广西大学
南京师范大学 南京理工大学 河海大学 苏州大学 中国石油大学(华东) 吉林大学
哈尔滨工程大学 上海交通大学 山东大学 华中科技大学 武汉理工大学 华东理工大学
东北大学 大连理工大学 大连海洋大学 江苏大学 南京工业大学 太原理工大学 北京理工大学
北京科技大学 吉林建筑工程学院 吉林化工学院 中南林业科技大学 邵阳学院 佳木斯大学
南京工程学院 江苏工业学院 江苏科技大学 南京林业大学 扬州大学 景德镇陶瓷学院
重庆理工大学 沈阳航空工业学院 哈尔滨理工大学 长江大学 武汉工程大学 湖北汽车工业学院
哈尔滨商业大学 沈阳化工学院 沈阳理工大学 辽宁科技大学 辽宁石油化工大学
沈阳农业大学 西华大学 中国计量学院 山西大学 中国民用航空飞行学院 中北大学
太原科技大学 广东工业大学 广东海洋大学 广东石油化工学院 上海理工大学 上海工程技术大学
上海海洋大学 上海海事大学 上海应用技术学院 上海电力学院 西安交通大学 西北农林科技大学
昆明理工大学 西安理工大学 西藏大学 陕西理工学院 长沙理工大学 南华大学
东北电力大学 长春工程学院 河南城建学院 集美大学 兰州理工大学 兰州交通大学
青岛大学 内蒙古科技大学 青岛科技大学 内蒙古工业大学 青岛理工大学 山东建筑大学
山东科技大学 山东理工大学 山东农业大学 烟台大学 中国农业大学 中国政法大学
北京石油化工学院 华北电力大学(保定) 河北理工大学 河北农业大学 燕山大学 河北工程大学
河北建筑工程学院 辽宁工程技术大学 华北电力大学(北京) 中国石油大学(北京) 南昌工程学院
江西蓝天学院 平顶山学院 运城学院 贵州大学 仲恺农业技术学院
中国矿业大学(北京) 武汉科技大学 重庆科技学院 重庆交通大学 沈阳工程学院 辽宁科技学院 华中科技大学文华学院 中国矿业大学徐海学院 河南理工大学方科技学院 江苏大学京江学院 南京师范大学泰州学院 南京工业大学浦江学院 中北大学朔州校区
2、医学类职业移民职业清单上的医学类职业有30多个,医学类职业评估机构有9个,一部分是60分职业,一部分是50分职业,还有一部分是40分职业,中国申请者经常递交申请的大约8个。申请人需要根据自身的特点,量体裁衣,选择合适的评估机构。选择合适的职业和评估机构非常重要。
3、技工类职业澳大利亚技术移民职业清单中37%是技工类职业。由于技工协会对申请人的学历没有严格的要求,重点是要有丰富的工作经验,所以理论上绝大部分中国的技术工人都符合技术移民的要求,技工类技术移民之所以在递交的材料中所占比例远远低于其他类职业主要是两方面原因
其一,申请人英语水平太低,达不到技术移民的最低要求,
其二,申请人对如何说明自己是一名完全合格的符合澳大利亚标准的技术工人一头雾水。实际上,中国有相当一部分技术工人是符合条件的,星级饭店厨师、现代化工厂技工、大专学历技工等英语一般还是不错,认真复习是能考过雅思5分的,掌握大量资料和积累丰富办案经验后,是能克服把握不准缺憾的。澳大利亚还有一些其他类职业的评估也有很大难度,比如飞行员类职业、教师类职业等,他们的申请技巧就不在这里一一阐述。还有一点需要提醒申请者注意,对澳大利亚职业评估机构做出的不利于申请者的决定,是可以上诉的,这一点不同于独立技术移民申请,申请者千万不要放弃上诉权,组织一篇好的上述状,推翻一审决定是完全可能的,上述成功后,评估机构应该退还上诉费,当然这里面的技巧就很难用太短的文字说明。